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Abstract

In one of the last stages of paper production the surfacesgfdper is refined in calenders. The paper is compressed
in the nip by rollers which sometimes tend to exhibit sel¢ited vibrations. These vibrations may lead to wear
and dramatically reduce the durability of the expensiviersl The reason for the self-excited vibrations is to be
found in the interaction of the rollers with the paper. Theiaction process in the nip is very complex and has
not been completely understood from a mechanical pointei.virhe purpose of this paper is to develop simple
mechanical models of the nip which can lead to an explanatidine phenomenon.

1 Introduction

The process of paper calendering is one of the last stepper paoduction. In the nip between two calender rolls,
the coarse paper is heated and compressed in order to refs@fiice, making it suitable for modern printers or
further applications. A detailed description of the pracean be found in (1). Due to the interaction of the paper
and the rollers, self-excited vibrations may arise, legdinwear and decreasing the durability of the rollers.

Different excitation mechanisms are proposed in the liteea One line of reasoning suggests self-excited vibra-
tions due to delay terms in the equations of motion causeddar \écf. (2) and the references therein). Another
explanation is sought in the occurrence of nonconservétives in the nip, transferring energy from the rotation

of the rollers to vibrations of the system.

Taking into account nonconservative forces in the nipeetiitation can be substantiated without heuristic wear
models. In (3; 4) BROMMUNDT aims in this direction and models the rollers as rotatingtalaings. Using a
simple paper model and assuming slip between the paper amdltérs, the nonlinear equations of motion of the
system are derived and self-excitation is shown by numidritagration of the equations of motion.

The purpose of this paper is to develop models which allovafsystematic stability analysis, without having to
perform a numerical integration of the equations of motiara first step, the rollers are modeled as rigid cylinders
and the paper is considered as inextensible in the horizdinéztion. This causes slip between the paper and the
rollers, yielding a similar excitation mechanism as in (B; 8ince it is doubtful weather slip between the paper
and the rollers is a realistic assumption, a paper modeltwddiows for shear deformations is considered in a next
step. It is shown that self-excitation is possible in thisecas well.

2 Singlerigid roller with inextensible paper

In this section, a single rigid roller in frictional contastth inextensible paper is considered (Figure 1). In a first
step for symmetry reasons a model of only one rigid rollerantact with the paper web is considered and the
velocity of the mid surface of the paper is prescribed. Asmsequence all parameters correspond to half of the
paper thickness. The roller is supported by two prestrelgseal springs (stiffnessk,, k,, prestressg g, F,0) and
rotates at constant angular velocity The paper, represented by an elastic foundation (beddiefficentzy,,),
moves at constant velocityin horizontal direction (Figure 2). Each material point &dwerized by the coordinate

¢ on the surface of the paper undergoes displacemégits) perpendicular to the neutral inextensible fibre of the
paper only. A shear deformation of the paper is thus neglecide points in the nip are characterized by the
coordinates defined in Figure 1. In the nip, the paper is compressed amdélages the nip at its narrowest point,
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Figure 1: Rigid roller in contact with idealized paper

maintaining its minimum thicknegs,,;,. The truncation at the end of the nip takes care of the pldsfiarmation
of the paper.

In order to keep the model simple, the deformation procesiseopaper in the nip is modeled as quasi-stationary.
This means that the forces acting on the roller are calallfitam a stationary process arising in the current
dynamical state of the system. This assumption is justifié¢hy into account the fact that the period of the
vibration is about seventy times the time a material poirthefpaper spends in the nip. The ratio is calculated
from the parameters used for the calculations in sectiortt3 avpaper velocity of 800 m/s and a frequency of the
resulting unstable mode of approximately 30 Hz. For a fraquef 200 Hz, the period of the vibration is still
over ten times larger than the time a material point of theepapends in the nip. Therefore the stationary process
is reached almost instantaneously (i.e. in a small fraaifdhe time a point spends in the nip). Regarding the fact
that the nip angle is about one degree, this is also intlytielear. Without the assumption of a quasi-stationary
process, the equations of motion would not only depend oruhent state of the system but also on the loading
history of the elements of the paper after entering the nip.

The two coordinates of freedomandy of the roller center are measured from the prestressedysgtaid con-
figuration characterized by a paper thicknggsat the narrowest point of the nip. The thickness of the papar a
point defined by the coordinatein the nip is given by

h(s,y) =1+ hmin — V12 — s )
where
hin = ho +y 2)
is the thickness at the end of the nip. The relatiesr sin « yields
ha,y) = ho +7r(1 —cosa) +y 3)
and withh (&, y) = hy one obtains
cosa=1-— w . (4)

r

Excluding shear deformations of the paper there is at mastpaimt of vanishing relative velocity between the
paper and the roller, as follows from kinematical reasohthd relation

T+ Qrcosag, =v (5)

AMAA

Figure 2: Paper model (inextensible and without shear deition)
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kby

Figure 3: Contact forces between the roller and the paper

holds for some value afy; with 0 < ay; < @, this does in fact correspond to a point of vanishing re¢atiglocity

in the nip. At all other contact points between roller andguapere is sliding friction and the relative velocity
determines the direction of the friction forces (cf. FigBje In the regiom < o, indicated by the subscriptthe
roller activelydrives the paper; in the regian> oy indicated by the subscriptthe roller is driven by the paper
(p stands for a rollepassivelydriven by the paper).

Using CouLomB’s law, the distributed contact forces at a contact pointhie hip parameterized by can be
calculated from a force balance at a segment of the paper as

kby(h1 —h

Na:L.)a Ra::U'Nay (63)
COS (v + (4 SIn &
kby(h1 —h

NP:M Ry, = uN,. (6b)

cosa — psina
From NEwTON's law, the equations of motion of the roller can be derived as

Qg

mi + kyx = Fypo + Na(sina — pcos a)r cos ada
0
+ / Np(sina + pcosa)rcosada, (7a)
miy + kyy = Fyo + / Kby (h1 — h)r cosada, (7b)
0

where the distributed contact forces were summed over théyintegration. The forces acting at the point of
sticking do not change the value of the integral, since tloeeyioon a set of measure zero.

To determine the stability of the trivial solution, the etjoas of motion are linearized with respectitoy, z, ¥
around the steady state configuration. From (4) and (5) otarhthe functionsg(y), as:(2) and the boundaries
of the integrals in (7) have to be differentiated accordmg@i£iBN1Z’s rule. For the case < a.(0) <&(0), i.e. in
which a point of vanishing relative velocity exists in th@ nihe linearized equations of motion read

e =W 3 ®

with the abbreviationgy = &(0), aso = (0) and

hi — ho — (1 — cos asto) COS Qg + COS 3st0

fa = pkyy ) (9a)

. . )
sin aigto (cos Qgto — 2 sin asto)

"t 8 o g

sino — pcos o sin v 4 p cos a

fr1= ——— X  cosada + —— X cosada. (9b)
0 cosa + psin o o COS QL — sin o
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It is interesting to note that a positive semidefinite dargpimatrix arises due to the derivative of the integral
boundariesyg;. The damping term is absent if the relative velocity betwdenpaper and the roller does not
vanish at any point in the nip. In this case the linearizecaiqns of motion are

m  0][# ks Koy fr2 x| _ |0
[0 mMy]—F{O ky + knyrsindo||y| |0 (10)
with
Qo
Fro = / SO F peosa o ada, (11)
o cosaEpsina

where the upper sign holds for the roller actively driving fhaper, i.ev < Qr cos «, and the lower sign holds for
the roller being passively driven by the paper, i.e. Qr cos o over the whole nip.

Both, (8) and (10), feature a one-sided coupling due to tinecaition of the paper at the end of the nip and due
to the fact that the contact forces depend exclusivelyy @md not onz. The asymmetry of the stiffness matrix
holds even for,=0. This shows that the nonconservative character of theriagtterm is not exclusively due
to friction but originates from the relative motion of the te@al points of the paper and the roller which contact
each other in the nip. This is a major difference comparedddets in which the nip is modeled as a single spring
connecting two material points leading to symmetric masic

Considering exactly the present equations of motion, ity of the trivial solution, i.e. self-excitation, only
occurs for (10) if the diagonal elements of the stiffnessrinare equal. Double eigenvalues then arise leading
to JORDAN blocks of the corresponding first order system. Howeveritiaahél small coupling of the equations
of motion by damping or other neglected effects, can inatzusly cause instability. In this context we note
that we have not introduced damping in the suspension ofdllexrs which certainly will yield a coupling of the
linearized equations of motion. In this context, the modeh gingle rigid roller with inextensible paper might
indicate the origin of a possible self-excitation, but tketriction to one roller possibly hides important effects,
such as an additional coupling of the equations of motiorer&fore, an extended model consisting of two rollers
is considered in the following section.

3 Tworigid rollerswith inextensible paper

The model depicted in Figure 4 consists of two rollers (ragdidegrees of freedom;, y;, i =1, 2) and the paper
web modeled as in the previous section. The speed of rotatidwe rollers is prescribed Hy; and(2; respectively
and the velocity of the paper ig; with constant magnitude.

In the steady state all displacements are zero, the ceritéhre mllers are aligned vertically and the paper has the
thicknesshg at the end of the nips(=0). In the dynamic case, the thicknessg;,, of the paper at{= 0) follows
from

(zo —21)? + (r1 + 72+ ho +y1 + y2)* = (11 + 72 + hmin) > (12)

The trigonometric functions of the anglg corresponding te =0 are

To — X1 . Tr1 — T2 (13)
, sinqg = ————~2
ri+7r24+ho+y1 — Y2 71+ 72 + Amin

tan g =

and the thickness of the paper as a function iaf

h:r1—|—7‘2—|—hmin—\/r%—SQ—\/rg—SQ. (14)
In the following, it will be convenient to express the pagecknessh as a function of the angles, andas as
h = hmin + 71 (1 = cos(a1 — ap) + r2(1 — cos(ag + ap))), (15)
wherea; anda, are defined in Figure 4 and are related toy
s =rysin(ag + ap) = r1(sinaq cos ag + cos g sinayp), (16a)

s = rosin(agy — ap) = ra(sin ag cos ag — cos ag sinayg). (16b)
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The anglesy; anddas, can be determined from (15) using the conditidid;) =hy (i=1, 2).

In order to calculate the contact forces between the papgittanrollers sketched in Figure 5 one needs the
velocities of points on the surface of the roller given by

vi(aq) = d1e, + v1ey + Q1e, X ri(—sinaje, — cosazey), (17a)

va() = B2e, + Yoey — se, X ro(—sinase, + cos asey). (17b)

As in the previous section there is at most one point of vamistelative velocity between each roller and paper

€2

Q

Figure 4: Two rigid rollers in contact with idealized paper

lklz T1+diz T1—Fizo

—~—ky Y1 +diy Y1 —Fiyo

. S—

Figure 5: Contact forces between the rollers and the pdpgrdenotes the force in the paper element)
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defined by the conditions

vi(ase1) - € =, (18a)
va(Qgt2) - € = v. (18b)

If at least one of these conditions is fulfilled for

—ap < asp1 < G, (18c)
ap < asg < Qg, (18d)
respectively, there is indeed a point of sticking betweenphper and the corresponding roller, and the friction

force inverts its direction in the nip. The distributed citforces can be calculated from a force balance at an
infinitesimal element of the paper and read

an(al)
N a = N 5 R Q= N a 192
1 cos(ay + ap) + psin(ay + ap) 1a = uNy (19a)
Fon(a1)
e Fap = N 19b
" cos(ag + ap) — psin(ag + ag)’ 1p = pdV1p (19b)
for the upper and
Fyy,
N2a = . b <a2)' 5 R2a = uN2a’ (190)
cos(ay — ) + psin(ag — ap)
F
Nop = b (a2) Rop, = ulNay, (19d)

cos(ag — ) — psin(ag — ag) ’

for the lower roller, where the subscriptsandyp refer again to the roller actively driving the paper and tbiéer
being passively driven by the paper, respectively. Theesgionfy,, («) denotes the force in a paper element in
e,-direction at positior. It represents the material behavior of the paper and camdseiibed as an arbitrary
function of a. Having in mind the elastic foundation, a straightforwalsbice is the dependence on the paper
thickness

an(Oél,Q) = f(h(Oél,Q))- (20)

The equations of motion then follow fromeWTON's law. For the upper roller they are

st 1
mi21 + kig 1 + dig 21 = Figo + / (Nla (sinay — pcosaq)ry cos al) doy

_(’U

+ / (Nlp sin g + pcos aq)ry cos al) don, (21a)
Qistl
midis + kiy Y1 + diy 1 = Fiyo + / Nia(cosay + psinaq)ry cos al) day

+/ Nlp cos v — psin oy )Ty cos al) dag. (21b)
Qstl

For the lower roller they have a similar form. The equatiohsotion can be linearized around the steady state
equilibrium position for giverf24, 25 andwv. With the vector of generalized coordinates

q=[r1 n w2 y2]T (22)

one obtains the functionsy(q), &1 2(q) andast1 2(g, g), which means that the integral boundaries in (21) have
to be differentiated in the linearization. The linearizegi@tions of motion thus have the form

Mg+Dg+ (K+N)g=0 (23)

with constant coefficient matrices and the stability of tigdl solution can be studied using the exponential ansatz
q(t)=qge*t yielding the characteristic equation

det(\>’M +AD + K + N) =0.

In the following, the parameters of Table 1 communicated/hy HAAG (5) are employed, corresponding to the
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my = 6447kg mo = 16114 kg hy = 150 gm

w; =2m-17,31/s wy = 2 - 30,6 1/s ho = 20 um
kiz = kiy = mlwf kog = koy = mgwg v = 800 m/min
diz = diy = 400Ns/m dog = day = 400Ns/m w=0.5

r. = 0,345m ro = 0,483 m kpy = 8.5- 10" N/m

Table 1: Parameters communicatedvay HAAG (5)
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Figure 6: Eigenvalues of the system with two rigid rollers ¥arying damping in the bearinggd( refers to the
nominal value given Table 1 antlis the actual value)

case that the upper roller is completely driven by the papleereas the lower roller drives the paper and therefore
acts as a drive train for the calendering process. It islyaagsumed that the neighboring calender stacks are
controlled such that a constant paper velocity is mainthifer a linear elastic material law of the paper, the stress
in the paper is given by

an(s) = —kby (h(S) — ho)

The linearized model can now be employed to draw the rootsl@uhe system for varying parameters. From a
variation of the damping in the bearings arouhd = di, = d2, = da, = do (cf. Figures 6 and 7¢, being the
reference value from table 1) it can be seen that higher dampithe bearings has a stabilizing effect, whereas the
eigenfrequencies of the system remain almost unchangedcriation of the paper bedding stiffneks, around
kyyo shows that higher stiffness has a destabilizing effectuieid3). Note that the system has another pair of
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Figure 7: Real part of the eigenvalues of the system with fgid rollers for varying damping in the bearings(
refers to the nominal value given Table 1 ahid the actual value)

complex conjugate eigenvalues in the range of 200 Hz whisteh@egative real part and is omitted in the Figures
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for presentation purposes.

Summarizing this section, the extension of the model inolydwo rollers yields a self-excitation mechanism
which is based on the frictional contact between the papettarollers and the plastic deformation of the paper.
Due to the inextensibility assumption of the paper, theeerar shear deformations in the paper, so that there
is always slip (except at most at two single points) betwéenrollers and the paper. Similar friction-induced
instability mechanisms are known from many other applicetj as for example the squealing of brakes.
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Figure 8: Real part of the eigenvalues of the system with tgid rollers for varying paper stiffnesg:(,, refers
to the nominal value given Table 1 ahg, is the actual value)

4 Singleroller with sticking condition

The assumption of inextensibility of the paper used in tisedaction is somewhat questionable, since the material
properties of the paper are not known in much detail. The guepf this section is to demonstrate that the
excitation mechanism does not rely on the occurrence ofbgfpreen the rollers and the paper, but also occurs
under the sticking condition. The analysis is based on te&eay shown in Figure 1. The paper model depicted
in Figure 9 now includes extensibility in the horizontaletition, i.e. each material point characterized by the
coordinate$ in the undeformed configuration on the surface of the paperucalergo a displacement (€, ¢)
parallel and a displacement (¢, t) perpendicular to the mid surface of the paper, which as bafoassumed to
be inextensible and moves with constant veloeityt is assumed that the paper and the roller stick togethes on
contact is established. As in the previous sections, thergagruncated at the narrowest point of the nip=0)

and the deformation process is considered as quasi-safjasince the transition through the nip happens on a
much faster time scale than the vibration of the roller.

The forces acting in a paper element are proportional tceifigrchation. A paper element in contact with the roller
at anglex has an upper point with position vector

P, = (x—rsina)e, + (y —rcosa)e, (24)
and a lower base point at the mid surface of the paper given by

o —

Q

p = (x —rsiné+ v > e, — (r+ho)ey, (25)

Figure 9: Paper model (extensible)
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where the termv(&— ) /Q2 represents the distance the base point has traveteddiirection, while its counterpart
on the roller traveled from to the position. In correspondence with (3), the deformatiorejjrdirection is

hi —(p1 —py) €y =h1 —hg—7(l —cosa) +y
=h1—h, (26)

whereas the deformation &, -direction is

o —
Q
due to the sticking condition between the paper and therr®leferring to (4)¢ is a function ofy only, so that also
the deformation of the paper is a functionyabnly. This is a consequence of the assumption of the quasosary

deformation process of the paper.

(27)

(py — Py) - € =r(sina —sind) +v

The equations of motion finally follow from BvTON's law by summing up all forces acting on the roller

a—«

Q

mi + kyx = Fypo + / kb (r(sina —sind) +v ) rcosada, (28a)
0

my + kyy = Fyo + / Fby (h1 — h)r cosada. (28b)
0

It should be noted that (28b) is identical to (7b). As for ¢hg linearization of the equations of motion requires
the application of [EIBNIZ’s rule, becausé = a(y), and yields

m 0|z kg kyar fr3 | _ 0
[0 m} [y] + [0 k, + kbyrsmao} M = M (29)
with
a(y) A _
frz = _d (r(sina —siné(y)) +v a(y)a) cos ada
dy Jo Q
y=0
hl — ho (%
r Qr (30)

The present equations of motion for extensible paper witkisig condition are of the same mathematical form
as for the inextensible paper with friction between the pamel the roller (10). Therefore, both systems show
a similar stability behavior. In particular, instabilsi@rise for close eigenfrequencies of the system and small
additional coupling of the equations. In both (10) and (2@) ¢ouplingsf> and fi3 arise from the truncation at
the end of the nip which can be seen as an effect of the plasfiicrdation of the paper. The terfis in (10) only
contains an additional part originating from friction. Tim®del with sticking condition can be easily extended to
a two roller model similarly as done in the case of slidingtfdn. Due to the similarity of the equations in both
cases, a qualitative change of the results is not to be esghe€Therefore this step is not performed here.

5 Outlook and Conclusions

This paper deals with simple models for the explanation Ibfesesited vibrations of paper calenders. In contrast to
most of the literature, the excitation mechanism studigtigpaper does not rely on heuristic wear models leading
to time delays in the equations of motion. Inspired by thespapf BROMMUNDT (3; 4) the excitation mechanism

is explained by a refined modeling of the contact forces aouyin the nip which allow for a systematic stability
analysis of the linearized equations of motion. Two soufeisistability are identified, which are dry friction
occurring in the slip regions, and plastic deformation &f plaper as a second source. It is shown using rigid body
models, that also in the case of pure sticking between thergaq the roller, self-excited vibrations can arise.

In future work the models presented will be extended allgwfior elasticity of the rollers. A first step in this
direction is to model the rollers as elastic rings and to @m&spoint contact between the paper and the rollers. If
slip between paper and rollers is assumed, the structufeecdquations of motion is the same as for continuous
models on brake squeal (6; 7). In order to model the excitati@chanism for self-excited vibrations also for
sticking between rollers and paper a refined modeling witlxaanded nip similar to the analysis performed in
section 4 will be required. The models presented in this pay@sy clear the way to a better understanding of self-
excited vibrations in calenders and to an identificationritioal design parameters using refined calender models.
Such refined models should include coexisting sticking dipgiag regions between the paper and the roller, and
a physically justified model of the paper’s plastic deforiorat
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