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Multi-objective Motion Synthesis of a Rolling Sphere in a 
Rectilinear Chute-conveyor with Transformed Dry Friction 
 
B. Cheshankov, V. Bozdouganova, I. Ivanov, V. Vitliemov 
 
 
A mathematical model of the dynamics of a rolling rigid sphere in a rectilinear chute-conveyor with transformed 
dry friction is developed. It includes two types of rolling: with slipping and without slipping. A multi-objective 
optimization problem of a passively controlled motion is formulated for the model and it has been solved. 
Salukvadze optimal solution and ranked Pareto optimal solutions are determined. 
 
 
1 Introduction 
 
The constrained motion modeling of a rigid homogenous sphere is a classical task of mechanics (Routh, 1905; 
Grigoryan and Fradlin, 1982). Initially, the interest in this problem was motivated by the billiard game and later – 
by the bowling game. The dynamics of a spherical body in its motion on a fixed and rotating surface is a basic 
modeling problem of the nonholonomic mechanics (Chaplygin, 1949; Neimark and Fufaev, 1972). This problem 
continues to be an objective of mainly theoretical research, for example in (Veselov and Veselova, 1989; Kilin, 
2001, Borisov et al., 2002;  Rozenblat, 2006; Johnson, 2007). 
The passively controlled sphere motion is studied in Narayanan (2008) with application in the gravitational 
transportation of spheroidal fruits. It is known that the rolling with slipping ensures a greater speed than the 
rolling without slipping which leads to a greater productivity in transportation of spherical bodies at a given 
distance. In some cases, for example, when dug out tubers are being transported, the rolling without slipping is 
preferable because in this case their skin is more difficult to be damaged. Such a motion is also advisable when 
the surface of the bodies in transportation should be irradiated or disinfected. 
The efficiency of the gravitational transportation depends on the design parameters of the chute-conveyor and on 
the energy consumption for its realization. In a lot of technological processes, the gravitational transportation is 
combined with vibration of the conveyor; with a translational or rotational motion of the contact constraints 
(Gudushauri and Panovko, 1988). In all these cases, an effect of dry friction linearization appears (pseudo-
transformation to viscous friction) without real changes in its physical nature. This allows us to control the 
transformed friction and to synthesize motions with desirable parameters. 
The rigid body gravitational sliding in a rectilinear grove with a moving plane-support is studied in (Andronov, 
1988; Andronov and Zhuravlev, 2010) as a basic modeling problem of a mechanical system with transformed dry 
friction. A multi-criterion optimization problem has been solved in Vitliemov et al. (2006) using the developed 
model. 
A mathematical model of the gravitational transportation of a homogeneous rigid sphere in a rectilinear grove 
with transformed dry friction is developed with a lot of simplifications. An optimization problem of multi-
objective parametric synthesis of passively controlled motion of the sphere using the developed model has been 
solved in this study. 
 
 
2 Mathematical Model 
 
The nonimpact motion of a homogeneous sphere with radius R in transportation at a given horizontal distance L 
is under consideration. The sphere is a rigid body of mass m, moving on an inclined at angle α to the horizontal 
level plane, which moves translationally with constant velocity VP (Figure 1). The sphere motion with respect to 
the absolute coordinate system OXYZ is constrained by fixed planes – the guide-walls of the chute, which are 
orthogonal to the moving plane and to the vector of its velocity  VP. The surface of the guide-walls is assumed 
frictionless. There is a play between the constraints and the sphere. The sphere motion is loosely constrained by 
the guide-walls and the sphere could be in a contact with only one of them at the same time.  
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Let us assume that only four forces are exerted on the sphere: the gravity force, G; the normal reaction of the 
moving plane, NA; the friction force, TA, having components TAX, TAY; and the normal reaction of the active 
frictionless constraint, NB, (Figure 1). 
 

 
 

Figure 1. A sphere in a gravitational motion into a rectilinear chute with transformed dry friction 
 
 
The friction force is modeled by Coulomb’s law 
 
 TA = – µ|NA|VA / |VA| ,    |TA| = (TAX 

2 + TAY 
2 )1/2 (2.1) 

 
if the velocity VA of sphere point А has magnitude |VA| = (VAX 

2 + VAY 
2)1/2 ≠ 0 and  

 
 |TA°| ≤ µ|NA|,  (2.2) 
 
if |VA| = 0. In these relationships, µ is the friction coefficient, which has equal values in rolling with and without 
slipping.   
The conditions for permanent contact between the sphere and the constraints are the inequalities imposed on the 
algebraic values of the normal reactions:  NA ≥ 0, and NB ≥ 0. It is supposed that the initial conditions do not cause 
impact interaction between the sphere and the contact surfaces, as well as the motion is without bouncing. 
Let us assume that in the time interval T ∈ [0, T1], T1 > 0, the sphere slides the moving plane and one of the 
guide-walls. Using the equation (2.1), the equation of sphere’s mass center, C, motion, and the equations for 
sphere’s angular momentum rate of change about its center (Kraige and Meriam, 2002), the following equations 
are obtained 
 
 mdVC /dT = TAX + mgsinα, 

 (I/R)dΩX /dT = TAY ,    (I/R) dΩY /dT = – TAX,  (2.3) 

 (I/R) dΩZ /dT = 0,    NA – mgcosα = 0,    NB + TAY = 0, 

where 
 
 |TA| = µ|NA| = (TAX 

2 + TAY 
2)1/2,    |TAX| = |TAY| |VAX /VAY |, 
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 I = (2/5)mR2,    TAX = – |TAX|σAX,    TAY = – |TAY|σAY, (2.4) 

 VAX = VC – RΩY,    VAY = RΩX – VP, 

 σAX ≡ sgn(VAX),    σAY ≡ sgn(VAY). 

 
From the equations (2.3)-(2.4), the following equations are derived 
 
 |TAY| = µmgcosα /[1 + (VC – RΩY)2/(RΩX – VP)2]1/2, 

 |TAX| = |TAY| |(VC – RΩY)/(RΩX – VP)|,  (2.5) 

 |NA| = mgcosα,    |NB| = |TAY|, 

 |VA| = (VAX 
2 + VAY 

2)1/2 ≠ 0. 

 
Taking into account the relationships (2.3)-(2.5), the following model is obtained, which describes the state of the 
sphere 
 
 mdVC /dT = – |TAX|σAX + mgsinα, 

 (I/R)dΩX /dT = – |TAY|σAY,  (2.6) 

 (I/R) dΩY /dT = |TAX|σAX, 

 (I/R) dΩZ /dT = 0, 

where 
 
 VC (0) = VC0,    VC0 ≠ RΩY0, 

 ΩX(0) = ΩX0,    ΩX0 ≠ VP /R,    ΩY(0) = ΩY0,    ΩZ(0) = ΩZ0. (2.7) 

 
Let us assume that in the time interval T ∈ (T1, T2], where T2 is the smallest root of the equation  X(T2)/L –
(1 + tan2α)1/2 = 0, the sphere is rolling without slipping on the moving plane. In this case, the following equalities 
could be written  
 
 |VA| = 0,    VAX  = VC – RΩY = 0,    VAY  = RΩX – VP = 0, 

 dVC /dT = RdΩY/dT,    ΩX = VP /R,    dΩX/dT = 0. (2.8) 

 
Taking into account (2.2), the following system of equations is obtained 
 
 mdVC /dT = TAX° + mgsinα, 

 (I/R)dΩX /dT = TAY°,    (I/R) dΩY /dT = – TAX°,    (I/R) dΩZ /dT = 0, (2.9) 

 NA – mgcosα = 0,    NB + TAY° = 0, 

where 
 
 |TA°| = (TAX°2 + TAY°

2)1/2 ≤ µ |NA|.  (2.10) 
 
Plugging the equations (2.8) in (2.9) we could derive 
 
 TAX° = – (I/R2)mgsinα /(m + I/R2),    TAY° = 0,    NB = 0,    NA = mgcosα.   (2.11) 
 
Substituting I = (2/5)mR2 into equations (2.11) and then in the inequality (2.10) we arrive at the inequality  
 
 tanα ≤ 3.5µ .  (2.12) 
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The differential equations, which model the sphere’s rolling without slipping in the time interval T ∈(T1, T2], take 
the form 
 
 dVC /dT = mgsinα /(m + I/R2), 

 dΩX /dT = 0,   (2.13) 

 dΩY /dT = mgsinα /[R(m + I/R2)], 

 dΩZ /dT = 0, 

where 
 

 VC (T1) = VC (T1),     ΩX (T1) = VP /R, 

 ΩY (T1) = VC (T1)/R,    ΩZ (T1) = ΩZ (T1).   (2.14) 

 
The equations (2.5)-(2.7), (2.11)-(2.14) describe a compound dynamical model, which includes both cases of 
rolling with and without slipping. It contains the following parameters: R, µ, α, VP, VC0, ΩX0, ΩY0, ΩZ0. 
In order to simplify and generalize the model, we introduce dimensionless variables and parameters 
 
 r = R/L,    x = X/L,    x = η(1 + tan2α)1/2,    ω = Ω(L/g)1/2, 

 ωX = ΩX(L/g)1/2,    ωY = ΩY(L/g)1/2,    ωZ = ΩZ(L/g)1/2, 

 i = I /mL2 = (2/5)r2,    t = T/(L/g)1/2,    c = VC (0)/(Lg)1/2, 

 vC = VC /(Lg)1/2,    vCf = VC(T2) /(Lg)1/2,    w = VC
2/Lg,  (2.15) 

 vP = VP /(Lg)1/2,    vA = VA / (Lg)1/2, 

 vAX = VAX /(Lg)1/2,    vAY = VAY /(Lg)1/2, 

 nA = NA /mg,    nB = NB /mg, 

 fA = TA /mg,    fAX = TAX /mg,    fAY = TAY /mg, 

 
and we denote: u1 ≡ tanα,  u2 ≡ vP,  SAX ≡ sgn(vAX),  SAY ≡ sgn(vAY). 
Applying the relationships (2.15) the dynamical model (2.5)-(2.7), (2.11)-(2.14) is converted into dimensionless 
form. 
If the following conditions are satisfied 
 
 η ∈ [0,η1],    0 ≤ η1 ≤ 1,    |vAX| = |w1/2 – rωY| > 0,    |vAY| = |rωX – vP| > 0,  (2.16) 
 
then the sphere moves by rolling with slipping and its motion is modeled by the following equations 
 
 dt/dη = [(1 + u1

2)/w]1/2,    t(0) = 0, 

 dw/dη = 2(1 + u1
2) 1/2(– |fAX|SAX  + sinα),    w(0) = c2, 

 dωX /dη = – |fAY|SAY (1 + u1
2)1/2/(iw1/2/r),    ωX(0) = ωX0,   (2.17) 

 dωY /dη = |fAX|SAX (1 + u1
2)1/2/(iw1/2/r),    ωY(0) = ωY0, 

 dωZ /dη = 0,    ωZ(0) = ωZ0, 

where 
 
 |fAY| = µcosα /[1 + (vAX /vAY)2]1/2,    |fAX| = |fAY||vAX /vAY|, 

 |nA| = cosα,    |nB| = |fAY|.  (2.18) 

 
If the conditions  
 
 η ∈ (η1,1],    |vAX| = 0,    |vAY| = 0,    tanα ≤ 3.5µ,  (2.19) 
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are satisfied then the sphere moves by rolling without slipping and its motion is modeled by the following 
equations 
 
 dt/dη = [(1 + u1

2)/w]1/2,    t(η1) = t1, 

 dw/dη = 2(1 + u1
2)1/2sinα/(1 + i/r2),    w(η1) = w1, 

 dωX /dη = 0,    ωX(η1) = vP /r,  (2.20) 

 dωY/dη = [(1 + u1
2)/w]1/2sinα/[rw1/2(1+i/r2)], 

 ωY(η1) = w1
1/2/r, 

 dωZ /dη = 0,    ωZ(η1) = ωZ1, 

where 
 
 fAX° = – (i/r2) sinα /(1 + i/r2),    fAY° = 0, 

 |nA| = cosα,    |nB| = 0.   (2.21) 

 
We denote the mathematical model described by (2.16)-(2.21) with the abbreviation MM for the sake of brevity. 
 
 
2 Criteria of Mechanical Performance 
 
A basic performance criterion of the considered gravitational chute-conveyor is the dimensionless time for the 
transportation of a sphere at a given horizontal distance 
 
  f1 = t(1), (3.1) 
 
which also characterizes its productivity and its perfection.  
The energy losses of the mechanical friction are important characteristic of the system. Using the balance of the 
energy and the work of the sphere forces, we determine a performance criterion for the energy dissipation  
 
 f2 = | ½{w(1) – w(0) + i[ω(1)2 – ω(0)2]} – u1 |,  (3.2) 
 
where ω  = (ωX

2 + ωY
2 + ωZ

2)1/2. 
In a geometrical aspect the gravitational chute-conveyor is evaluated by the maximal dimensionless height on 
which the sphere’s mass center, С, drops 
 
 f3 = u1  ≡ tanα. (3.3) 
 
In the kinematical and energy-saving aspects, the transporting device is characterized by the magnitude of the 
dimensionless velocity of the moving plane 
 
 f4 = u2 ≡ vP. (3.4) 
 
The performance criterion vector components f(u) = [f1, f2, f3, f4], where u = [u1, u2], have to be subjected to 
Pareto minimization. 
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 (a) 

 
(b) 

 
Figure 2. Objective functions f1(u) and f2(u): (a) µ = 0.2; (b) µ = 0.6 

 
The objective functions f1(u) and f2(u), u∈П ≡ {u ∈E2: u– ≤ u ≤ u+}, when u– = [0, 0.1],   u+ = [3.5µ, 6], 
c = 0.3193,  r = 0.1 for µ = 0.2 and µ =  0.6 are presented in Figures 2(a) and 2(b). The pseudo-criteria f3(u) and 
f4(u) do not depend on the change of the parameter µ.  
The obtained results in a graphical form show weak parametric sensitivity of the performance criterion f1(u) in 
the almost entire domain П with the exception of a small neighborhood of the boundary point u–. In this 
neighborhood, the objective function f2(u) changes erratically. 
  
  
4 Optimization Problem 
 
In the case of a given parametric vector p = [c, ωX0, ωY0, ωZ0, µ, r] and an admissible design variable vector u∈П, 
we assume that the differential equations of the mathematical model MM describe the problem with desirable 
accuracy. This is a reason to formulate the optimization problem as a standard multi-objective optimization 
problem 
 
 Pmin u∈П  f(u,p),    П ≡ {u ∈E2: u– ≤ u ≤ u+}, (4.1) 
 
where “Pmin” is the operator for determination of global Pareto minimal values of the performance criterion 
vector f. 
The solution technique for the problem (4.1) is based on the Pareto optimality principle (Miettinen, 1999). The 
solution consists of two sets D* ⊆ П and P* ⊆ P from Pareto optimal points: u*∈D* ≡ {u*: u* = 
arg Pmin u∈П f (u,p)}; f*∈ P* ≡ {f*: f* = f (u*,p)}. The ultimate choice of only one solution from all 
compromised solutions D* and P* can be essentially facilitated if they are contracted to several preferentially 
ranked subsets.  
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5 Numerical Procedure 
 
A two-stage procedure, described in Cheshankov et al. (2004), is utilized for the solving of the problem (4.1). In 
the first stage, the sets D* and P* are constructed by the Parameter Space Investigation (PSI) method for 
investigation of multi-dimensional parametric domains with uniformly distributed sequences of Sobolev’s test 
points (Statnikov and Matusov, 2002; Sobol' and Statnikov, 2006). This stage contains the following generalized 
steps: 

• Generation of a given number Q Sobolev’s test points in the domain П ≡ {u: u−≤ u ≤ u+}. 
• Determination of discrete set P.  
• Selection of Pareto optimal sets D* ⊆ П and P* ⊆ P. 

In the second stage, the subsets MRe ⊂ P* are determined and sorted by their rank of efficiency Rе ∈{6, 5, …, 1} 
using three geometrical criteria µk°, k = 1, 2, 3 evaluating the distance: between each compromise point f* and 
the positive utopian point (f U  ≡  [ fj 

U ], fj 
U =  min u∈D* fj(u,p), j = 1, 2, …, 4); between each compromise point f* 

and the hyper-line UN, connecting the positive U and the negative N (f N  ≡ [ fj 
N ],  fj 

N = max u∈D*  fj(u,p), 
j = 1, 2, …, 4) utopian points; and between the projection of f* onto hyper-line UN and the utopian point U. 
The set MRe = 6 with the highest rank of efficiency is the Salukvadze optimal solution ( uS, f S ), (Salukvadze, 1979) 
if it consists of only one point. It reveals the potential of the transportation device to be improved if all the partial 
criteria fj are uniformly approaching their perfect utopian values fj

U. The ultimate compromise decision is taken 
interactively through an analysis of the sorted by their rank of efficiency Pareto subsets MRe . 
 
 
6 Results 
 
The problem (4.1) has been solved using the program PSIMS (Cheshankov et al., 2004) with the following data: 
r = 0.1; c = 0.3193; µ = 0.2, 0.4, 0.6; ωX0 ≡ ωY0 ≡ ωZ0 ≈ 0; u− = [0, 0.1]; u+ = [3.5µ, 6]. 
The domain П is sounded by means of the PSI-method with Q = 4096 Sobolev’s test points. The results for 
µ = 0.4 are illustrated in Figures from 3 to 8. The utopian points in the µ°-space of the geometrical criteria µk° , 
k = 1, 2, 3 are designated with the symbol “ • ”. The point with the highest rank of efficiency  Rе = 6 is designated 
with the symbol “ ■ ”, and the lower rank of efficiency  points Rе = 5, 4, ..., 1 – with symbols “ •, ▲, ►, ◄, ♦ ” 
respectively. The unselected Pareto optimal solutions in Figure 3 are designated by the symbol “ + ”, and in 
Figure 4 – with “ × ”. 
The obtained Salukvadze optimal solutions (uS, fS) are given in Table 6.1. Since the optimal point uS is close to 
the boundary point u− and the robustness is not guaranteed it is worthy to analyze the next in the rank of 
efficiency Pareto optimal subset MRе = 5, too.  
 
 

Table 6.1. Salukvadze optimal solutions 

µ  f1 
S   f2 

S   f3 
S  f4 

S 

0.2 1.9829 0.0532 0.3074 0.1130 
0.4 2.0454 0.0476 0.2635 0.1072 
0.6 2.0454 0.0476 0.2635 0.1144 

 
 
A part of the compromise solutions, for which the performance criterion f4 has lower values than those in Table 
6.1, are shown in Table 6.2. However, if µ = 0.6 then the set MRе = 5 is empty and the set MRе = 4 does not contain 
solutions competing with the Salukvadze optimum with respect to the performance criterion f4. 
 
 

Table 6.2. The selected compromise solutions of rank of efficiency Re = 5 

µ Test point  f1  f2  f3   f4  

0.2 258 1.9330 0.0585 0.3514 0.1115 
0.2 1286 1.8611 0.0683 0.4392 0.1029 
0.2 2314 1.8930 0.0635 0.3953 0.1101 
0.4 1356 1.8611 0.0683 0.4392 0.1043 
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Figure 3. Pareto optimal points in the µ°-space 
 

 
 

Figure 4. Pareto optimal points in the domain П 
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Figure 5. Pareto optimal points in the objective-space of  fj,  j = 1, 2, 3 

 
 

Figure 6. Pareto optimal points in the objective-space of  fj,  j = 1, 2, 4 
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(e) 
 

Figure 7.  Kinematical (a, b, c) and dynamical (d, e) characteristics of sphere transportation for 
Salukvadze optimal design of a gravitational chute-conveyor with µ = 0.4 

 
 

Figure 8.  Salukvadze optimal functions fj 
S(c), j = 1, 2, 3, 4  and  vCf 

S(c)  for  µ = 0.4 
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Figure 7 illustrates the basic kinematical and dynamical characteristics of sphere transportation for Salukvadze 
optimal design of a gravitational chute-conveyor with µ = 0.4. The diagrams show a motion transition from initial 
rolling with slipping to rolling without slipping at a instant of the transportation. Such a transition is a typical for 
the optimally designed conveyors and both type of rolling are included. The model reveals both regims of motion 
and their ratio in the transportation.  
The diagrams in Figure 8 are obtained by varying the dimensionless initial velocity of the sphere’s mass center, c, 
and finding the Salukvadze optimal designs of chute-conveyor. They show that such a conveyor could realize a 
transportation of a sphere with low dimensionless values of the motion duration,  f1

S, as well as high values of the 
conveyor height,  u1≡ f3

S, by almost constant energy losses of friction,  f2
S, and dimensionless velocity 

magnitude,  u2 ≡ f4
S, of the moving plane-support.  

 
 
7 Conclusion 
 
The dynamics of a homogeneous rigid sphere, moving without impact in a rectilinear gravitational grove with 
transformed dry friction, is modeled in this study. The mathematical model considers the basic types of sphere 
motion – rolling with and without slipping. A multi-objective optimization synthesis problem of passively 
controlled sphere motion is formulated for the model. It is solved by means of two-stage procedure consisting of 
uniform sounding the feasible domain of the variables and of selecting Pareto-optimal subsets, ranked by their 
efficiency. A simple compromise solution, based on the Salukvadze optimal concept, is determined. The obtained 
results expand the circle of studied problems for modeling mechanical systems with transformed dry friction. 
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