
TECHNISCHE MECHANIK,32, 6, (2012), 698 – 713

submitted: January 26, 2012

Stress Waves in a Stamping Tool:
Analytic Treatment of a One-dimensional Model

C. Schwarz, E. Werner, H. J. Dirschmid

A simple one-dimensional model for a stamping process is set up, taking into account the compliance of the
workpiece. Two kinds of boundary conditions are considered at the end where the impact takes place. The one
dimensional wave equation, describing the displacement of the cross-sections of the tool with non-trivial boundary
conditions is solved by means of the Laplace transformation. The technique used for the inverse transformation
back into the time domain allows for a closed-form representation and efficient numerical evaluation of the solu-
tion. The result is finally discussed with regard to the influence of the compliance of the workpiece on the loading
of the tool. Restricting the discussion to a special limit case, we can show that the results agree with those found
in the literature.

1 Introduction

The purpose of this contribution is to present the closed-form analytical solution for the dynamical loading of the
tool in a simple model for a stamping process. Rather than addressing mechanical minutiae of the process, the
focus lies on the detailed presentation of an elegant and exact solution technique to the one-dimensional problem
of wave-propagation in the stamping tool. The latter is modelled as a rod which is mounted to a spring that repre-
sents the workpiece, see also Schwarz et al. (2010a). The concept for this technique has only recently been roughly
sketched in Schwarz et al. (2010b).
The idea for the treatment of the stamping problem was developed from a topic discussed earlier in the context of
a possible application of ceramic valves in engines, see Werner and Fischer (1995). Similar problems have already
been treated and were analytically solved in the literature, see for example Zharkova and Nikitin (2006); YuFeng
and DeChao (1998), however not in the generality considered here and with different emphasis.
The maximal loading of a valve or a stamping tool due to the impact on the valve seat or on the workpiece is
determined by the compliance of the particular counterpart. The delicate deviation of the stress responses for a
spring and for a rigid counterpart requires an unimpeachable solution technique leaving no space for ascribing the
observed effects to numerical inaccuracies.
In a one-dimensional consideration, both applications can be described by the rod-spring-model with adequate
initial and boundary conditions. The valve is initially moving and actually impacts on the seat by itself, whereby
the opposite end remains stress-free. The stamping tool is modelled to be initially at rest and in contact with the
workpiece when either (a) a mass impacts or (b) a force is applied for a finite timetF at the opposite end. In a
simplified way, that is neglecting the separation of the impacting mass from the rod, boundary condition (a) was
already considered in a previous work of Schwarz et al. (2010a). Taking the separation condition into account,
boundary condition (a) results in a physically and mathematically very interesting problem, which will be solved
below.
The paper is organized as follows: In Sec. 2, the geometrical setting of the model and the two different boundary
conditions are introduced, and the mathematical problems to be solved are framed. The proceeding for the analyt-
ical solution of the problems on the basis of the Laplace transformation is detailed in Sec. 3. Examples of stress
and displacement development for typical parameters are given in Sec. 4. The results are discussed in Sec. 5.
Conclusions are presented in Sec. 6. The appendices complement the work by a review of relevant properties of
the Laplace transformation, a consistent solution technique for a part of the problem which was treated in detail
but with a different technique in Schwarz et al. (2010a), and some technical details.
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Figure 1: Sketch of the geometrical setting and applied boundary conditions (a) and (b) of the considered stamping
model.

2 Problem Formulation

2.1 Geometrical Setting and Model Assumptions

For the stamping process, the model setup as sketched in Fig. 1 with two different boundary conditions (a) and
(b) is considered. As stamping tool, a rod of lengthL, spatially constant cross-sectionA and a mass densityρ
is considered. The elastic modulus of the rod material isE, hence its one-dimensional wave propagation speed
is c0 =

√
E/ρ. For the sake of simplicity the mechanical model of the rod is one-dimensional (longitudinal

coordinatex). Taking into account transversal wave propagation in the rod significantly complicates the problem
as was shown by the numerical study performed by Danzer et al. (2000), the references in Werner and Fischer
(1995) or the publications by Skalak (1957), Valeš et al. (1996), Alterman and Karal (1970) and Boström (2000).
The rod is mounted at its lower (bottom) end(x = 0) to the ground by a spring of stiffnessK. At time t = 0 the
rod is (a) either hit at its upper end by a rigid body of massm moving downwards at a velocityvm (absolute value)
or is (b) excited by application of a forceF enduring for a finite timetF, Fig. 1.
Within a small strain setting, the displacement of (a cross section of) the rod in longitudinal direction isu(x, t),
the according strain isε = ∂u/∂x. The stamping tool is supposed to deform purely elastic, hence stress is related
to strain via Hooke’s law according toσ = Eε. Damping of any kind is not considered, since we are interested in
the maximum stress in the rod occurring shortly after the impact (worst-case estimate). Furthermore, a backspring
(separation) of the rod from its counterpart (spring) will not be treated in this work.

2.2 Some Remarks on Modelling the Workpiece as a Spring

The very purpose of stamping is the plastic deformation of the workpiece. So an apparent point of criticism on the
presented model concerns the reasonability of substituting the workpiece by a spring.
As an example stamping process let us consider the production of coins. The pronounced elevation of the rim of the
coin is not a result of the stamping, but of a preceding forming step. The plastic deformation due to the stamping
of the coin’s emblem is therefore only of the order of a few %, and most of the workpiece’s (=coin’s) volume
reacts elastically to the stamping. For a qualitative estimation we put the deformation produced by stamping on a
level with that in indentation experiments. A typical estimation for the correlation of the sizel of the plastic zone
and the radiusr of a spherical indenter in an indentation experiment (the latter corresponding to the visible recess
in stamping) isl ∼ 3r, see Sundararajan and Tirupataiah (2006). If we devolve this in by a simple estimate to
the stamping application, an imprint on 70 % of the surface by 5 % of the workpiece’s thickness would still affect
plastically only∼10 % of its volume.
For another typical stamping process, the branding of wrought material, the fraction of stamping depth to material
thickness is even much smaller. The plastic zone affects then only a truly negligible portion of the workpiece.
Finally, plastic dissipation would only moderate the critical loading effects on the tool considered in this paper.
Hence, modelling the contact to the workpiece by mounting the rod to a spring is considered admissible for the
considered worst-case estimate.
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2.3 Governing Equations

The equation of motion, neglecting the small weight of the rod1, is

c2
0

∂2u

∂x2
=

∂2u

∂t2
, u = u(x, t) . (1)

The initial conditions are

u(x, 0) = 0 ,
∂u

∂t

∣
∣
∣
t=0

= u̇(x, 0) = 0. (2)

At x = 0 the force on the elastic support (the spring),Ku(0, t), must be equal to that in the rod,Aσ(0, t) =
EAε(0, t). Introducingκ = EA/K, the boundary condition atx = 0 is

u(0, t) = κ
∂u

∂x

∣
∣
∣
x=0

= κu′(0, t) . (3)

We consider two different impact scenarios, resulting in two different boundary conditions (a) and (b) atx = L.

(a) In case that the stamping is initiated by the impact of a falling massm, the equation of motion of the falling
mass must be regarded atx = L

mü(L, t) = −Aσ(L, t) − mg (4)

together with the initial conditions atx = L

u(L, 0) = 0 , u̇(L, 0) = −vm (5)

wherevm is the absolute value of the mass velocity, assumed to be oriented in negativex-direction. The quantity
σ(L, t) = Eu′(L, t) is the longitudinal stress at the top end of the rod(x = L), acting as tensile stress in the
positive direction.
Contact exists, however, only for that time period, whenσ(L, t) is a compressive stress (σ < 0). A separation of
the mass from the rod will take place at that time instanttc for which

σ(L, tc) = 0 and σ̇(L, tc) > 0 . (6)

This condition can be denominated as ‘separation condition’.
Taking this lift-off of the impacting mass into account, the boundary condition (4) has to be phrased as

−
EA

m
u′(L, t) = (g + ü(L, t)) ∙ (H(t) − H(t − tc)) , where (7)

H(ξ) =

{
0 , ξ < 0 ,

1 , ξ ≥ 0 ,
is the Heaviside Unit-Step function.

(b) In case that the stamping is initiated by application of a force atx = L, initial and boundary conditions at the
upper end of the rod change. For the considered excitation withF (t) = F < 0 being constant for0 < t ≤ tF, and
equal to zero fort > tF, the boundary condition can be specified as

EAu′(L, t) = F ∙ (H(t) − H(t − tF)) . (8)

3 Analytical Solution

The displacement functionu(x, t) that complies with the partial differential equation system (1 - 3) together with
boundary conditions (5, 7) or (8) will be determined as follows. First, the problem is transformed into the Laplace
image space, where it reduces to an ordinary differential equation inx which can be easily solved. Secondly, the
solutionu(x, t) is restored from the image space solutionU(x, s) by the inverse Laplace transformation. While

1in the sense that the weight of the rod is small compared to other forces in the system
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the first step requires more or less only standard methods, rather sophisticated techniques have to be applied for
the second one.

3.1 Solution in the Laplace Transformation Space

For the solution of the problem the standard Laplace transformation is used. Appendix A summarizes some of its
properties that are considered relevant for the understanding of the subsequent calculations.
The partial differential equation (1) with the initial conditions (2) can be transformed from the time domain(t)
together with the boundary conditions (3) and (a) (5, 7) or (b) (8) into the Laplace image space(s). WithU(x, s) =
L [u(x, t)], one can rewrite the governing equations for the model with boundary conditions (a) or (b), compare
Sec. 2.3, as the following ordinary differential equation inx

c2
0 U

′′ = s2U , (9)

U(0, s) = κU ′(0, s) , (10)

(a)U ′(L, s) =






−
αL

c2
0

(
s2U(L, s) +

g

s
+ vm

)
before separation,

−
αL

c2
0

(

g ∙
1 − e−stc

s
+
∫ tc

0

ü(L, t) e−st dt

)

after separation.
(11a)

(b)U ′(L, s) =
F

EA
∙
1 − e−stF

s
. (11b)

For compact notation of Eq. (11a), we defined the mass ratioα = m/ρAL, with ρAL being the total mass of the
rod. With

√
E/ρ = c0 one finds then the relationm/EA = αL/c2

0.
Before the separation of the impacting mass, the factor involving the Heaviside functions in Eq. (7) is equal to
one, and the boundary condition can be transformed in a straight forward way to the Laplace space, see Eq. (11a)
before separation. To derive the Laplace transformed boundary condition after separation, taking correctly into
account the history of the impact characterized by the Heaviside functions, the original definition of the Laplace
transformation was consulted

−
c2
0

αL
(a)U ′(L, s) =

∫ ∞

0

e−st (g + ü(L, t)) ∙ (H(t) − H(t − tc)) dt =

=
∫ tc

0

e−st (g + ü(L, t)) dt =

(

g ∙
1 − e−stc

s
+
∫ tc

0

e−st ü(L, t) dt

)

. (12)

The integrand,̈u(L, t), stems from the time domain solution of the problem before the separation of the mass.
Subsequently, the abbreviations b. s. = before separation (t ≤ tc) and a. s. = after separation(t > tc) will be used
on occasion.

The general solution of (9) can be written as

U (x, s) = C1e
sx/c0 + C2e

−sx/c0 . (13)

The solution in the Laplace image space,U(δ, s) is given in terms of a reference timet0 = L/c0 and the dimen-
sionless quantitiesδ = x/L ∈ [0; 1] andκ̃ = κ/L. It can be found conveniently by means of computer algebra
software, e.g. MATHEMATICA , Wolfram Research (2008), by calculating the constantsC1,2 in (13) to fulfill the
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boundary conditions Eqs. (10) and (11a or 11b) of the problem, resulting in2:

(a)U(δ, s) =






αt0(g + vms)
s2

G(s) ∙
(
(1 − κ̃st0)e(1−δ)st0 − (1 + κ̃st0)e(1+δ)st0

)
before separation,

αt0
s

F(s) ∙

[

est0(1−δ)(1 − e−stc)
[
1 − sκ̃t0 − (1 + sκ̃t0)e

2sδt0
]
∙

∙

(
g

s
+

∫ tc
0

ü(1, t) e−st dt

1 − e−stc

)]

after separation,

(14a)

(b)U(δ, s) =
Fc0

EAs2
F(s) ∙

[
est0(1−δ)(1 − e−stF)

(
(1 + sκ̃t0)e

2sδt0 − (1 − sκ̃t0)
)]

(14b)

with the functionsF andG turning out to be key elements of the solution, as they represent the critical parts of the
denominators in the Eqs. (14)

G(s) =
[
(1 − α s t0) (1 − κ̃ s t0) + e2 s t0 (1 + α s t0) (1 + κ̃ s t0)

]−1
,

F(s) =
[
(1 − κ̃ s t0) + e2 s t0 (1 + κ̃ s t0)

]−1
. (15)

Remark 1 Equivalence of boundary conditions(a)and(b)
Approximating for short impact times in the solution to boundary condition(a) after separation, Eq. (14a), the
factor that involves the integral term by a constant accelerationγ, that is

(

g +
s

1 − e−stc

∫ tc

0

ü(1, t) e−st dt

)

→ γ ,

allows for a direct confrontation of both image space solutions for boundary conditions(a) and (b). Comparing
the prefactors

−
Fc0

EAs2
=̂

αt0γ

s2
=

mγ c0

EAs2

and the ‘core’ of the solutions, it turns out, that under the given presumption,tc = tF, and forF = −mγ both
solutions are identical for timest > tc.

3.2 Solution in the Time Domain

The properties of the Laplace transform allow for a successive inverse transformation of the solution.
The inverse Laplace transformation of(a)Ub.s., that is for times before the separation of the impacting mass from
the rod, was discussed in detail in Schwarz et al. (2010a). Note, however, that there a slightly different technique
was applied for the inversion: while in Schwarz et al. (2010a) the so-called Laguerre polynomial technique was
applied, involving a solution representation in terms of the Laguerre functions, here a more direct approach is pre-
sented, allowing for an elementary solution representation. For completeness, application of the present technique
to the part before separation, which was only outlined in App. C of Schwarz et al. (2010a), is specified in App.
B of the present contribution. A significant advantage of this approach over the former one is the more economic
evaluability of the resulting time domain solution by means of computer algebra software, especially for moderate
times. For the discussion of a third, essentially different technique for the inverse transformation, which is based
on the Theorem of Residues, the reader is referred to App. C of Schwarz et al. (2010a).
For the inverse Laplace transformation of(a)Ua.s. and(b)U we proceed as follows: in a first step the inversion of
F(s) is considered. Then, application of the theorems on the Laplace transformation, collected in App. A, enable
the complete inversion.

2We then define the solutionu in the time domain in terms of the dimensionsless quanitities, thus changing notation fromü(x, t) to
ü(δ, t)and fromü(L, t) to ü(1, t).
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3.2.1 Inverse Laplace Transformation ofF(s)

For convenient notation, we introduce a new time scale in the image space by denotings̃ = st0. Then the key
elementF(s̃) of the image space solution, Eq. (15) is

F(s̃) =
1

(1 − κ̃ s̃) + e2 s̃ (1 + κ̃ s̃)
=

e−2 s̃

1 + κ̃s̃

(

1 + e−2 s̃ 1 − κ̃s̃

1 + κ̃s̃

)−1

=
e−2 s̃Z(s̃)

1 + e−2 s̃X (s̃)
, (16)

where the following functions were introduced

Z(s̃) =
1

1 + κ̃s̃
and X (s̃) =

1 − κ̃s̃

1 + κ̃s̃
. (17)

It can be shown, see App. B in Schwarz et al. (2010a), that
∣
∣e−2 s̃X (s̃)

∣
∣ < 1. Hence, the term in paranthesis can

be considered as limit of a geometric series, which yields the following equivalent representaion ofF(s̃)

F(s̃) =
∞∑

n=0

(−1)ne−2(n+1) s̃Z(s̃) [X (s̃)]n . (18)

The compliance with the Cauchy-condition, which justifies the subsequently applied commutation of the inverse
Laplace operator with the (infinite but uniformly convergent) series, has been demonstrated in App. C of Schwarz
et al. (2010a).
We introduce the following notation: the original functions ofZ andX with respect to the Laplace transformation
arez(t̃) andx(t̃), wheret̃ = t/t0. For any non-negative integern let xn denote then-fold convolution ofx with
itself, that is

xn = x∗n := x ∗ x ∗ x ∙ ∙ ∙ ∗ x︸ ︷︷ ︸
n times

. (19)

By definitionx0 = x∗0 = δ, where the singularδ-distributionδ(t̃) is acting as the unit element with respect to con-
volution∗. According to the convolution theorem for the Laplace transformation (Eq. (A.2)),L−1[ZX n] = z ∗ xn.
We find with the definitions in Eq. (17)

z(t̃) =
1
κ̃

e−t̃/κ̃ = z ∗ x0 ,

x(t̃) = x1(t̃) =
2
κ̃

e−t̃/κ̃ − δ(t̃) y z ∗ x1 =
1
2κ̃

e−t̃/κ̃

(
4t̃

κ̃
− 1

)

. (20)

Utilising Eq. (A.3) and the correspondency[e−ct]∗m = tm−1

(m−1)! e−ct , c, t > 0, m ∈ N, yields

xn(t̃) =

[
2
κ̃

e−t̃/κ̃ − δ(t̃)

]∗n

=
n∑

k=0

(−1)n−k

(
n
k

)[
2
κ̃

e−t̃/κ̃

]∗k

∗
[
δ(t̃)

]∗(n−k)
=

= (−1)nδ(t̃) +
n∑

k=1

(−1)n−k

(
n
k

)(
2
κ̃

)k [
e−t̃/κ̃

]∗k

= (−1)nδ(t̃) +
n∑

k=1

(
n
k

)(
2
κ̃

)k (−1)n−k

(k − 1)!
t̃k−1e−t̃/κ̃ ,

(21)

and in consequence

L−1[ZX n] =: fn(t̃) = z(t̃) ∗ xn(t̃) =
(−1)n

κ̃
e−t̃/κ̃ +

n∑

k=1

(−1)n−k

κ̃ k!

(
n
k

)(
2
κ̃

)k

t̃ke−t̃/κ̃ =

=
n∑

k=0

λnk t̃ke−t̃/κ̃ , whereλnk =
(−1)n−k

κ̃ k!

(
n
k

)(
2
κ̃

)k

. (22)

Taking care of the remaining exponential term in Eq. (18) with the First Shift Theorem of the Laplace transforma-
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tion, see Doetsch (1974), one gets

L−1[F(s̃)] =: f(t̃) =
∞∑

n=0

(−1)nfn(t̃ − 2(n + 1)) . (23)

We presume the convention that any functionf(ξ) which stems from an inverse Laplace transformation is defined
only for ξ ≥ 0 and is, per definition, zero forξ < 0. This implies that series elementsn ≥ N contribute to the
solution only for times̃t ≥ 2(N + 1), such that for finite times the series in Eq. (23) is actually finite.
The according procedure for the inverse transformation of the corresponding element of(a)Ub.s. is presented in
App. B.

3.2.2 Complete Inverse Laplace Transformation of the Displacement Solutions

As it proved to be convenient, and in order to be consistent, we rewrite the image space solutions for the different
boundary conditions, Eqs. (14), as functions of the scaled image space variables̃ = st0, introducing thereby
t̃c = tc/t0 andt̃F = tF/t0 :

(a)U(δ, s̃) =






αt20(gt0 + vms̃)
s̃2

G(s̃) ∙
(
(1 − κ̃s̃)e(1−δ)s̃ − (1 + κ̃s̃)e(1+δ)s̃

)
before separation,

αt30
s̃

F(s̃)

[

es̃(1−δ)(1 − e−s̃t̃c)
[
1 − s̃κ̃ − (1 + s̃κ̃)e2s̃δ

]
∙

∙

(
g

s̃
+

∫ t̃c
0

ü(1, t̃) e−s̃t̃ dt̃

1 − e−s̃t̃c

)]

after separation,

(24a)

(b)U(δ, s̃) =
Fc0t

2
0

EAs̃2
F(s̃)

[
(1 − e−s̃t̃F)

(
(1 + s̃κ̃)es̃(1+δ) − (1 − s̃κ̃)es̃(1−δ)

)]
(24b)

To finalize the inverse Laplace transformation of(b)U , Eq. (A.4) is applied, which is in our case

L−1
[ 1
s̃n

e−as̃F(s̃)
]

=
1
t0

∫ t̃

0

(t̃ − τ)n−1f(τ − a) dτ . (25)

The variablea substitutes the different factors in the exponential functions occuring.
However, inverting(a)Ua.s. requires an additional consideration. The formulation of the boundary condition Eq.
(7), which takes into account the separation condition for the impacting mass by means of the Heaviside unit-step
function, is the source of the integral term in Eq. (24a). This term is awkward: it involves the solutionu in the
time domain for earlier times, and it is actually existing in the Laplace transformation space only after integration.
Inverse Laplace transformation can be realized by applying the transformation rule for periodic functions, yielding

L−1

[
1

1 − e−s̃t̃c

∫ t̃c

0

ü(1, t̃) e−s̃t̃ dt̃

]

= üper(1, t̃) := ü(1, t̃), recurrent with period t̃c . (26)

Subsequent application of the convolution theorem, Eq. (A.2), yields

L−1

[

F(s̃) ∙

(
1

1 − e−s̃t̃c

∫ t̃c

0

ü(1, t̃) e−s̃t̃ dt̃

)]

=
∫ t̃

0

f(τ) ∙ üper(1, t̃ − τ) dτ =: ψ(t̃) . (27)

By applying Eq. (A.4) one obtains a complete inverse transformation of the solution(a)Ua.s..

Finally, the solutions in the time domain for the two considered boundary conditions (a) and (b) are
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(a)u(δ, t̃) =

=






see Schwarz et al. (2010a) or App. B, b. s., t̃ ≤ t̃c

−αt20

{

g
[
κ̃

∫ t̃

0

(
f(τ + 1 + δ) + f(τ + 1 − δ) − f(τ + 1 + δ − t̃c) − f(τ + 1 − δ − t̃c)

)
dτ+

+
∫ t̃

0

(t̃ − τ)
(
f(τ + 1 + δ) − f(τ + 1 − δ) − f(τ + 1 + δ − t̃c) + f(τ + 1 − δ − t̃c)

)
dτ
]
+

+κ̃
(
ψ(τ + 1 + δ) + ψ(τ + 1 − δ) − ψ(τ + 1 + δ − t̃c) − ψ(τ + 1 − δ − t̃c)

)
+

+
∫ t̃

0

(
ψ(τ + 1 + δ) − ψ(τ + 1 − δ) − ψ(τ + 1 + δ − t̃c) + ψ(τ + 1 − δ − t̃c)

)
dτ

}

a. s., t̃ > t̃c

(28a)

(b)u(δ, t̃) =
Fc0t0
EA

[
κ̃

∫ t̃

0

(
f(τ + 1 + δ) + f(τ + 1 − δ) − f(τ + 1 + δ − t̃F) − f(τ + 1 − δ − t̃F)

)
dτ+

+
∫ t̃

0

(t̃ − τ)
(
f(τ + 1 + δ) − f(τ + 1 − δ) − f(τ + 1 + δ − t̃F) + f(τ + 1 − δ − t̃F)

)
dτ
]

(28b)

3.2.3 The Separation Timetc within Boundary Condition (a)

So far, the separation timetc in boundary condition (a) has been treated as unknown. We analyzed the solution
valid before the impacting mass separates from the rod, App. B, assuming reasonable parameter values. It could
be rigorously shown that the stress at the upper end of the rod turns into a tensile stress right when the stress wave,
initiated solely by the impacting mass att = 0, comes back to this end after having been reflected at the lower end.
This takes exactly the timẽtc = 2. Details of this analysis are given in App. C. A further discussion is deferred to
Sec. 5.
As has been pointed out subsequent to Eq. (23) and thoroughly discussed in Schwarz et al. (2010a), the solution to
boundary condition (a) for times̃t ≤ 2 = t̃c is exactly defined by considering only the first element,n = 0, of the
series representation of the solution Eq. (B.12). In this case, its second derivative with respect tot at the position
x = L (i. e. δ = 1) can be explicitly stated for̃t ≤ 2, and provides the periodic function̈uper

üper(1, t̃) =

(
vm

t0α
− g

)

e
−

(t̃ mod t̃c)
α , (29)

where the modulo-calculus was used to define the periodic function for allt̃.

4 Results

The results for the stamping model depicted in the following graphs are based on a common set of geometry and
material parameters:
E = 220GPa, ρ = 7750 kg/m3

, A = 10 cm2, L = 1m . The parameter̃κ = EA/KL, defining the (inverse)
spring stiffness, was kept variable. Except for the graph in Fig. 3b, which serves as a demonstration that also a
fully numerical solution as hyperbolic partial differential equation system is possible, see Schwarz et al. (2010a),
all graphs were produced by evaluation of the above given analytical solutions using the software MATHEMATICA ,
Wolfram Research (2008).

4.1 Boundary Condition (a)

For the impacting massm = 100 kg andvm = 10m/s are used. The gravitational acceleration is approximated as
g = 10m/s2. In both Figs. 2 and 3, that part of the solution before the separation of the impacting mass affects the
respective position in the rod (marked by a dashed line style) coincides with the results presented in the preceding
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(a) In the center of the rod,δ = 0.5. (b) At the upper end of the rod,δ = 1.

Figure 2: Boundary condition (a): Displacement vs. time for different values of the spring stiffness,κ̃ = 0.05
(dot-dashed) and̃κ = 0.5 (solid). The dashed segment at the beginning of the curves (i. e. (a) fort < 2.5t0 and
(b) for t < 2t0) marks the part of the solution before the separation of the impacting mass has an influence on the
respective positionδ in the rod.

(a) Symbolic / analytical solution by MATHEMATICA .
(b) Numerical solution by MATLAB The MathWorks (2010).

Figure 3: Boundary condition (a): Stress vs. time in the center of the rod (δ = 0.5) for different values of the
spring stiffness,̃κ = 0.05 (dot-dashed) and̃κ = 0.5 (solid). The dashed segment at the beginning of the curves
in subfigure (a), i. e. fort < 2.5t0, marks the part of the solution before the separation of the impacting mass has
an influence on the considered positionδ = 0.5 in the rod. In subfigure (b), for validation a fully numerically
calculated solution is shown. For details on the numerical method see Schwarz et al. (2010a).

work (Schwarz et al., 2010a, Fig. 4). After the separation of the mass3, the results differ significantly, and resemble
those found in the present work for boundary condition (b). The impacting mass then acts like an impact in the
literal sense, not further influencing the rod’s response by the additional weight that stores a considerable amount
of energy when not lifting off. Merely the spikes in stress appearing in Fig. 3 in comparison to Fig. 4b at instants
(2.5 + j)t0 , j ∈ N0 , remind one of the differing history.

4.2 Boundary Condition (b)

In order to provide comparability with the results due to boundary condition (a), an effective period of length
tF = 2t0 was specified (̂= retention time of the mass on the rod). The force exerted at the upper end of the rod was
chosen to beF = −350, 000N. Except for a time shift, i. e. fort > 2tF, and a sign-inversion, the results depicted
in Figs. 4a and 4b look alike those presented in (Schwarz et al., 2010a, Fig. 2) for what was denoted the Valve-case
(rod with uniform initial velocity being caught by the spring at its lower end). By application of the loadF (t) the
rod is virtually accelerated to some ‘initial velocity’, too, such that from the time on when the introduced stress
wave reaches the lower end of the rod the response is equivalent to that for the Valve-case.

3Actually the impacting mass is removed from the system after the separation, so no possible subsequent impact is taken into account in the
model.
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(a) Displacement vs. time. (b) Stress vs. time.

Figure 4: Boundary condition (b): Displacement and stress vs. time in the center of the rod (δ = 0.5) for different
values of the spring stiffness,κ̃ = 0.05 (dot-dashed) and̃κ = 0.5 (solid).

Remark 2 Eigenfrequency of the system. Assuming for a spring which is very soft compared to the stiffness of
the rod the system as spring-mass-oscillator (harmonic oscillator) in the most simple sense, the periodT (of the
periodic displacement of the rod) would be expected to be

T =
2π

ω
= 2π

√
mrod

K
= 2π

√
ρALκ

EA
= ∙ ∙ ∙ = 2πt0

√
κ̃ .

As shown in Fig. 5a, the development of the rigid body displacement4 uS(t) = 1
L

∫ L

0
u(x, t) dx is in accordance

with this correlation for values of̃κ > 5. Obviously the factor 4 iñκ gives the factor 2 in the periodT of the
displacement development. For instance, forκ̃ = 20 the above formula yieldsT = 28.1 t0, which coincides well
with the observed development of the rigid body displacement and the stress in the center of the rod, Fig. 5b.

(a) Rigid body displacement vs. time. (b) Stress vs. time in the center of the rod (δ = 0.5).

Figure 5: Evolution of rigid body displacement and stress (exemplarily atδ = 0.5) for boundary condition (b) and
different values of the spring stiffness:κ̃ = 5 (dot-dashed),̃κ = 20 (solid) andκ̃ = 80 (dashed).

In the limit caseK → 0 resp. κ̃ → ∞, the solution approaches that for a rod with free lower end. The amount
of energy absorbed by the spring tends to zero, and only the force impulse oscillates in the rod, being mirrored
at both free ends. The displacement development resembles a straightly descending line, thus representing the
macroscopic displacement of the rod. The wave length observed in Fig. 5a would, for this limit case, tend to
infinity.

5 Discussion

Exploiting the special structure of the solution in the image space, the solution in the time-domain can be given in
closed form. It can be phrased as infinite series of which for finite times only a finite number of elements add to

4The rigid body displacement is the displacement of the center of mass of the rod,uS, which is numerically calculated as mean of the
displacementsu(δi, t) at 100 equidistant positionsδi in the rod.
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the solution, see Eqs. (23) and (28).
We believe, that especially the exploration of different analytic solution strategies and representations, as specified
here and in previous publications, gives valuable insight into the structure of the solution and the characteristics
of the problem. The presented technique provides a closed form solution for finite times, i. e. exact results, and
allows for efficient numerical evaluation. Complementarily, the approach via the Theorem of Residues, see App.
C of Schwarz et al. (2010a), enables a detailed investigation of the analytic properties of the result.
It is already evident from the rather short time interval in which the solution was evaluated that the stress profile for
rather stiff barriers, e. g.̃κ = 0.05, still resembles that for completely stiff barriers, but is superposed by additional
stress pulses, Figs. 3 and 4b. As could be shown in Werner and Fischer (1995) for the valve problem, there is a
critical value ofκ̃ of approximately0.05 for which this extra stress is maximal. In the worst case, the stress was
found to reach approximately1.26 × σ̄, whereσ̄ = Evm/c0 is the maximum stress in the rod for a stiff barrier
(κ̃ → 0). In the center of the rod, for example, this extra stress arrives at timest̃ = 3.5, 4.5, 5.5, . . . . Its origin
is, of course, the barrier, which repeatedly stores some energy and continuously re-supplies it to the rod in a small
time interval. As this extra stress is then partially stored and retransmitted from the spring, too, the number of
peaks in the superposed stress pulse increases with the number of cycles.
A partial verification of the final result, Eq. (28a, before separation), can be provided for the limit caseκ̃ →
0, which represents an infinitely stiff spring behaving equivalently to a rigid barrier. Hu and Eberhard (2001)
presented an analytic solution for an equivalent problem: the impact of a rigid mass on an elastic rod, which is
fixed at the other end. It is defined according to Eqs. (1 - 3) and (4, 5), too, with the only difference that no gravity
field is included, i. e.g = 0. On the basis of the general solution for the wave equation according to d’Alembert,
they derive an analytic solution of the form ‘polynomial× exponential function’, compare Eq. (B.8). However,
Hu and Eberhard (2001) do not give a closed form solution. The results on the duration of contact of impacting
mass and rod as well as on the maximum stress in the rod (both investigated with respect to varying mass ratiosα)
that are presented by Hu and Eberhard (2001) are perfectly reproduced by our solution, Eq. (28), in the limit case
κ̃ → 0. This finding does not contravene the earlier discussion on the separation time being qual tot̃c = 2, Sec.
3.2.3. In the limit casẽκ → 0, the effect that the spring lets the lower end of the rod act as a free end in at first
moment, see also App. C, is no longer resolvable, and the actual duration of contact can be determined.

(a) Duration of contacttc as a function of the mass ratioα, compare
Hu and Eberhard (2001), Fig. 3.

(b) Maximum dimensionless stress in the rod, found atx = 0, as a
function ofα, compare Hu and Eberhard (2001), Fig. 5.

Figure 6: Reproduction of the results of Hu and Eberhard (2001) from Eq. (28a, before separation) in the limit
caseκ̃ → 0 for discrete values of the mass ratioα. Note that the variableα in this contribution andα in Hu and
Eberhard (2001) denote reciprocal values.

Various authors, e. g. Matuk (1979) or Shi (1998a,b), have been treating impact problems on the basis of elastic
rods, too. However, no tangible, general results have been specified in these contributions. Partly, recursion rules
are indicated, partly only very special aspects of the impact problem, e. g. the coefficient of restitution, were
studied.

6 Conclusions

The application of the analytical solution technique presented in this work to a simple model for a stamping process
provides exact and therefore incontestable results for the stress development in the tool. The compliant workpiece
thereby has been modelled by a spring.
The solution technique is based on the Laplace transformation of the wave equation for the displacement of cross-
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sections of the rod. Calculation of the respective solution in the Laplace image space is straight-forward, however
the inverse transformation demands some skills, especially when considering the separation of the impacting mass
from the rod. The results for the limit case of an infinitely stiff spring are perfectly in agreement with those found
in the literature for a rigid barrier. However, the spring was introduced actually as a model for a non-rigid bedding.
Its action may, under certain circumstances, be put on a level with that of a short, second bar, whose action might
be easier to understand, and which is actually a more realistic model to the real workpiece, e.g. a coin. This
correspondence is currently being investigated.

A Important Properties of the Laplace Transform

In the present contribution we use the Laplace transformation as a convenient tool for the solution of a partial
differential equation with nontrivial boundary conditions. Rather than going further into the mathematical details,
for which the reader is referred to the literature, e.g. Doetsch (1974), we would like to summarize only few
important properties of the Laplace transformation that are relevant for the presented calculations. We use the
following notation:
The Laplace transformation, denoted by the operatorL, maps the functionf = f(t) : R → R to its Laplace
transformed counterpartF = F(s) : C→ C

L [f(t)] = L [f ] (s) = F(s) :=
∫ ∞

0

e−stf(t) dt . (A.1)

For a brief representation of the solution in the time domain, we utilise that any functionf(ξ) which stems from
an inverse Laplace transformation is defined only forξ ≥ 0 and, per definition, zero forξ < 0.

Convolution Theorem

For the inverse Laplace transformation of the product of two functionsF(s) andG(s) with the respective original
functionsf(t) andg(t) the convolution theorem holds

L−1 [F(s) ∙ G(s)] = f(t) ∗ g(t) =
∫ t

0

f(t − τ) ∙ g(τ) dτ =
∫ t

0

g(t − τ) ∙ f(τ) dτ . (A.2)

Since convolution is a commutative and associative binary operation, which in addition is distributive with respect
to the operation+, a binomial theorem holds

(f + g)∗n =
n∑

k=0

(
n
k

)

f∗k ∗ g∗(n−k) . (A.3)

Combination of the Rules

In the present case we have to apply several of the common transformation rules, that were summarized in Schwarz
et al. (2010a), simultaneously. As the order of application is of major importance, we demonstrate the correct way
of combination in the following form

L−1

[
1
sn

∙ e−cs ∙
1
a
F
( s

a

)
∙
1
b
G
(s

b

)]

= tn−1 ∗ q(t − c) =
∫ t

c

(t − τ)n−1 ∙ q(τ − c) dτ , (A.4)

whereq(ξ) =
∫ ξ

0
f(a(ξ − η)) ∙ g(bη) dη .

B The Solution before the Separation of the Impacting Mass

Different from the approach presented in Sec. 3.2 for the inverse Laplace transformation ofF exploiting the
convolution theorem, in Schwarz et al. (2010a) the inverse Laplace transformation of the key elementG of (a)Ub.s.,
Eq. (15), was derived in terms of Laguerre functions. In this section, the above presented, in many aspects
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superior, technique is applied to(a)Ub.s., too. We provide explicitly in the framework of this paper the solution of
the problem in the time domain before the separation of the impacting mass, Eq. (28a).

Recall the solution to problem (a) before separation in terms ofs̃ = st0, Eq. (24a), however slightly rearranged

(a)U(δ, s̃)b.s. =
αt20(gt0 + vms̃)

s̃2
H(s̃) ∙

[
(1 − κ̃s̃)e−δs̃ − (1 + κ̃s̃)eδs̃

]
, (B.1)

where we introduce the key element of this solution representationH(s̃) as

H(s̃) = e−s̃Z(s̃)
[
1 + e−2s̃X (s̃)

]−1
, (B.2)

with

Z(s̃) =
1

(1 + αs̃)(1 + κ̃s̃)
, X (s̃) =

(1 − αs̃)(1 − κ̃s̃)
(1 + αs̃)(1 + κ̃s̃)

. (B.3)

We denote the original functions ofH(s̃),X (s̃) andZ(s̃) with respect to the Laplace transformation ash(t̃), x(t̃)
andz(t̃), where agaiñt = t/t0. Moreover, for shorter notation, the abbreviationsa = 1/α, b = 1/κ̃ as well as
Γ = 2(a + b)/(b − a) are introduced.
Like in Sec. 3.2, the term in brackets in the expression forH is interpreted as limit of a geometrical series, yielding

H(s̃) =
∞∑

n=0

(−1)ne−(2n+1)s̃Z(s̃)Xn(s̃) , (B.4)

which can be formally inverted with respect to the Laplace transformation by application of the convolution theo-
rem, Eq. (A.2), resulting in

h(t̃) =
∞∑

n=0

(−1)n[z ∗ xn](t̃ − 2n − 1) =:
∞∑

n=0

(−1)nhn(t̃ − 2n − 1) . (B.5)

As before,xn := x∗n denotes then-fold convolution ofx with itself, and the Heaviside factor can be omitted
respecting the remark given subsequent to Eq. (A.1). The compliance with the Cauchy-condition, which justifies
the subsequently applied commutation of the inverse Laplace operator with the (infinite but uniformly convergent)
series, has been demonstrated in App. C of Schwarz et al. (2010a).
For the Laplace inverse functions toZ andX , Eq. (B.3), we find

z(t̃) =
ab

a − b

(
e−bt̃ − e−at̃

)
, x(t̃) = Γ ∙

(
ae−at̃ − be−bt̃

)
+ δ(t̃) =: Γ ∙ ζ(t̃) + δ(t̃) , (B.6)

whereδ(t̃) is the Dirac delta function. For calculation of the functionshn, again the binomial theorem for the
convolution, Eq. (A.3), is applied

hn(t̃) = z(t̃) ∗
(
Γ ∙ ζ(t̃) + δ(t̃)

)∗n

= z(t̃) ∗

(
n∑

k=0

(
n
k

)
(
Γ ∙ ζ(t̃)

)∗k
∗ δ∗(n−k)

)

=

=
n∑

k=0

Γk ∙

(
n
k

)(
z(t̃) ∗

[
ζ(t̃)

]∗k
)

. (B.7)

Lengthy, but standard technical calculations provide explicit expressions forhn in the form

hn(t̃) = e−at̃pn(t̃) − e−bt̃qn(t̃) , (B.8)

wherepn, qn are polynomials of ordern, that can be calculated as follows

pn(t̃) =
n∑

k=0

(
n
k

)

Γkp̃k(t̃) with p̃k(t̃) =
k∑

i=0

x̃
(k)
i

i!
t̃i ,

qn(t̃) =
n∑

k=0

(
n
k

)

Γk q̃k(t̃) with q̃k(t̃) =
k∑

i=0

ỹ
(k)
i

i!
t̃i . (B.9)
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The coefficients̃x, ỹ can be calculated iteratively according to (c := a − b)

x̃
(k)
0 = −

ab

c

k−1∑

i=0

x̂
(k)
i + (−1)iŷ

(k)
i

ci+1
, ỹ

(k)
0 = −

ab

c

k−1∑

i=0

x̂
(k)
i + (−1)iŷ

(k)
i

ci+1
,

x̃
(k)
l = −

ab

c

(

x̂
(k)
l−1 +

k−1∑

i=l

x̂
(k)
i

ci−l+1

)

, ỹ
(k)
l =

ab

c

(

ŷ
(k)
l−1 −

k−1∑

i=l

ŷ
(k)
i + (−1)i−l

ci−l+1

)

,

1 ≤ l ≤ k − 1

x̃
(k)
k = −

ab

c
x̂

(k)
k−1 , ỹ

(k)
k =

ab

c
ŷ
(k)
k−1 , (B.10)

where thêx, ŷ result with the initial valueŝx(1)
0 = a, ŷ

(1)
0 = b from

x̂
(k+1)
0 =

k−1∑

i=0

bx̂
(k)
i + (−1)iaŷ

(k)
i

ci+1
, ŷ

(k+1)
0 =

k−1∑

i=0

bx̂
(k)
i + (−1)iaŷ

(k)
i

ci+1
,

x̂
(k+1)
l = ax̂

(k)
l−1 +

k−1∑

i=l

bx̂
(k)
i

ci−l+1
, ŷ

(k+1)
l = −bŷ

(k)
l−1 −

k−1∑

i=l

(−1)i−laŷ
(k)
i

ci−l+1
,

1 ≤ l ≤ k − 1

x̂
(k+1)
k = ax̂

(k)
k−1 , ŷ

(k+1)
k = −bŷ

(k)
k−1 . (B.11)

Specifically we getp0 = q0 = − ab
a−b = x̃

(0)
0 = ỹ

(0)
0 . The entire solution in the time domain before the separation

of the impacting mass finally results as

(a)u(δ, t̃)b.s. = αt0

[

− κ̃vm

(
h(t̃ − δ) + h(t̃ + δ)

)
+ gt0

∫ t̃

0

(t̃ − τ)
(
h(t̃ − δ) − h(t̃ + δ)

)
dτ

+ (vm − gκ̃t0)
∫ t̃

0

h(τ − δ) dτ − (vm + gκ̃t0)
∫ t̃

0

h(τ + δ) dτ

]

. (B.12)

C Assessment of the Separation Timetc

As justification of Eq. (29) it was claimed that the separation condition Eq. (6) comes true at the timet̃c = 2
respectivelytc = 2t0. This will be confirmed in the following by an explicit discussion of the stress development
at the upper end of the rod according to the solution for boundary condition (a) before separation, Eq. (B.12).
Following the discussion subsequent to Eq. (23), considering only the first series element,n = 0, of the expression
Eq. (B.5) already allows for the correct solution representation fort̃ < 2. The according stress development at the
upper end of the rod,δ = 1, results from Eq. (B.12) as

(a)σ0(1, t̃) = −
Et0
L

e−t̃/α
(
vm +

(
et̃/α − 1

)
gt0α

)
< 0 , (C.1)

providing for the limit from below,̃t → 2−,

(a)σ0(1, t̃ → 2−) = −
Et0
L

e−2/α
(
vm +

(
e2/α − 1

)
gt0α

)
. (C.2)

Considering the first two series elements,n = 0, 1, of the expression Eq. (B.5) for the stress development at the
upper end of the rod,δ = 1, gives then the correct solution fort̃ < 4. Considering the limit from above,̃t → 2+,
yields

[
(a)σ0 +(a) σ1

]
(1, t̃ → 2+) = −

Et0
L

e−2/α
(
−2e2/αvm + vm +

(
e2/α − 1

)
gt0α

)
. (C.3)

Note that at times̃t < 2 (including the limit consideration) effects due to the spring mounting have not yet arrived
at the upper end of the rod, therefore the parameterκ̃ does not appear here.
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Examining the difference of both limits, one finds a step in the stress development att̃ = 2 of magnitude
2Et0vm/L. This step results in a tensile stress att̃ → 2+ when the following condition for the compressive
stress holds

(a)σ0(1, t̃ → 2−) > −
2Et0

L
vm = −

2E

c0
vm = −2σ̄ , (C.4)

whereσ̄ = Evm/c0 is the maximum absolute stress in the rod for a stiff barrier (κ̃ → 0). Actually, the spring
allows the lower end of the rod to behave like a free end in the first moment when the stress wave arrives: the total
stress of magnitudēσ is mirrored, thus resulting at its upper end att̃ = 2+ in a step in the stress of magnitude
2σ̄. This is an artefact of the spring, which in this respect is not well representing a compliant bedding of the rod.
However, this artefact causes the separation time to bet̃c = 2. Only in the limit case,̃κ → 0, compare Sec. 5, the
step is no longer resolved, and times for the duration of contact as in Hu and Eberhard (2001) can be determined.
From Eq. (C.4) we find the relation for the system parameters

gt0α
(
1 − e−2/α

)
< vm

(
2 − e−2/α

)
, (C.5)

which is true for technically relevant cases with typical valuesg ∼ 10m/s2, α ∼ 10, t0 < 2 ∙ 10−3 s, vm ∼
1 − 10m/s. In order to give a more tangible criterion, the limit caseα → ∞ is considered. According to the
definition,α = m

ρAL , this represents either the case of an extremely large value ofm, the mass of the impacting
body, or of a small densityρ of the rod, which then goes along with a high wave propagation speedc0 in the rod

material. Using the Taylor series expansione−t̃/α ∼ 1 − t̃
α + O

(
t̃2

α2

)
, we find from Eq. (C.1)

lim
α→∞

(a)σ0(1, t̃) = −
Et0
L

(gt0t̃ + vm) < 0 , (C.6)

which in the limitt̃ → 2− fulfills Eq. (C.4) only when2gt0 < vm. A minimum impact velocityvm is thus required
to facilitate a separation of the impacting mass from the rod according to the condition (6). The limiting velocity
2gt0 originates from elementary model assumptions, namely that we take into account the influence of gravity on
the impacting mass only, Eq. (4), but not on the rod, Eq. (1). Entirely neglecting gravity in the model would end
up in the trivial condition0 < vm.
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