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Vibrations of an Inhomogeneous Rectangular Plate

N. V. Naumova, D. N. lvanov

Low-frequency vibrations of a thin multifibrous plate areafyised. Asymptotic homogenization and finite element
methods are used to get the vibration frequencies. Appateiformulas for the lowest frequencies of thin inho-
mogeneous rectangular plate are found. The comparisonmfnigal and asymptotic results is performed.

1 Introduction

Lately many industries including nano-technologies haerbmore and more interested in composite inhomoge-
neous materials construction. These materials, in cosmasvith pure homogeneous materials, have advanced
mechanical properties. A fundamental vibration frequeas@n important characteristic of thin-walled structure.
A simple way to increase the fundamental frequency and aesidnance is increasing thickness of the structure.
However in this case the mass of the structure also increAsesptimal design of thin-walled structure provides
raising its the frequency without increase of its mass (seeB(1993)). The optimal design of an inhomogeneous
plate is fairly difficulty problem. The method based on amagiotic approach provides the construction of simple
algorithms for the calculation of the optimal parameteee (8aumova and Ivanov (2007)).

2 Basicequations

Consider a square plate with lengthand thicknes#. The thickness of plate is small in comparison with its sizes
in the plan(% < 0.1) . Consider a cartesian coordinate systei; X, X3 on the middle surface of the plate, as
shown in Figure 1. For constructing mathematical model efglate we suppose two basic hypotheses. The first
hypothesis (Kirchhoff) assumes that a normal to middleamgfof the plate remains a normal to it after defor-
mation. The second hypothesis asserts that the stressrsfdége’s points is biaxial, i.e. normal and tangential
components of the pressure in the platforms perpendiculaxész can be neglected.

e

Figure 1: Part of inhomogeneous plate.

Following A. (1970), R. (1991), the free lateral vibratiooEplate element can be expressed by means of the
equilibrium equation on axis
8@901 + asz

aZL'1 (3'1'2 Aw= 07 (1)
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and the elasticity relations

OM,,,, OM

T1T2 — T2 wo = 0. 2
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In these equationsy is the transversal deflectiofy,, , ()., are the shear stress-resultait,, , M,.,, M., ., are
the stress-couple; is Young’s modulusy is Poisson’s ratiop is the mass density, is the vibration frequency.

3 Investigation of plate vibration frequencies and modes.

The solution of system (1) — (3) can be expressed as
Qu, = Quy (z1, m3) - sinwt,

Quy = Qu, (1, T2) - sinwt,
w = W(xy, x2) - sinwt.

The dimensionless variablesy, w, @Il, @1.2, le, 1\71.11.2, 2\71,2 are given by

e Doh ~ Doh ~
w(xlvxZ) - hw (Ll‘l, LZ‘Q), Q.’I;1 = TOSQ:L‘la Q.’IJQ = TOSsza
Doh ~ Doh ~ Doh ~
Mwl = ? 1 M$2 = ? T2 ME1:E2 = ? 1T
Dy = Dd

The coefficientsD, andd have the dimension Nm?. It is assumed that = 1IN - m?, and D is a dimensionless
function. Note also that the symbbl~ ” introduced for dimensionless variables is omitted and é&lder other
purposes.

Further we use the multiple scales method (Argatov, 2004y8lav, 1984). Combined with the variables, z-
we consider so-callefdstvariablesty, & (51 =2, &= “’—;) . Thus an elementary cell, a parallelepiped with the
sizes(0,¢) x (0,¢) x (0, h) transforms into a parallelepip€d, 1) x (0,1) x (0, k) in variablesy, &;, and each
of the unknown functions, dependent on the variablgsz,, becomes formally dependent also on the variables
&1, &a: B

f(z1, 22) = f(21, w2, &1, &§2).

Asymptotic expansions for the functionsand A have the form

’&5 - wo(ﬂfl, T2, gla §2) + 6@1(]}1, T2, gla §2)+
+ %Wy (w1, @2, &1, &) + W3 (w1, 2, &1, E2) + ... 4)
A= Xo(&1, &) +eri(&r, &)+ ...

Taking into account (4) and the composite function difféisgion rule

df _af 1af &f (9 19\ <
(30 + 236) 7

dr, Oz z06 did
we obtain the following expressions for the stress-couptekthe shear stress-resultant
My, = 2(My,0+ My +2Myo+ -+ My +...),
Mxlwg = 572(Mz1z20 + EMxlxgl + EQMx1x22 +-- EkMxlargk' + ... )a
M,, = e 2(Myyo0 + My, + > Myyo + -+ ¥ My +...), (5)

Qzl = E_S(Qxlo + ‘SQ(Ell + €2Q$12 + e + Ekalk + A )7
ng = 573(@1’20 +5Q121 +52Q122 + - +€sz2k + .. ~)v k= ]-v 27 37' s
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Substituting (5) into (1)—(3) and equating the coefficiertts@asecutive degrees of the parametéo zero we
come to the following recurrent equations chain (6)—(8)

aleo aQ:L'QO _
o6 T o6 Y
8le() 8M11120 _
B3 + B¢, + Qzlo =0 (6)
8Mac1m20 aMach _
&1 + B + QCEQO =0
for k=1,2 3: 00 00 00 00
z1k xok r1k—1 xok—1 _
0¢1 + 0&2 + Ox1 + Oz2 =0
8lek 8Mf1}112k 3lek,1 8lez2k71 _
B3 + 0€s + 011 + O + ka =0 (7)
OMy 2ok OM ok OMy zok—1 OMyok—1
1%2 2 12 2 —
0¢1 + 082 + Ox1 + Ox2 + ka =0
for k=4:
anlk _|_ 6Q12k + anlkfl + aQIQkfl _ )\ i[}’ . O
061 082 0x1 Oza 070 —
aMz k 8Mz xok 8Ma: k—1 8M.’E zok—1
1 1%2 1 1%2 —
s T o6 T e T am T Qek =0 (8)
alesz aMzgk aMzIEQkfl aM12k71

061 + O&2 + Ox1 + Oxo + ka =0.

In this notations the equations (6)—(8) are five systems, aagyesystem consists of three differential equations.
For convenience of further mathematical transformatiord rmumerical calculations, the system (6)—(8) can be
written concerning transversal deflection as (9)

Lowg = 0,
Ll'lZO + Loﬁl = 0,
Lowg + Lywy + Lows = 0, 9

Lawg + Lowy + Liwg + Lows = 0,
(L4 — )\0) wo + Lawy + Lowy + Lyws + Lows = 0.

We introduce the following notations for the partial defivas

.9, _90  _98  _9
Pz, = 8I17 Pzy = 85627 b¢ = 6617 Pey = 852

In the system (9) differential operatofs, L, L2, L3, L4 are given by

Lo =pe, (pe, (D(0F, + 1pz,)) + pes (D(1 — p)pe, pe, )+
+ e, (P, (D(PE, + upZ,)) + pe, (D(1 — )pe, pes))

Ly =L11(pe, , Pes )Py + L1 (Pey ey )Pas s

Lo =Lo1(pe,  pes )02, + Loz(De, s Pey )Py Py + L1 (D, Pey )P2y s

L3 =L31(pe,» e, )Ps, + Lo (De,» Dey Do, Dy + L32(Pe s Pey )03, Py +
+ Ls1(pe, pe, )Po,»

Ly =Lu1(pe,, pey )P, + Laz(pe,» Pey )P, Das + Laz(Peys pe, )03, Doy +
+ Lo (pe, ,pgl)pzlp:;? + L1 (pe,, pe, )pfm
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where the nonzero operators are equal

L1 (pe,» pe,) = 202, (2D + 2(Dpp))pe, + pe, pe, (—2D + Dp)pe, +
+ 6pe, DpZ, + 4pe, Dpe, pe, + 2pe, Dpi,+
+ 4p}, Dp¢, + 4pe, v, Dpe, 12,
Lo (pe,» pe,) = P2, ((Dp) + pZ, D) + 6pe, Dpe, + 2pe, Dpe, +
+ 6DpZ, + 2Dp;,,
Loa(pe, s pes) = 2pe, pe, (D) — D) + 4pe, Dpe, +
+ 4pe, Dpe, + 8Dpe, pe,,
L31(pe,,pe,) = 2pe, D + 4Dpg,, Lag = 2pe, D + 4Dpg,,
L1 (pe,,pe,) = D, Lag =2D.
Assumingxy, x2 and&y, & as independent variables the system (9) can be considerdezsirrent chain of

the differential equations of variablés and¢, with unknown functiorw; (1, x2, &1, £&2) and parameters; , xs.
The unknown functionsyy, ws, we, ws, according to Bahvalov (1984) can be expressed as

wo = vo(1, T2), W1 = N1pa,vo(T1, T2) + Nopg,vo(x1, T2),
= Mi1p2 vo(w1, ©2) + Mapa, payvo(21, T2) + Msp2, vo(z1, 2), (10)

W3 = F1p3 vo + Fap2 pagvo + Fspa,p2,v0 + Fapl, vo,

where Ny, No, My, My, Ms, Fy, Fs, F3, F, are functions depending only on variablgsand&,;. Substituting
(10) into (9) we get the system of differential equationsafablest;, £&; concerning unknown functions;, N,
My, Ma, M3, F1, Fa, F3, Fy:

LoN1 =0, LgN, =0,

LoMi + L1 (pe, s pe, ) N1 + L1 (pe, , pe, )1 = 0,

LoMy + Li2(pe, , pey ) N2 + L12(pey, pe, ) N1 + Loz (pe,, pe, )1 = 0,
LoM3 + L11(pe,, pe, ) N2 + L21(pe,, pe; )1 = 0,

LoFy + L11(pe, , pe, ) M1 + Lo1(pe, s pe, ) N1 + L1 (pe, , pe, )1 = 0,

11
LoFz + Li1(peys pey )My + L1 (e, , pe, ) Mo+ (11)
+L21(pey, Pea ) N2 + Loz (Pey s Per ) N1 + Li2(pey, e, )1 = 0,
LoF3 + L11(pe, s De, ) Ma + L1 (pe, » pe, ) M3+
+L21(p§2>p§1)N1 + L22(p€1 7p§2)N2 + L32(p52,p51)1 =0,
L0F4 + Lll(pfzapfl )M3 + LQl(prapfl)NQ + L31(p§27pf1)1 =0.
Solutions of two first equations in system (11) satisfying ¢ndition of periodicity have the form
N1 =C:1, Ny =Cy, where C;,Cy = const (12)

In Bahvalov and P. (1984) periodicity of the solution is stabfor the elliptical equation of second order. In our
case it is not hard to prove this fact of the solution periitdifor each equation of system (9).

Following the Asymptotic Homogenization Scheme to obtam ¢oefficients of the averaged vibrations equation
(15) it is enough to find only functiondf;, Ms, Ms. Now we must only prove this. For this aim we consider the
first equation of (8)

Y43 Qm14 +p£2Qm24 + Da,y Qxl?) + pszmQB — Aowo =0
and integrate it on a cell, taking periodicity conditionsiaccount

//(le Q2.3 + Py Quy3 — AoWo)dE1dEe = 0.

S

Moreover, we chang@.,,3 andQ..,3 t0 —(pz, Myz,2 + Pay My 2p2) @NA— (P Moo + Doy My, 2,2), respectively,
using corresponding equations of (7) foe= 3

ff Pzy p:cl xr12 +pz2Mx1x22)+

_ (13)
+pl‘2 (p"EQM-'L'22 +p{L‘1M(I?1(L‘22) + /\Owo)dfld§2 = O

Recall thatM,,,2, M,,2, M., .,2 are the third terms of the expansion (5) for stress-couples.
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The decomposition ai/,;, 2, M,,2, M,,.,2 combining with (4) and (12) yields that

Mg,2 = D(p2, wo +P§1?172 + u(p2, o +P§2@2))7
My,o = D(p3,Wo + Pz, W2 + p(p3, Wo + Pz, W2)), (14)
M11122 = D(l - M)(pwlpxzwo +p£1p52w2)'

Substituting (14) into (13) and taking into account (10), get the averaged vibrations equation of considered
plate

Aip} wo + 142172117:02@0;&- A3p§1pi~2@o+ (15)
+A4p22pw1 wo + A5pi2w0 - )\aveer = 0.

Herel per = % [ Ao(&1, &2)d€1dEs and coefficientsdy, Ay, A3, A4, A5 are defined by formulas

1
A=y //<D + 6pe, Dpe, My + Mipg, D + 6Dp;, Mi + 2pe, Mipe, D+

+ 2Mipe, Dpe, it + My ppg, D + 2Dpg, My + DM pg, pn)dé €2,

1
Ag :g //(2p§2M2p£2D + 2M2p52Dpf2:u + MgpéD,LL + 2Dp§2M2+

+ DMsp, ju + 4pe, Dpe, My — 2p, Dpe, juMy + 4pg, Dpg, My +
+ 6pg, Dpg, Ma — 2M1pe, Dpe, pu + 2Mipg,pe, D — 2Mipe, pe, Du+
+ 8Dpe, pe, M1 — 2M1 Dpe,pe, ju + Mapz, D + 6Dpg, My)dé1dés,

1
As =3 //(2D + 6pe, Dpe, My + 2p¢,pe, M3 — 2pgi, Dpe, 1 M3+

+2M1pZ, D + pZ, Map + 6Dpg, My + 2Dpe, M3 + Dpe, Ms+
+ 4pe, Dpe, Mo — 2pe, Mape, j1 + 2pe, Dpe, My + 4pe, Dpe, Mo+
+ 6pg, Dpe, M3 — 2pe, Dpe, pMo + 2pe, Dpe, pM1+

+ 2pe, pSa DMy — 2Dpe, popuMa + 4pe, Dpe, Mo+

+ 8Dpe, pe, M2 + MspZ, D + pi, DMy + 2Dpg My+

+ 6Dpg, M3 + DM1pZ, ju + 2Mape, pe, D)dé1dés,

1
Ay :§ //(21751 Mospe, D + 2Mope, Dpe, 1+ M2p§1 Dp+ 2Dp§1 Mo+

+ DMyp7, j1+ 4pe, Dpe, My — 2pe, Dpe, 1M + 4pe, Dpe, M+
+ 6p€2Dp52M2 - 2M1p£1 DP&zM + 2M1p§1p52D - 2M3p51p£2D/,H—
+ 8Dpe,pe, M3 — 2M3 Dpe, pe, 1 + MapZ, D + 6 Dpg, Ma)déy dés,

1
As =5 / / (D + 6pg, Dpe, M3 + MspZ, D + 6Dpz, M3 + 2pe, Mspe, D+
+ 2Mspe, Dpe, ju + Msppi, D + 2Dpg, Mz + D MspZ, p1)dé1 6.
Continuing this line of reasoning, we see that coefficiefits A, A3, A4, As depend onVly, My, Mjs. This

completes the proof.

The vibration frequencies of the heterogeneous plate caasiéy calculated by formulas (16)—(17).

)\aver 0151 + P252
aver — o 1 aver = T & . o 16
“ 27Tpaverh P Sl + 52 ( )
Aaver = 7T4(A1k4/a4 + A3k2/(12 : lz/b2 + A5l4/b4)7 (17)
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wherek and! are the numbers of waves along directiansand z», respectively;S;, S, are the areas of the
matrix and the inclusion within one of the cells, asid= S; + S. In order to get (16)—(17) we assumed the axial
symmetry of a cell concerning axes parallglandz, and also a condition of freely supported edges of the plate.
In our case for the square plate the boundary conditions eaxpressed as

Ujo =0, MI12 =0 for z;= 0, =z = L, (18)
Wy = 0, ]\/[wQQ =0 for o= 0, zo=1,

where

My,2 = Ruips Wo + Riopl, Wo, My,2 = Riaps Wo + Roopl, o, (19)

R11, R12, Roo are the constant coefficients aRg; = Ro».

On the basis of the above-stated theory the authors camee tooticlusion that in order to find the averaged
equation coefficientsl;, As, A3, A4, A5 Of the equation (15), the solution can be represented as

W= 1177 + 01221272 + a3 + 2V (£, &),

where VU is a periodic function that can be submitted as the slum= a1, V; + a12¥s + ag V3. Functions
¥y, Wy, W3 do not depend on;;. Certainly, the solution does not satisfy our boundary dames, but this fact
does not affect coefficientd;, A,, As, A4, As. The valuest (&1, &2), D, p, w are periodic functions that can be
expressed in double Fourier series:

k.l k,l
WkL(E), &) = . Z Wee cos iy cos j§a + . Z Wi cos iy sin jEo+
1=0,7=0 1=0,j=1
k.l k.l
+ > WiFsini&icosjSe+ Y. Yirsini&isingé, Y — D —op.
i=1,;=0 i=1,=1

Instead of infinite Fourier series fdr(¢;,&2), D, u let's consider the truncated Fourier series expressiothfor
equation of vibrations and also equate the coefficientsragsponding products of cosinus and sinus to zero. As a
result we obtain a linear system of equations concerdiffg Vg7, Wjs, ¥77. To get the coefficients of the
averaged vibrations equation we substitute

w = wo + 2 (M1p2 wo + Mapa, paywo + Msp2,wp)

into the equations (1)—(3) using an asymptotic homogemnatheme and consider the expression-at0. It
is worth noting that forwg = a1127 + 122122 + 2223, Where2ay; = p2 wo, Q12 = P, Pay Wo, 2022 = P2, Wo,
we obtainM; = 10y, My = Uy, My = 105,

Let us remark that in the paper (Naumova and Ivanov, 2007)ie@ to solve the problem taking into account the
boundary conditions on the border of a matrix and a inclugbon it has not resulted in expected results. In the
current paper we apply such solution at which saltus of fanstsmooths out their expansion in Fourier series.
The delta—function having a saltus between a matrix and lasion, does not allow corresponding integrals to
become zero.

4 Numerical results

The numerical calculations were performed for the squaate@uch that the lengtli, is 1 m, the thicknesd,

is 0.01 m and the radius of a inclusian,is 0.05 m. Inclusions of the plate arrange in regular irglrand their
quantity is 5 along the length and 5 along the width in the &x&tmple. We assume the axial symmetry of a cell
concerning axes parallel, andxzs, and also a condition of freely supported edges of a plate (IBe material
properties (Young’s modulus, the mass density, Poissatits ¥ for the considered plates are shown in Table 1.

Material | Young’s modulus,| Mass density, Poisson’s ratio,
E, 10" N/m? p, kg/m? v
Steel 1.93 8030 0.29
Titan 1.02 4850 0.30
Aluminium 0.73 2720 0.33

Table 1. Material properties.
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To evaluate the lowest vibrations frequencies for the repiiar composite plate we use formulae (16) — (17)
obtained by an Asymptotic Homogenization Scheme and dfsrwe compare asymptotic and finite element
method (FEM). The values of the fundamental frequency femtiultifibrous plate are shown in Table 2.

Matrix | Inclusion | Asymptotic formulas| FEM results
(16) —(17)
Steel hole 42.260 42.639
Titan hole 39.752 39.909
Steel Titan 45.677 45.796
Steel | Aluminium 46.172 46.207
Titan Steel 43.343 43.760

Table 2. The values of fundamental frequencies, Hz.

The results of the calculations of the fundamental frequesatues obtained by the asymptotic formulas (16)—
(17) and by means of finite element method (FEM) are listethénthird and forth columns, respectively. About

11000 four-node shell elements are used in FEM calculatibime computation time of the fundamental frequency
values by FEM is a few minutes. The calculations by meansefifymptotic formulas execute in three stages.
The relative discrepancy in asymptotic and numerical tessiless than%.

Further we investigate the influence of the quantity of thausions on the vibrations frequency. The values of
the fundamental frequency for the steel plate with alunmminclusions are shown in Table 3. The quantity of

aluminium inclusions{ along the length and: along the width) is listed in the first column, the other plate
parameters have the same values as in the previous examples.

n x m | Asymptotic formulas| FEM results
(16) —(17)

3x3 46.278 46.423

5x5 46.172 46.207

7x7 45.610 46.017

Table 3. The values of fundamental frequencies for the gtag with aluminium inclusions, Hz.

Finally we show (see Table 4) the influence of the quantitjheftioles on the vibrations frequency. The quantity
of the apertures{along the length anch along the width) is listed in the first column, other plategraeters have
the same values as in the previous examples.

n x m | Asymptotic formulas| FEM results
(16) —(17)

3x3 44,702 44.704

5x5 42.620 42.639

7Tx7 40.341 40.367

Table 4. The values of fundamental frequencies for the ptag with apertures, Hz.

According to the results presented in Table 3 and Table 4 welade that the existence of inclusions and apertures
in the plate reduces the values of the vibration frequen@es for example, the continuous steel plate, the sizes
mentioned above, has the fundamental frequency 48.894ndzthe plate that is weakened by inclusions from
aluminium (5x 5) —46.172 Hz. Increase of inclusions quantity does noténfte essentially on vibration modes.
The vibration mode plotted by FEM is shown in Figure 2 (topw{eft) and side view (right)).

5 Conclusions

The multifibrous plate have been considered as a thin pldateaveraged parameters. The approximation asymp-
totic formulas for the fundamental frequencies values atained. In contrast to the previously studied problem
(see Naumova and Ivanov (2007)), the problem becomes mifiitli However, the new approach provides ob-
taining more exact and realistic solutions by means of thaxotic Homogenization Scheme. The comparison
of asymptotic and FEM results shows the reliability of thegamted formulae. It is shown that the replacement of
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Figure 2: The first vibration mode for a plate with apertufes (5).

an inhomogeneous rectangular plate by the optimal avethgeplate with smaller mass can keep the fundamental
frequency of a structure.
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