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Stress Waves in a Stamping Tool:
Analytic Treatment of a One-dimensional Model

C. Schwarz, E. Werner, H. J. Dirschmid

A simple one-dimensional model for a stamping process is set up, taking into account the compliance of the
workpiece. Two kinds of boundary conditions are considered at the end where the impact takes place. The one
dimensional wave equation, describing the displacement of the cross-sections of the tool with non-trivial boundary
conditions is solved by means of the Laplace transformation. The technique used for the inverse transformation
back into the time domain allows for a closed-form representation and efficient numerical evaluation of the solu-
tion. The result is finally discussed with regard to the influence of the compliance of the workpiece on the loading
of the tool. Restricting the discussion to a special limit case, we can show that the results agree with those found
in the literature.

1 Introduction

The purpose of this contribution is to present the closed-form analytical solution for the dynamical loading of the
tool in a simple model for a stamping process. Rather than addressing mechanical minutiae of the process, the
focus lies on the detailed presentation of an elegant and exact solution technique to the one-dimensional problem
of wave-propagation in the stamping tool. The latter is modelled as a rod which is mounted to a spring that repre-
sents the workpiece, see also Schwarz et al. (2010a). The concept for this technique has only recently been roughly
sketched in Schwarz et al. (2010b).

The idea for the treatment of the stamping problem was developed from a topic discussed earlier in the context of
a possible application of ceramic valves in engines, see Werner and Fischer (1995). Similar problems have already
been treated and were analytically solved in the literature, see for example Zharkova and Nikitin (2006); YuFeng
and DeChao (1998), however not in the generality considered here and with different emphasis.

The maximal loading of a valve or a stamping tool due to the impact on the valve seat or on the workpiece is
determined by the compliance of the particular counterpart. The delicate deviation of the stress responses for a
spring and for a rigid counterpart requires an unimpeachable solution technique leaving no space for ascribing the
observed effects to numerical inaccuracies.

In a one-dimensional consideration, both applications can be described by the rod-spring-model with adequate
initial and boundary conditions. The valve is initially moving and actually impacts on the seat by itself, whereby
the opposite end remains stress-free. The stamping tool is modelled to be initially at rest and in contact with the
workpiece when either (a) a mass impacts or (b) a force is applied for a finite timethe opposite end. In a
simplified way, that is neglecting the separation of the impacting mass from the rod, boundary condition (a) was
already considered in a previous work of Schwarz et al. (2010a). Taking the separation condition into account,
boundary condition (a) results in a physically and mathematically very interesting problem, which will be solved
below.

The paper is organized as follows: In Sec. 2, the geometrical setting of the model and the two different boundary
conditions are introduced, and the mathematical problems to be solved are framed. The proceeding for the analyt-
ical solution of the problems on the basis of the Laplace transformation is detailed in Sec. 3. Examples of stress
and displacement development for typical parameters are given in Sec. 4. The results are discussed in Sec. 5.
Conclusions are presented in Sec. 6. The appendices complement the work by a review of relevant properties of
the Laplace transformation, a consistent solution technique for a part of the problem which was treated in detail
but with a different technique in Schwarz et al. (2010a), and some technical details.
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Figure 1: Sketch of the geometrical setting and applied boundary conditions (a) and (b) of the considered stamping
model.

2 Problem Formulation

2.1 Geometrical Setting and Model Assumptions

For the stamping process, the model setup as sketched in Fig. 1 with two different boundary conditions (a) and
(b) is considered. As stamping tool, a rod of lendthspatially constant cross-sectighand a mass density

is considered. The elastic modulus of the rod materidl idhience its one-dimensional wave propagation speed
isco = /E/p. For the sake of simplicity the mechanical model of the rod is one-dimensional (longitudinal
coordinater). Taking into account transversal wave propagation in the rod significantly complicates the problem
as was shown by the numerical study performed by Danzer et al. (2000), the references in Werner and Fischer
(1995) or the publications by Skalak (1957), \&kt al. (1996), Alterman and Karal (1970) and Bostr(2000).

The rod is mounted at its lower (bottom) efid = 0) to the ground by a spring of stiffnegs. Attime¢ = 0 the

rod is (a) either hit at its upper end by a rigid body of masmsoving downwards at a velocity,, (absolute value)

or is (b) excited by application of a fordeé enduring for a finite timeg, Fig. 1.

Within a small strain setting, the displacement of (a cross section of) the rod in longitudinal directi@n 43,

the according strain is = du/dx. The stamping tool is supposed to deform purely elastic, hence stress is related
to strain via Hooke’s law according to= Fe. Damping of any kind is not considered, since we are interested in

the maximum stress in the rod occurring shortly after the impact (worst-case estimate). Furthermore, a backspring
(separation) of the rod from its counterpart (spring) will not be treated in this work.

2.2 Some Remarks on Modelling the Workpiece as a Spring

The very purpose of stamping is the plastic deformation of the workpiece. So an apparent point of criticism on the
presented model concerns the reasonability of substituting the workpiece by a spring.

As an example stamping process let us consider the production of coins. The pronounced elevation of the rim of the
coin is not a result of the stamping, but of a preceding forming step. The plastic deformation due to the stamping
of the coin’s emblem is therefore only of the order of a few %, and most of the workpiece’s (=coin’s) volume
reacts elastically to the stamping. For a qualitative estimation we put the deformation produced by stamping on a
level with that in indentation experiments. A typical estimation for the correlation of thée sizihe plastic zone

and the radiug of a spherical indenter in an indentation experiment (the latter corresponding to the visible recess
in stamping) isl ~ 3r, see Sundararajan and Tirupataiah (2006). If we devolve this in by a simple estimate to
the stamping application, an imprint on 70 % of the surface by 5% of the workpiece’s thickness would still affect
plastically only~10 % of its volume.

For another typical stamping process, the branding of wrought material, the fraction of stamping depth to material
thickness is even much smaller. The plastic zone affects then only a truly negligible portion of the workpiece.
Finally, plastic dissipation would only moderate the critical loading effects on the tool considered in this paper.
Hence, modelling the contact to the workpiece by mounting the rod to a spring is considered admissible for the
considered worst-case estimate.
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2.3 Governing Equations

The equation of motion, neglecting the small weight of the' yixl

Pu 0%u
2
80@2w7uzu(xat)' 1)

The initial conditions are

ou

u(z,0) =0, 5

—o = ’L'L(.T, 0) =0. (2)

At z = 0 the force on the elastic support (the sprin)w(0,¢), must be equal to that in the rodo(0,¢) =
EAe(0,t). Introducings = EA/K, the boundary condition at= 0 is

u(0,t) = Iﬁ%

2 = ru'(0,1). (3)

=0

We consider two different impact scenarios, resulting in two different boundary conditions (a) ana (b)at

(a) In case that the stamping is initiated by the impact of a falling masthe equation of motion of the falling
mass must be regardedsat= L

mi(L,t) = —Ac(L,t) — mg 4
together with the initial conditions at= L
u(L,0) =0, u(L,0)=—vy (5)

whereu,, is the absolute value of the mass velocity, assumed to be oriented in negdiiestion. The quantity
o(L,t) = Eu'(L,t) is the longitudinal stress at the top end of the fed= L), acting as tensile stress in the
positive direction.

Contact exists, however, only for that time period, whéi, t) is a compressive stress & 0). A separation of
the mass from the rod will take place at that time instaribr which

o(L,t.)=0 and o(L,t) >0. (6)

This condition can be denominated as ‘separation condition’.
Taking this lift-off of the impacting mass into account, the boundary condition (4) has to be phrased as

—%Au’([/,t) = (g +u(L,t)) - (H(t)— H(t —t.)) , where (7)

H(¢) = {?’ 2 i 8’ is the Heaviside Unit-Step function

(b) In case that the stamping is initiated by application of a force-at L, initial and boundary conditions at the
upper end of the rod change. For the considered excitationf(iith= F' < 0 being constant fob < ¢ < ¢, and
equal to zero fot > tg, the boundary condition can be specified as

EAW (L,t)=F - (H(t) — H(t —tg)) . (8)

3 Analytical Solution

The displacement function(z, ¢) that complies with the partial differential equation system (1 - 3) together with
boundary conditions (5, 7) or (8) will be determined as follows. First, the problem is transformed into the Laplace
image space, where it reduces to an ordinary differential equatismihich can be easily solved. Secondly, the
solutionu(x, t) is restored from the image space solutléfx;, s) by the inverse Laplace transformation. While

1in the sense that the weight of the rod is small compared to other forces in the system
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the first step requires more or less only standard methods, rather sophisticated techniques have to be applied for
the second one.

3.1 Solution in the Laplace Transformation Space

For the solution of the problem the standard Laplace transformation is used. Appendix A summarizes some of its
properties that are considered relevant for the understanding of the subsequent calculations.

The partial differential equation (1) with the initial conditions (2) can be transformed from the time d¢thain
together with the boundary conditions (3) and (a) (5, 7) or (b) (8) into the Laplace image(spaéth i/ (x, s) =

L [u(z,t)], one can rewrite the governing equations for the model with boundary conditions (a) or (b), compare
Sec. 2.3, as the following ordinary differential equation:in

cau" =su, )
Z’{(O7 S) = ’{u/(oa 5) ) (10)
L .
_O;T (SQU(L s) + g + vm) before separation
MU' (L) = 1 (11a)
? L 1— —stc te .
—QT g- 0 +/ i(L,t)e 5t dt | after separation
0 s 0
F 1—estr
My (L - .- 11
U(Lys) = - —— (11b)

For compact notation of Eg. (11a), we defined the mass satiom/pAL, with pAL being the total mass of the

rod. With\/E/p = ¢, one finds then the relation/EA = aL/c3.

Before the separation of the impacting mass, the factor involving the Heaviside functions in Eq. (7) is equal to
one, and the boundary condition can be transformed in a straight forward way to the Laplace space, see Eq. (11a)
before separation. To derive the Laplace transformed boundary condition after separation, taking correctly into
account the history of the impact characterized by the Heaviside functions, the original definition of the Laplace
transformation was consulted

- B @15 = /OOO e (g + (L, 1)) - (H(t) — H(t — t.) dt =

— e*Stc

te te
:/ e (g +ii(L,t)) dt = (g- +/ e (L, 1) dt) . (12)
0 0

S

The integrandii(L, t), stems from the time domain solution of the problem before the separation of the mass.
Subsequently, the abbreviations b. s. = before separatigrn() and a. s. = after separatidh > ¢.) will be used
on occasion.

The general solution of (9) can be written as
U (z,s) = Ches?/0 4 Ches%/c0 (13)
The solution in the Laplace image spab#y, s) is given in terms of a reference tinig = L/co and the dimen-

sionless quantitied = /L € [0;1] andx = x/L. It can be found conveniently by means of computer algebra
software, e.g. MTHEMATICA, Wolfram Research (2008), by calculating the constants in (13) to fulfill the
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boundary conditions Egs. (10) and (11a or 11b) of the problem, resulfing in

ato(g + vms - —&)s - sto .
% G(s) - ((1 — Rstg)eI ™5t (1 4 gstg)e(1Ho)st ) before separatign
@Y (s, s) = %’50 F(s) - [estoﬂ—é)a —e %) [1 — skto — (1 + siitg)e®*™0] - (14a)
te .
“i(l,t)e st dt
. (g + Jo" @, )e, > ] after separation
s 1—e st
™48, 5) = EFj; F(s) - [esto<1*5>(1 — e ") (1 + shitg)e ™ — (1 — sgto))] (14b)

with the functionsF andg turning out to be key elements of the solution, as they represent the critical parts of the
denominators in the Egs. (14)

G(s) = [(I—asty)(1—Fsty)+e**"™ (1+asty)(1+ Ezsto)]_l ,

F(s) = [(1—Fsto)+e>™ (1+Fsty)] " . (15)

Remark 1 Equivalence of boundary conditiof) and (b)
Approximating for short impact times in the solution to boundary condi@yrafter separation, Eq. (14a), the
factor that involves the integral term by a constant acceleratipthat is

te
S - —st
<g+1_estu/ i(1,t)e (fdt>_)77
0

allows for a direct confrontation of both image space solutions for boundary condit@msd (b). Comparing
the prefactors

Fcy . atoy  myco
EAs?  s2  EAs?

and the ‘core’ of the solutions, it turns out, that under the given presumptios, tr, and for ' = —m-y both
solutions are identical for times> ¢..

3.2 Solution in the Time Domain

The properties of the Laplace transform allow for a successive inverse transformation of the solution.

The inverse Laplace transformation®fl4, ., that is for times before the separation of the impacting mass from

the rod, was discussed in detail in Schwarz et al. (2010a). Note, however, that there a slightly different technique
was applied for the inversion: while in Schwarz et al. (2010a) the so-called Laguerre polynomial technique was
applied, involving a solution representation in terms of the Laguerre functions, here a more direct approach is pre-
sented, allowing for an elementary solution representation. For completeness, application of the present technique
to the part before separation, which was only outlined in App. C of Schwarz et al. (2010a), is specified in App.
B of the present contribution. A significant advantage of this approach over the former one is the more economic
evaluability of the resulting time domain solution by means of computer algebra software, especially for moderate
times. For the discussion of a third, essentially different technique for the inverse transformation, which is based
on the Theorem of Residues, the reader is referred to App. C of Schwarz et al. (2010a).

For the inverse Laplace transformation®/, ;. and(®)¢/ we proceed as follows: in a first step the inversion of
F(s) is considered. Then, application of the theorems on the Laplace transformation, collected in App. A, enable
the complete inversion.

2We then define the solution in the time domain in terms of the dimensionsless quanitities, thus changing notatioriirar) to
(6, t)and fromii(L, t) to (1, t).
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3.2.1 Inverse Laplace Transformation ofF(s)

For convenient notation, we introduce a new time scale in the image space by deneting,. Then the key
elementF(3) of the image space solution, Eg. (15) is

1 e™28 d—r5\ ! e 25 Z(3)
f 3) — - = 1 —23 = == 16
(8 (1—73)+e25 (1+/3) 1+/%§< Te 1+7-c§) 1+ e 25X(3) (16)

where the following functions were introduced

1
Z(8) = d X(5) = 17
(3)= 7775 and X() (17)
It can be shown, see App. B in Schwarz et al. (201Oa),|tif1a“%52((§)| < 1. Hence, the term in paranthesis can
be considered as limit of a geometric series, which yields the following equivalent represent&itq) of

F@E) =Y (~1remIEZ(3) [X(3))" . (18)

n=0

The compliance with the Cauchy-condition, which justifies the subsequently applied commutation of the inverse
Laplace operator with the (infinite but uniformly convergent) series, has been demonstrated in App. C of Schwarz
et al. (2010a).
We introduce the following notation: the original functions®find X’ with respect to the Laplace transformation
arez(t) andx(t), wheret = t/ty. For any non-negative integerlet z,, denote the:-fold convolution ofz with
itself, that is

Tp =2 :=xxxxr--- %0, (19)

n times

By definitionzy = 2*° = §, where the singulai-distributiond () is acting as the unit element with respect to con-
volution . According to the convolution theorem for the Laplace transformation (Eq. (AC2),ZX "] = z * xy,.
We find with the definitions in Eq. (17)

2(f) = geff/'% =zxxg,
. -2 g - 1 5 (4
() = =)= Ee_t/” —0) ~ zxxy = ﬁe_t/” (;-; - 1) . (20)
Utilising Eq. (A.3) and the correspondeniey °!]*™ = (f::)! e, ¢,t >0, m €N, yields

z":(_l)w <Z) Eeﬂ - B =

k=1
(21)

£EX = £u(0) = () () = e 3 C () (2) et =

K
k=1

n - _1\n—k k
=3 " \utFe F wherel,, = % <Z> (2> . (22)
K k! 3

Taking care of the remaining exponential term in Eq. (18) with the First Shift Theorem of the Laplace transforma-
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tion, see Doetsch (1974), one gets

o0

LTUF@E] = f(() =D (~1)"falf —2(n+1)). (23)

n=0

We presume the convention that any functjdg) which stems from an inverse Laplace transformation is defined
only for ¢ > 0 and is, per definition, zero fg < 0. This implies that series elements> N contribute to the
solution only for timeg > 2(NN + 1), such that for finite times the series in Eq. (23) is actually finite.

The according procedure for the inverse transformation of the corresponding elem&at,qf is presented in
App. B.

3.2.2 Complete Inverse Laplace Transformation of the Displacement Solutions

As it proved to be convenient, and in order to be consistent, we rewrite the image space solutions for the different
boundary conditions, Eqgs. (14), as functions of the scaled image space variablet,, introducing thereby
te = tc/to anth = tF/to .

M G(3) - ((1 — R5)e=9% — (14 /%é)e(”‘”g) before separatign
@Y(s,5) = atgf( 5) [ (1 — e=5t) [1 — 3R — (1 + 3R)e>] - (24a)
(? + f i1, e SEd{) ] after separation
E 1 — o 5k
®)4(5,3) = I;i;)to F(3) [( _ ~r) ((1 4 3R)eSH) (1 = gk)eg(l—@)} (24b)

To finalize the inverse Laplace transformatior{'dt/, Eq. (A.4) is applied, which is in our case

£ [Sie%f( )] = tlo /f(f 7" (7 - a)dr (25)

The variable: substitutes the different factors in the exponential functions occuring.

However, invertingd®, . requires an additional consideration. The formulation of the boundary condition Eq.
(7), which takes into account the separation condition for the impacting mass by means of the Heaviside unit-step
function, is the source of the integral term in Eq. (24a). This term is awkward: it involves the salutiotine

time domain for earlier times, and it is actually existing in the Laplace transformation space only after integration.
Inverse Laplace transformation can be realized by applying the transformation rule for periodic functions, yielding

1

E_l - -~
1 — e 5t

fe o ) ) )
/ ii(1,2) e dt} = 4P°"(1,¢) := i(1,t), recurrent with period ¢ . (26)
0

Subsequent application of the convolution theorem, Eqg. (A.2), yields

- 1 fe _5f pcr . n
f(s)-<1_e_§gc/0 i1, e dz‘)] /f (1,7 — 7)dr = o(d). 27)

By applying Eq. (A.4) one obtains a complete inverse transformation of the sol@tier, .

,671

Finally, the solutions in the time domain for the two considered boundary conditions (a) and (b) are
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@y (5,) =

i

see Schwarz et al. (2010a) or App., B b.s, t <t
t
_atg{g[f%/ (fTr+140)+f(r+1-08)— f(r+1+0—t)— f(r+1—-6—t))dr+
0
- +/l(t~—7)(f(7+1+5)—f(T-l-l—(S)—f(7+1+§—fc)+f(7+1—6—fc))d7}+
0
+RW(T+1+8) + (T +1=8) —Y(r+1+8—t) —p(r+1—6 — L))+
i
+/ (w(7+1+6)—1/;(7+1—5)—w(r+1+5—fc)+¢(7+1—5—50))617} a.s, >t
0
(28a)
(b)u5~:FcotOF@ ' T 0 T —90) — f(r §—tg) — f(r — 5 —tp))dr
50 ="5; 7 [ 4140+ 1 +1=0) = fr+ 145 =) = S+ 1= 8 =) drt

+/t(t~—T)(f(T+1+6)—f(T+1—5)—f(T+1+5—£F)+f(T+1—6—t~F))dT:| (28b)
0

3.2.3 The Separation Time, within Boundary Condition (a)

So far, the separation ting in boundary condition (a) has been treated as unknown. We analyzed the solution
valid before the impacting mass separates from the rod, App. B, assuming reasonable parameter values. It could
be rigorously shown that the stress at the upper end of the rod turns into a tensile stress right when the stress wave,
initiated solely by the impacting masstat 0, comes back to this end after having been reflected at the lower end.
This takes exactly the time = 2. Details of this analysis are given in App. C. A further discussion is deferred to

Sec. 5.

As has been pointed out subsequent to Eq. (23) and thoroughly discussed in Schwarz et al. (2010a), the solution to
boundary condition (a) for times< 2 = ¢, is exactly defined by considering only the first element; 0, of the

series representation of the solution Eq. (B.12). In this case, its second derivative with reggdheposition

x = L (i.e. § = 1) can be explicitly stated far < 2, and provides the periodic functiai®er

B (t mod t.)
WPer(1,1) = (Um — g) e e , (29)

toa

where the modulo-calculus was used to define the periodic function for all

4 Results

The results for the stamping model depicted in the following graphs are based on a common set of geometry and
material parameters: ,

E =220GPa, p = 7750 kg/md, A =10cm?, L = 1m. The parametek = FA/K L, defining the (inverse)

spring stiffness, was kept variable. Except for the graph in Fig. 3b, which serves as a demonstration that also a
fully numerical solution as hyperbolic partial differential equation system is possible, see Schwarz et al. (2010a),
all graphs were produced by evaluation of the above given analytical solutions using the sofavateMMTICA,

Wolfram Research (2008).

4.1 Boundary Condition (a)

For the impacting mass = 100 kg andv,, = 10m/s are used. The gravitational acceleration is approximated as
g=10 m/sz. In both Figs. 2 and 3, that part of the solution before the separation of the impacting mass affects the
respective position in the rod (marked by a dashed line style) coincides with the results presented in the preceding
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(a) In the center of the rod, = 0.5. (b) At the upper end of the rod,= 1.

Figure 2: Boundary condition (a): Displacement vs. time for different values of the spring stiffnesg).05
(dot-dashed) and = 0.5 (solid). The dashed segment at the beginning of the curves (i. e. (axfd.5¢, and

(b) fort < 2t,) marks the part of the solution before the separation of the impacting mass has an influence on the
respective position in the rod.

Foy——
=

-0.5

4

1

\
\

(a) Symbolic / analytical solution by MrHEMATICA.

(b) Numerical solution by MTLAB The MathWorks (2010).

Figure 3: Boundary condition (a): Stress vs. time in the center of thedred (.5) for different values of the
spring stiffnessg = 0.05 (dot-dashed) ané = 0.5 (solid). The dashed segment at the beginning of the curves
in subfigure (a), i.e. fot < 2.5¢y, marks the part of the solution before the separation of the impacting mass has
an influence on the considered positidr= 0.5 in the rod. In subfigure (b), for validation a fully numerically
calculated solution is shown. For details on the numerical method see Schwarz et al. (2010a).

work (Schwarz et al., 2010a, Fig. 4). After the separation of the ¥ntssresults differ significantly, and resemble

those found in the present work for boundary condition (b). The impacting mass then acts like an impact in the
literal sense, not further influencing the rod’s response by the additional weight that stores a considerable amount
of energy when not lifting off. Merely the spikes in stress appearing in Fig. 3 in comparison to Fig. 4b at instants
(2.5 + j)to,J € Ny, remind one of the differing history.

4.2 Boundary Condition (b)

In order to provide comparability with the results due to boundary condition (a), an effective period of length
tr = 2ty was specified= retention time of the mass on the rod). The force exerted at the upper end of the rod was
chosen to bé” = —350,000 N. Except for a time shift, i. e. for > 2¢r, and a sign-inversion, the results depicted

in Figs. 4a and 4b look alike those presented in (Schwarz et al., 2010a, Fig. 2) for what was denoted the Valve-case
(rod with uniform initial velocity being caught by the spring at its lower end). By application of theA@agdthe

rod is virtually accelerated to some ‘initial velocity’, too, such that from the time on when the introduced stress
wave reaches the lower end of the rod the response is equivalent to that for the Valve-case.

3Actually the impacting mass is removed from the system after the separation, so no possible subsequent impact is taken into account in the
model.
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(a) Displacement vs. time. (b) Stress vs. time.

Figure 4: Boundary condition (b): Displacement and stress vs. time in the center of the=xa@l¥) for different
values of the spring stiffness,= 0.05 (dot-dashed) and = 0.5 (solid).

Remark 2 Eigenfrequency of the system. Assuming for a spring which is very soft compared to the stiffness of
the rod the system as spring-mass-oscillator (harmonic oscillator) in the most simple sense, thed p@rfidile
periodic displacement of the rod) would be expected to be

2 [Mrod [ pALK =
= —_— = 2 —_— = 2 = = 2 .
| » s % s i3 71'150\/;

As shown in Fig. 5a, the development of the rigid body displacémefit) = fOL u(z,t) dz is in accordance
with this correlation for values of > 5. Obviously the factor 4 itk gives the factor 2 in the period of the
displacement development. For instance,doe 20 the above formula yield§ = 28.1 ¢, which coincides well
with the observed development of the rigid body displacement and the stress in the center of the rod, Fig. 5b.

(a) Rigid body displacement vs. time. (b) Stress vs. time in the center of the réd= 0.5).

Figure 5: Evolution of rigid body displacement and stress (exemplariiy=a0.5) for boundary condition (b) and
different values of the spring stiffnes&:= 5 (dot-dashed)i = 20 (solid) andx = 80 (dashed).

In the limit caseK — 0 resp. & — oo, the solution approaches that for a rod with free lower end. The amount

of energy absorbed by the spring tends to zero, and only the force impulse oscillates in the rod, being mirrored
at both free ends. The displacement development resembles a straightly descending line, thus representing the
macroscopic displacement of the rod. The wave length observed in Fig. 5a would, for this limit case, tend to
infinity.

5 Discussion

Exploiting the special structure of the solution in the image space, the solution in the time-domain can be given in
closed form. It can be phrased as infinite series of which for finite times only a finite number of elements add to

4The rigid body displacement is the displacement of the center of mass of thegpuhich is numerically calculated as mean of the
displacements,(d;, t) at 100 equidistant positiord in the rod.
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the solution, see Egs. (23) and (28).

We believe, that especially the exploration of different analytic solution strategies and representations, as specified
here and in previous publications, gives valuable insight into the structure of the solution and the characteristics
of the problem. The presented technique provides a closed form solution for finite times, i. e. exact results, and
allows for efficient numerical evaluation. Complementarily, the approach via the Theorem of Residues, see App.
C of Schwarz et al. (2010a), enables a detailed investigation of the analytic properties of the result.

Itis already evident from the rather short time interval in which the solution was evaluated that the stress profile for
rather stiff barriers, e. gi = 0.05, still resembles that for completely stiff barriers, but is superposed by additional
stress pulses, Figs. 3 and 4b. As could be shown in Werner and Fischer (1995) for the valve problem, there is a
critical value ofi of approximately0.05 for which this extra stress is maximal. In the worst case, the stress was
found to reach approximately.26 x &, wherec = Ewv,,/c is the maximum stress in the rod for a stiff barrier

(k — 0). In the center of the rod, for example, this extra stress arrives at tirse8.5,4.5,5.5, .. .. Its origin

is, of course, the barrier, which repeatedly stores some energy and continuously re-supplies it to the rod in a small
time interval. As this extra stress is then partially stored and retransmitted from the spring, too, the nhumber of
peaks in the superposed stress pulse increases with the number of cycles.

A partial verification of the final result, Eq. (28a, before separation), can be provided for the limik case

0, which represents an infinitely stiff spring behaving equivalently to a rigid barrier. Hu and Eberhard (2001)
presented an analytic solution for an equivalent problem: the impact of a rigid mass on an elastic rod, which is
fixed at the other end. It is defined according to Egs. (1 - 3) and (4, 5), too, with the only difference that no gravity
field is included, i.eg = 0. On the basis of the general solution for the wave equation according to d’Alembert,
they derive an analytic solution of the form ‘polynomialexponential function’, compare Eqg. (B.8). However,

Hu and Eberhard (2001) do not give a closed form solution. The results on the duration of contact of impacting
mass and rod as well as on the maximum stress in the rod (both investigated with respect to varying mags ratios
that are presented by Hu and Eberhard (2001) are perfectly reproduced by our solution, Eq. (28), in the limit case
% — 0. This finding does not contravene the earlier discussion on the separation time beingfgual2pSec.

3.2.3. In the limit cas& — 0, the effect that the spring lets the lower end of the rod act as a free end in at first
moment, see also App. C, is no longer resolvable, and the actual duration of contact can be determined.

Umax/5 77€c /QtO
7L

5 10 15 20 & 5 10 15 20 @
(a) Duration of contact. as a function of the mass ratig compare (b) Maximum dimensionless stress in the rod, found at 0, as a
Hu and Eberhard (2001), Fig. 3. function of o, compare Hu and Eberhard (2001), Fig. 5.

Figure 6: Reproduction of the results of Hu and Eberhard (2001) from Eq. (28a, before separation) in the limit
caser — 0 for discrete values of the mass ratio Note that the variable in this contribution andv in Hu and
Eberhard (2001) denote reciprocal values.

Various authors, e.g. Matuk (1979) or Shi (1998a,b), have been treating impact problems on the basis of elastic
rods, too. However, no tangible, general results have been specified in these contributions. Partly, recursion rules
are indicated, partly only very special aspects of the impact problem, e.g. the coefficient of restitution, were
studied.

6 Conclusions

The application of the analytical solution technique presented in this work to a simple model for a stamping process
provides exact and therefore incontestable results for the stress development in the tool. The compliant workpiece
thereby has been modelled by a spring.

The solution technique is based on the Laplace transformation of the wave equation for the displacement of cross-
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sections of the rod. Calculation of the respective solution in the Laplace image space is straight-forward, however
the inverse transformation demands some skills, especially when considering the separation of the impacting mass
from the rod. The results for the limit case of an infinitely stiff spring are perfectly in agreement with those found

in the literature for a rigid barrier. However, the spring was introduced actually as a model for a non-rigid bedding.
Its action may, under certain circumstances, be put on a level with that of a short, second bar, whose action might
be easier to understand, and which is actually a more realistic model to the real workpiece, e.g. a coin. This
correspondence is currently being investigated.

A Important Properties of the Laplace Transform

In the present contribution we use the Laplace transformation as a convenient tool for the solution of a partial
differential equation with nontrivial boundary conditions. Rather than going further into the mathematical details,
for which the reader is referred to the literature, e.g. Doetsch (1974), we would like to summarize only few
important properties of the Laplace transformation that are relevant for the presented calculations. We use the
following notation:

The Laplace transformation, denoted by the operdtomaps the functiory = f(¢) : R — R to its Laplace
transformed counterpaff = F(s) : C — C

LU= LU =F)i= [ e syt (A1)
0
For a brief representation of the solution in the time domain, we utilise that any funfforwhich stems from

an inverse Laplace transformation is defined onlysfor 0 and, per definition, zero faf < 0.

Convolution Theorem

For the inverse Laplace transformation of the product of two functi®fig andg(s) with the respective original
functionsf(t) andg(t) the convolution theorem holds

L7V [F(s) - G(s)] = f(t) % g(t) = / f(t—7)-g(r)dr = / ot —7)- f(r)dr. (A2)

Since convolution is a commutative and associative binary operation, which in addition is distributive with respect
to the operationt, a binomial theorem holds

n

(f+o9)™m=> <Z) Frhwgrin=h), (A.3)

k=0

Combination of the Rules

In the present case we have to apply several of the common transformation rules, that were summarized in Schwarz
et al. (2010a), simultaneously. As the order of application is of major importance, we demonstrate the correct way
of combination in the following form

o[B8 ()] <t [ o, w

a

whereq(€) = [ f(a(¢ —n)) - g(bn) dn.

B The Solution before the Separation of the Impacting Mass

Different from the approach presented in Sec. 3.2 for the inverse Laplace transformaffoexpioiting the
convolution theorem, in Schwarz et al. (2010a) the inverse Laplace transformation of the key dahehy, .,
Eqg. (15), was derived in terms of Laguerre functions. In this section, the above presented, in many aspects
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superior, technique is applied 4, .., too. We provide explicitly in the framework of this paper the solution of
the problem in the time domain before the separation of the impacting mass, Eq. (28a).

Recall the solution to problem (a) before separation in termis-efst,, Eq. (24a), however slightly rearranged

at% (gto + vm8)
52

(8, 5)p.s. = H(3) - [(1— R&8)e™% — (1 + k8)e] , (B.1)

where we introduce the key element of this solution representati{@n as
H(E) = e *Z(3) [1+e2X(5)] ", (B.2)
with

2(5) = 1 _ (lfaé)(if/%?'

_ B.3
(14 ad)(1+7&3)’ B3
We denote the original functions &f(3), X'(3) and Z(3) with respect to the Laplace transformationds), = (%)
andz(f), where agairt = t/t,. Moreover, for shorter notation, the abbreviatians- 1/a, b = 1/& as well as

I' =2(a+b)/(b— a) are introduced.

Like in Sec. 3.2, the term in brackets in the expressioriHas interpreted as limit of a geometrical series, yielding

H(E) =) (—1)re” CrHEZ(3)X"(5), (B.4)

n=0

which can be formally inverted with respect to the Laplace transformation by application of the convolution theo-
rem, Eq. (A.2), resulting in

h(E) =D (1) "zxan)(f—2n—1) =Y (=1)"hn(f—2n—1). (B.5)
n=0 n=0

As before,z,, := x*™ denotes the:-fold convolution ofz with itself, and the Heaviside factor can be omitted
respecting the remark given subsequent to Eg. (A.1). The compliance with the Cauchy-condition, which justifies
the subsequently applied commutation of the inverse Laplace operator with the (infinite but uniformly convergent)
series, has been demonstrated in App. C of Schwarz et al. (2010a).

For the Laplace inverse functions ®and X', Eq. (B.3), we find

(i) = a‘f)b (e*bf - e*af) Lz =T- (ae*at~ - be*bf) 4 6() =T - ¢(i) +o(f), (B.6)

whered(t) is the Dirac delta function. For calculation of the functiong again the binomial theorem for the
convolution, Eq. (A.3), is applied

hn(B) = 2(0) = (T ¢ +8(0)) " = 2(0) » (Z (Z) (0-cd)™ + 5*<nk>> _

k=0
n _ i
= ;rk- (Z) (z(t) * [¢(D)] ) . (B.7)
Lengthy, but standard technical calculations provide explicit expressions, fiorthe form
ha(f) = e, (D) — e g, (f) (B.8)

wherep,,, ¢, are polynomials of ordet, that can be calculated as follows

n ko (k)
N N\ ks (7 ; S Ti
pat) = (k) T pr() with () =3
k=0 =0
"o k0
N k~ (F ; ~ i i
)= (k) NG with i) = 3 Ui (B.9)
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The coefficients, § can be calculated iteratively according ta€ a — b)

k=1 .(k i~(k k-1 .(k i~(k
o9 __abNm @+ (-1 () :_@in '+ (i
0 c i+l ’ Yo it ’
i=0 =0

k-1 (k) - (k) —1
Sy ab [y 3 g0 = D (o) _ yz +( —1)’
1=l

1<I<k-1
~(k ab k ~(k abAk
B = D, 7 = g, (8.10)

where thet, g result with the initial valueécé ) = a, g(()l) = b from

k—1 i, (k) k=1, ~(k) i ()
i ;b dﬂwi, ww=gmiﬁ:”%,
R N o I =
1<I<k-1 )
jl(ckﬂ) _ A(k) 7 gl(ckﬂ) — _bg](i)l. (B.11)
Specifically we gebg = qo = ,% = ~( ) = yOO) The entire solution in the time domain before the separation

of the impacting mass finally results as

@ (8, 1)ps. = aty| — Rom (h(E — 8) + h(f +8)) + gto /t(i‘_ 7)(h(t — &) — h(t +9)) dr
0

— gitto) /Ot h(r — 8)dr — (vm + gitto) /Ot h(r + ) dT] . (812

C Assessment of the Separation Time,

As justification of Eq. (29) it was claimed that the separation condition Eq. (6) comes true at the time
respectivelyt, = 2ty. This will be confirmed in the following by an explicit discussion of the stress development
at the upper end of the rod according to the solution for boundary condition (a) before separation, Eq. (B.12).
Following the discussion subsequent to Eq. (23), considering only the first series eleraehitpf the expression

Eq. (B.5) already allows for the correct solution representation for2. The according stress development at the
upper end of the rod, = 1, results from Eq. (B.12) as

- Bt 7 7
@y (1,1) = fTO et/ (vm + (et/a — 1) gt0a> <0, (C.1)

providing for the limit from belowf — 2,

. Et
(a)ao(l,t —27) = —TO e 2/ (vm + (e2/(y — 1) gtoa) . (C.2)
Considering the first two series elements= 0, 1, of the expression Eq. (B.5) for the stress development at the
upper end of the rodj, = 1, gives then the correct solution for< 4. Considering the limit from above,— 2+,
yields

~ Et
(@5 +@ 5] (1,1 — 27) = = =2

T e—2/o¢ <—262/a7}m + Uy + (e2/a — 1) gtoa) . (C3)

Note that at times < 2 (including the limit consideration) effects due to the spring mounting have not yet arrived
at the upper end of the rod, therefore the paranfetimes not appear here.
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Examining the difference of both limits, one finds a step in the stress development=a® of magnitude
2Ftyv, /L. This step results in a tensile stresstat> 27 when the following condition for the compressive
stress holds

- 2Ft 2F

(@) 1.t 2= = — — = —20 C.4
00(7 - )> i3 Um Covm g, ( )

whereg = Ewv,,/cp is the maximum absolute stress in the rod for a stiff bardier 0). Actually, the spring

allows the lower end of the rod to behave like a free end in the first moment when the stress wave arrives: the total
stress of magnitude is mirrored, thus resulting at its upper endtat 2+ in a step in the stress of magnitude

25. This is an artefact of the spring, which in this respect is not well representing a compliant bedding of the rod.
However, this artefact causes the separation time tQ be2. Only in the limit caseg — 0, compare Sec. 5, the

step is no longer resolved, and times for the duration of contact as in Hu and Eberhard (2001) can be determined.
From Eq. (C.4) we find the relation for the system parameters

gto (1 - e*Q/Q) < Um (2 - 672/0‘) , (C.5)

which is true for technically relevant cases with typical valges 10 rn/sQ, a~10,t) < 2-1073s, vy ~
1 —10m/s. In order to give a more tangible criterion, the limit case— oo is considered. According to the
definition, o = MLL, this represents either the case of an extremely large valug tfie mass of the impacting
body, or of a small density of the rod, which then goes along with a high wave propagation speedthe rod

material. Using the Taylor series expansion/ ~ 1 — é +0 (;—Z) we find from Eqg. (C.1)

- Et .
lim ®og(1,1) = — =2 (gtol +vm) < 0, (C.6)

a—00 L

which in the limitt — 2~ fulfills Eq. (C.4) only wher2gt, < vy,,. A minimum impact velocity,, is thus required

to facilitate a separation of the impacting mass from the rod according to the condition (6). The limiting velocity
2gt, originates from elementary model assumptions, namely that we take into account the influence of gravity on
the impacting mass only, Eq. (4), but not on the rod, Eq. (1). Entirely neglecting gravity in the model would end
up in the trivial conditiorD < vy,.
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