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Viscoelastic-plastic Modelling and Experimental Investigation of Three
Different Batches of 51CrV4 Steel

A. Abid (Al-Baldawi), L. Schreiber

Steel producers, when producing steel with special mechanical properties, always refer to DIN or ISO standards.
But these standards only specify the alloying constituents in intervals and only compel producers to guarantee min-
imal values of mechanical properties e.g. the yield stress. This leads to different mechanical behavior in different
batches of steel which is nominally the same. This paper deals with the investigation of the mechanical behavior
of three different batches of 51CrV4 and the consequences for their viscoelastic-plastic modelling.

1 Introduction

Phenomenological modelling of material behavior is a aspect of continuum mechanics (Svendsen (1996)). This
part is becoming more and more important because of the increasing use of numerical simulation. Inaddition to the
balance equation, every simulation needs a model to give the correct dependence between stress and strain because
every material behaves differently under mechanical loading.

All advanced models, e.g. Haupt (2000), that relate the stress tensor T to the strain tensor E = E(u(t)), u
displacement field , and some internal variables Q of different order, need several material parameters, for the sake
of this paper collected in a parameter vector p = (p;), finally we can write:

T(t) = /T(E(t),E(t), (8;;,) dt. (1)

After integrating (1) in time, a second integration of stress across a certain cross section A of the body leads to the
simulated force Fi;,, normal to the cross section:

Fam = / 0pe dA. )
JA

In order to identify material parameters several types of experiments are needed (Haupt (2000), Chakrabarty (2006)
and Kreissig (1996)). To get the best set of parameters p; we need an improvement strategy that fits Fy, (u, t)
to the measured forces Fiyeas (4, t). To this end we used a software tool based on the Evolution Strategy that was
developed by Schreiber (1993). Figure-1 shows (schematically for a three dimensional parameter vector) how to
obtain new parameter sets using evolution mechanism with a random generator in order to gain new parameters in
the sets. The way to the best parameter set is governed by the least sqares method applied to the difference between
experimentally measured forces and those simulated according to the actual parameter set.

We used a tension compression test in several versions, A-E, to get all material parameters needed, see Figure-2.

Test A is very useful to allow a first look at the material behavior and also to obtain an initial parameter set for
the ensuing identification process. In order to minimize viscous phenomena (in other words, to stay near the
’equilibrium state”), it is neccessary to drive a slow version of test A, which here is called test B. This test is
important for the parameters that describe the (non-viscous) hardening behavior.

To gain an overview of the relaxation of the material we used a classic relaxation test, here called test C. This test
is needed to fit the parameters included in the model to describe the time dependent part of stress.

In conclusion, we wanted to gain more information on the equilibrium hysteresis, therefore we carried out two step
tests, one in the tension region and the other in the compression region, called test D and E. These two tests helped
to do the last fine tuning on the whole parameter set.
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Figure 1: Sketch of the evolution strategy — using evolution mechanism to obtain new parameter sets (right side)
and the least squares method as an accord mechanism (left side), see Schreiber (1993)
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Figure 2: Tension compression tests: [-Test A,B; II-Test C; I1I-Test D,E and u denotes the  component of u

Here we need to mention the sample that was used in all tests. It has an aperture of 12mm and a length of 25mm,
where the measurement system is placed. The essential requirement of homogeneous conditions of the sample
(see, for example Haupt (2000)) in order to integrate (1) and (2), is given in all tests.

2 Results of the experimental investigation

The data from each test is shown in Figure-3. The first observation we make is the difference of the strength
between the batch named KL and both batches dubbed SFB and TS. Secondly, the hardening of the KL batch is
nearly linear, ref. tests A and B in Figure-3.

We also see in test A that the relaxation in the 5s hold time starts immediately, an effect that cannot be distinguished
in test B because against the long time of loading the 5s hold time shrinks to approximately zero.

The loading part of relaxation test C is driven out very fast, consequently we get a maximum of viscous reaction.
After the loading time we hold the elongation of the sample constant to get the relaxation curve. These curves are
shown in Figure-3, test C. The information gained from tests C is needed to conduct the step tests (D, E), for which
we needed a proper estimation of adequate hold times to be sure that the process of relaxation comes near enough
to the equilibrium state. In other words, the forces in the sample seem nearly constant (viz time independent) to
the end of hold time. Whether a constant level of force may be assumed or not can be better viewed in the half
logarithmic presentation (Figure-3, arrow).

The tests D and E are also shown in Figure-3. These two tests were a challenge for the testing equipment, because
the steps of Augtep = 0.2mm in 2s tended to dislocate the measurment system, see Al-Baldawi (2009). We think
a hold time of t=10000s (Figure-3) is a good compromise to get near enough to the equilibrium state. This is the



general way to come to an equilibrium hysteresis, see Lion et al. (1993) and Lion and Haupt (1994).

Test E works in the compression region. Here, because of the great strength of the KL-batch, many specimens
buckled before reaching maximum compression. So, it was impossible to get good measurement results for the
KL-batch, which is why it is missing in Figure-3, Test E.

Of course, the palette of experimental investigation tests in material theory and material modelling is much bigger
than the five types used here, and all experiments would have better been torsion tests (see. Lion (1994)), but the
geometry used depended on the measurment equipment available and the number of specimens was limited.

3 Viscoelastic-plastic Modelling

In literature there are lots of material models that can be used to describe different materials and their behavior
under mechanical loading. One of them is a model of Lion (Lion (1994)), which we adjust to our needs and means.
The most advantageous feature of Lion’s model is its very clear structure concerning the model parameters and
experimentally observable phenomena. So, differences in values of identified parameters correlate with differences
in the material behavior and thus give a good indicator as to whether the occurrence of a certain material behavior
can be depended on or not.

The complete material model is presented in Table-1. The basic idea of it is to split the stress tensor T into an
overstress tensor T, which may as well be a sum of overstress tensors, and an equilibrium state stress tensor
T.q. This ansatz is justified by experimental observations.

The norm used in the equations in the Table-1 is defined for a tensor A to be: ||A| = VA - A. The notations
A¥ and AP indicate the splitting of tensor A into its spherical part A% = tr(A)1/3 and its remaining deviator
AP = A — AK see Betten (1977).

The overstress tensor T, follows the evolution equation Tovk (Table-1, Overstress), wherein the part T, 1 de-
scribes the fast fading overstress and T, stands for slowly fading phenomena. This can be done if the condition
for (i is observed and by setting adequate values for the parameters 2oy .

The production part of the overstress T, in Lion’s model depends on the evolution of the complete strain rate
tensor E. Le. the model produces overstress during the whole loading process. This feature was presumably
designed by Lion (Lion (1994)) because the material he had to deal with (XCrNil8.9) had extremely viscous
properties. This feature proved to be a disadvantage in our material, as we will indicate later on.

To introduce the necessity of the scaling function M it is important to note that the relation between the steady
state value of the overstress and the strain rate is given in a nonlinear way, as shown experimentally in Lion (1994).
There the steady state overstress values related to several strain rates are given by an exponential ansatz. More
general approaches implying a higher effort do not yield to substantial improvements.
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Figure 3: Results — Note that test C is shown in the normal and half logarithm description



Table 1: Complete model of Lion (1994)

Stress splitting
T =Teq + Toy

Overstress
Toy = Toy1 + Tovz
) 2 | | 1
Tovk = <2GVE + 3Ky itr(E)1 - T >_—TV>
ovk = Gk o ov3 (E) cq Zoka(HTODV”) ovk
Scaling function
D
M(ITE ) = (1 T0/50)
condition for (j,

Equilibrium state
Toy = 2Geq (B” = Ey) + 3K 5 tr(E)1

Plastic strain

. D . : : X X

B (Th-%) BB (B ) 2
Plastic arc length

$= \/§||Ep|| Spr = \/§||Epnr|| Elastic radius o9

Hardening

X:Xk+X:X1 +X2+X1
Radial

¥ = . 3 —

Xk = CkEp bk 1 _'_apz_)Xk

—_ . S —

P = sy (X1 -9) =2 (p-0)
Nonradial

S o~ :5‘ N ~

Xk = CkEpnr — bk 7 - Aﬁxk

p= 2 (1] - p)

The experimental investigation was done with elongation controlled tests. So, the strain tensor E = %(grad u
+ (grad u)T') can be calculated because of the aforementioned conditions of homogeneous deformations of the
sample. After decomposing the strain tensor E in the usual way into an elastic part E. and a plastic part Ep,

accompanied by an evolution equation Ep, Lion describes the equilibrium stress T, with a classic ansatz, see
Table-1.

For the reason of experimentally observed higher values of hardening in nonradial processes, Lion included in his
model a part called E,,,, which is perpendicular to the hardening tensor X and so enlarges the plastic strain E,.
With radial processes, like ours, this feature is not activated and the nonradial hardening tensor X vanishes as well.

This means, in our case, the hardening tensor X consists only of the radial hardening tensor X, see Frederick and
Armstrong (2007).

The further functions ﬁ, P and § are evolution equations to describe the development of the internal variables p, p
and J, which can describe the asymmetry between hardening and softening phenomena in steel. Lion et al. (Lion
(1994)) found out that the static hysteresis in cyclic tests of stepwise constant amplitude is reached faster, if the
steps are increased (hardening tests), than in softening tests (decreasing steps).

To keep a better track, we need to mention the parameter set (3) of the model in Table-1, which has to be identified:

p = ([C17 C27G0V7 KOV7Z0V17Z0V2780]7 [GCQ7KCQ7O—O]7 [Ela627517627ap7§0p7a67§05]7 [/C\lvb17a7§0p]) (3)

Toy Teq X X

Finally, we must mention that all the tests carried out in this project (Figure-2) are radial, and that, because of lack
of time no cyclic tests could be done, to differentiate between hardening and softening behavior. This means that
in the processes available not all the parameters in (3) are activated. For this reason we have to reduce the material
model (Table-1) in a physically correct way.



3.1 9-Parameter Model

In radial tests there is no need for E,,;, and there is even no possibility to identify the parameters belonging to the
nonradial hardening equations, because there is no experimental data. For this reason the hardening tensor can be
described only by its radial part

X =X. 4)
As mentioned above, there were no cyclic tests, so there is no data form wich we can glean the hysteresis behavior
of 51CrV4. Therefore we set the evolution equation for the internal variable P to zero. With this follows

b
14 ap

)

app = and ba

and the hardening equation becomes the well-known Armstrong-Frederick-ansatz.

We limit the overstress evolution equation to one summand, and having to hold the condition for  (Table-1) means
the evolution equation for T, is described by

1

. . D 1 . .
To = 2Go B +3Koy—tr(E)1 - Toq — ——————
3 Zoe M (| T )

Tov. (6)

Finally, we line up all equations, as previously done, in Table-2, accompanying it with the appropriate parameter
set Py,

p9p = ([GOV7 KOV7 Zovs 50]7 [Geq7 Keq, U()], [C, ba]) (7)
~——
Tov Teq X

Table 2: 9-Parameter Model

Stress splitting

T =T + Toy
Overstress
Toy =T —Teq
. - D . . 1
Tow = 2GE -~ + 3Ky 2tr(E)1 = Toq — —————Ty
or =200 s B v v A

Scaling functio
ov = s

Equilibrium State
Tnggm(EDfEQ+ﬂKmauEﬂ
Plastic strain
B, =\ (T8 - X)
Plastic arc length
§ = \/g |Ep|| Elastic radius og

Hardening
X=X
Radial

X = cE, — b,$X

Two problems are still unsolved. The first one is to determine the proportionality factor A of the normality rule

or

f, =
9Teq

=T, - X, (8)

see Table-1. The second problem is the transverse strain in the sample because elongation controlled processes are
not completely strain controlled. However, the process has to fulfill a combination of boundary conditions in stress
and strain. So, the transverse strain is governed by the material behavior.



The proportionality factor The yield function of v. Mises is given by

2
F=Tlg - 205 =0, )

where Hf” is the second invariant of f, and can be calculated as follows:
e =f,-f,.

The yield function (9) is an essential instrument of the plasticity theory, another example is shown in Kreissig and
Grewolls (1995). Tt can be interpreted as a surface which divides the stress space into an elastic (F' < 0) and plastic
region (F' = 0), see Haupt (1977). The restraint for T to never leave the yield surface in outward direction leads
to the consistency condition F =0, see Haupt (2000),

F=f, (Teq—X) =0. (10)

With a hardening ansatz as in Table-2, the plastic arc length s, and the plastic strain rate Ep, respectively, the
consistency condition (10) becomes the equation to determine A\ with:

1 B
A af, f, an

For the concise form of (11) we use the abbreviations:

2
a=c—byf, X 3 (12)

and B =f, Te >0. (13)
Equation (13) is called loading condition, see Haupt (2000).

Transverse strain The transverse strain can be calculated from the fact that the stress tensor as well as its rate
are non zero only in component Ty1; = 04, OF T = Gua, respectively. On the other hand, due to isotropy, the
strain tensor E only has the components E1; = ¢, and Eos = E33 = ¢;. This leads to two differential equations
for e; and the corresponding component of the overstresses Toy00 = Toy33 = Sp.

The thus completed 9-parameter model is mainly used for first numerical studies and to get some first indications
of the way single parameters would evolve. But, as can be seen in the Figures 5-9, the simple Armstrong-Frederic-
ansatz used here is not sufficient to describe the observed material behavior (compare the hourglas and triangle
lines).

3.2 11-Parameter Model

After the disappointing results of the hardening behavior of the 9-parameter model we found a solution by doubling
the number of production terms in the sum of the radial hardening, while setting the limiting term of the second
summand to zero, see Lion and Haupt (1994):

Xnew = Xsimple + Xadd' (14)

In the equation above, Xgimple is the usual Armstrong-Frederick-Ansatz, see Table-2, enhanced by another Arm-
strong-Frederick-type tensor X,44, which will increase linearly, if parameter b, ,qq is set to zero, see Figure-4.
This ansatz yields a smooth run into the simulated curves, see Figures 5-9. The same effect can also be viewed in
figure-4 for the components of hardening tensor.

Again, in Table-3, we line up all equations for the new hardening ansatz, as well as the extended parameter set

Piip*

Piip = ([Gova Kov, Zov, 50]7 [Geq7 Keq7 O'O]: [Csimplea basimplm Cadd, baadd])a (15)

Tov Teq X
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Figure 4: Satiation of the hardening ansatz for the TS batch — Test A

and Table-4. For this we used the facts:

L and 3K = £

. 16
1+v 1-2v (16)

2G =

Table 3: 11-Parameter Model

Hardening
X = chw = Xsimplc + Xadd
Radial:
Xsimplc - Csir_nplcEp - basimplcéxsimplc
Xadd = CaddEp — baadd$Xadd with  Daadd = 0
Table 4: Values of the parameters
Charge: SFB TS KL
Overstress
Elastic part Eo, [N/mm?] | 227000 | 226900 | 221050
Vov [1] 0.372 0.366 0.355
Scaling function 50 [N/mm?] 9.9 7.0 16.5
20 [s] 348 374 425
Equilibrium state
Elastic radius o) [N/mm?] 490 462 835
Elastic part Eoq [N/mm?2] | 208800 | 204200 | 201100
Veq [1] 0.370 0.365 0.353
Hardening
Csimple | [N/mm?] | 11060 8033 17674
basimple [1] 75.2 76.4 111.9
Cadd [N/mm?] 2649 1837 861
baadd (1] —0 —0 —0




4 Comparison with the experimental investigation

Because of the extended hardening model, the 11-parameter model gives a better representation of the real material
behavior our results got using 9 parameters. But, as can be seen in Figure-6, the best results are coupled with the
slowest processes which indicates that the overstress production of the model is too sensitive near the elastic-plastic
transit, a phenomenon that increases with faster loading. The results for slow loading are better because the process
stays near the equilibrium state, which is modelled classically.

The simulations for all the other tests are unsatisfying, because here the overstress ansatz exaggerates. This short-
coming cannot be put right. Even by expanding the ansatz with a second summand, there was no improvement:

Tov = Tovl + Ton- (17)

The cause of this symptom is the overstress production depending on the whole strain, which would be adequate
if the material investigated would show distinctive viscoelastic behavior. But this cannot be observed. It would

have been better to have used a viscoplastic model, see Haupt (1996), Olschewski (1996), Chaboche (1989) and
Chaboche (2008).
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5 Conclusions

The experimental investigation showed three different answers for the three batches under the same mechanical
loading — in the case of the KL batch distinctly different, especially in the elastic region and in the hardening
behavior. Such seemingly random discrepancies pose a great disadvantage for engineering needs, because e.g.
for a metal forming engineer it would be a challenge to shape KL batch material instead of the SFB or TS type,
whereas for a design engineer a salient elastic part is required, as can be found in KL.

Table-5 shows the differences between the parameter sets and makes clear how big the discrepances in the individ-
ual parameters can be.

The average value is calculated by

R
Ve — - Z@,-, ; n=3 (SFB,TS,KL) (18)
(2
and the relative error by
Ao — (22N o0y 19
— e -100%. (19)

Table 5: Comparison of the parameter sets

Batch Avereage | ASFB | ATS | AKL
(Y] [%] [%]
Overstress
Elastic part FEov [N/mm?] | 224984 1 1 -2
Vou (1] 0.364 2 1 3
Scaling function | s [N/mm?] 11.14 -11 -37 48
20 [s] 382.2 -9 -2 11
Equilibrium state
Elastic radius o [N/mm?] | 595.67 -18 =22 40
Elastic part Eeq [N/mm?] | 204702 2 0 -2
Veq [1] 0.362 2 1 3
Hardening
Csimple [N/mm?] | 12255.5 -10 -35 44
basimple [1] 87.82 -14 -13 27
Cadd [N/mm?] | 1782.27 49 3 -52
Csimple + Cadd [N/mm?] | 14037.8 -2 -30 32

The one and only material property found to be the same in all batches is elasticity, represented by the parameters
Eov, Eeq, Vov, and Veq. The borderline between elastic and plastic behavior (elastic radius o) however, shows the
first big difference, in this setting the KL-batch aside from both the others. The same applies to the limiting term
basimple, best seen in Table-4.

The evolution of hardening at the first onset of plastic deformation is governed by both, c¢simple and caqq. A
comparison of these parameters (last line Table-5) is not quite as decisive as the ones above because here all
batches differ in the same way as parameter s of the scaling function does: the plastic hardening properties of all
batches seem to be different. The viscous properties again, as seen in relaxation, are quite comparable in all three
batches, see parameter zg.

If material behavior differs, in such wide range, under mechanical loading is modelled using one and the same
model, the ensuing identification will lead to the different parameter sets, if all batches are treated separately,
as done here. On the other hand, to identify one set of parameters using the experimental data of all batches
simultaniously would be the same nonsense as to average the parameters found for all batches in order to reach a
one-for-all parameter set, see Table-5. There is no way to find a parameter set for a certain model and a material e.g.
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called 51CrV4, that could be published and used by others — any batch delivered needs to have its own parameters
identified.
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