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Vibrations of an Inhomogeneous Rectangular Plate

N. V. Naumova, D. N. Ivanov

Low-frequency vibrations of a thin multifibrous plate are analysed. Asymptotic homogenization and finite element
methods are used to get the vibration frequencies. Approximate formulas for the lowest frequencies of thin inho-
mogeneous rectangular plate are found. The comparison of numerical and asymptotic results is performed.

1 Introduction

Lately many industries including nano-technologies have been more and more interested in composite inhomoge-
neous materials construction. These materials, in comparison with pure homogeneous materials, have advanced
mechanical properties. A fundamental vibration frequencyis an important characteristic of thin-walled structure.
A simple way to increase the fundamental frequency and avoidresonance is increasing thickness of the structure.
However in this case the mass of the structure also increases. An optimal design of thin-walled structure provides
raising its the frequency without increase of its mass (see Bauer (1993)). The optimal design of an inhomogeneous
plate is fairly difficulty problem. The method based on an asymptotic approach provides the construction of simple
algorithms for the calculation of the optimal parameters (see Naumova and Ivanov (2007)).

2 Basic equations

Consider a square plate with lengthL and thicknessh. The thickness of plate is small in comparison with its sizes
in the plan

(
h
L

< 0.1
)
. Consider a cartesian coordinate systemOX1X2X3 on the middle surface of the plate, as

shown in Figure 1. For constructing mathematical model of the plate we suppose two basic hypotheses. The first
hypothesis (Kirchhoff) assumes that a normal to middle surface of the plate remains a normal to it after defor-
mation. The second hypothesis asserts that the stress statein plate’s points is biaxial, i.e. normal and tangential
components of the pressure in the platforms perpendicular to axesz can be neglected.
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Figure 1: Part of inhomogeneous plate.

Following A. (1970), R. (1991), the free lateral vibrationsof plate element can be expressed by means of the
equilibrium equation on axisz

∂Qx1

∂x1

+
∂Qx2

∂x2

− λw = 0, (1)
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and the elasticity relations

∂Mx1

∂x1

+
∂Mx1x2

∂x2

+ Qx1
= 0,

∂Mx1x2

∂x1

+
∂Mx2

∂x2

+ Qx2
= 0. (2)

Mx1
= D0

(
∂2w

∂x1
2

+ µ
∂2w

∂x2
2

)
, Mx2

= D0

(
∂2w

∂x2
2

+ µ
∂2w

∂x1
2

)
, (3)

Mx1x2
= D0(1 − µ)

∂2w

∂x1∂x2

, D0 =
Eh3

12(1 − µ2)
, λ =

ρω2L4h

D0

.

In these equations,w is the transversal deflection,Qx1
, Qx2

are the shear stress-resultant,Mx1
, Mx2

, Mx1x2
are

the stress-couples,E is Young’s modulus,µ is Poisson’s ratio,ρ is the mass density,ω is the vibration frequency.

3 Investigation of plate vibration frequencies and modes.

The solution of system (1) — (3) can be expressed as

Qx1
= Q̂x1

(x1, x2) · sin ωt,

Qx2
= Q̂x2

(x1, x2) · sin ωt,

w = ŵ(x1, x2) · sin ωt.

The dimensionless variables̃x, ỹ, w̃, Q̃x1
, Q̃x2

, M̃x1
, M̃x1x2

, M̃x2
are given by

w(x1, x2) = hw̃ (Lx̃1, Lx̃2) , Qx1
=

D0h

L3
Q̃x1

, Qx2
=

D0h

L3
Q̃x2

,

Mx1
=

D0h

L2
M̃x1

, Mx2
=

D0h

L2
M̃x2

, Mx1x2
=

D0h

L2
M̃x1x2

.

D0 = Dd

The coefficientsD0 andd have the dimension N· m2. It is assumed thatd = 1N · m2, andD is a dimensionless
function. Note also that the symbol” ∼ ” introduced for dimensionless variables is omitted and is used for other
purposes.

Further we use the multiple scales method (Argatov, 2004; Bahvalov, 1984). Combined with the variablesx1, x2

we consider so-calledfastvariablesξ1, ξ2

(
ξ1 = x1

ε
, ξ2 = x2

ε

)
. Thus an elementary cell, a parallelepiped with the

sizes(0, ε) × (0, ε) × (0, h) transforms into a parallelepiped(0, 1) × (0, 1) × (0, h) in variablesξ1, ξ2, and each
of the unknown functions, dependent on the variablesx1, x2, becomes formally dependent also on the variables
ξ1, ξ2:

f(x1, x2) = f̃(x1, x2, ξ1, ξ2).

Asymptotic expansions for the functions̃w andλ have the form

w̃ = w̃0(x1, x2, ξ1, ξ2) + εw̃1(x1, x2, ξ1, ξ2)+
+ ε2w̃2(x1, x2, ξ1, ξ2) + ε3w̃3(x1, x2, ξ1, ξ2) + . . .
λ = λ0(ξ1, ξ2) + ελ1(ξ1, ξ2) + . . . .

(4)

Taking into account (4) and the composite function differentiation rule

df̃

dx
1

=
∂f̃

∂x1

+
1

ε

∂f̃

∂ξ1

,
d2f̃

dx2

1

=

(
∂

∂x1

+
1

ε

∂

∂ξ1

)2

f̃ ,

we obtain the following expressions for the stress-couplesand the shear stress-resultant

Mx1
= ε−2(Mx10

+ εMx11
+ ε2Mx12

+ · · · + εkMx1k + . . . ),
Mx1x2

= ε−2(Mx1x20
+ εMx1x21

+ ε2Mx1x22
+ · · · + εkMx1x2k + . . . ),

Mx2
= ε−2(Mx20

+ εMx21
+ ε2Mx22

+ · · · + εkMx2k + . . . ),
Qx1

= ε−3(Qx10
+ εQx11

+ ε2Qx12
+ · · · + εkQx1k + . . . ),

Qx2
= ε−3(Qx20

+ εQx21
+ ε2Qx22

+ · · · + εkQx2k + . . . ), k = 1, 2, 3, . . . .

(5)
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Substituting (5) into (1)—(3) and equating the coefficients at consecutive degrees of the parameterε to zero we
come to the following recurrent equations chain (6)—(8)

∂Qx10

∂ξ1
+

∂Qx20

∂ξ2
= 0

∂Mx10

∂ξ1
+

∂Mx1x20

∂ξ2
+ Qx10 = 0

∂Mx1x20

∂ξ1
+

∂Mx20

∂ξ2
+ Qx20 = 0

(6)

for k = 1, 2, 3 :
∂Qx1k

∂ξ1
+

∂Qx2k

∂ξ2
+

∂Qx1k−1

∂x1

+
∂Qx2k−1

∂x2

= 0

∂Mx1k

∂ξ1
+

∂Mx1x2k

∂ξ2
+

∂Mx1k−1

∂x1

+
∂Mx1x2k−1

∂x2

+ Qx1k = 0

∂Mx1x2k

∂ξ1
+

∂Mx2k

∂ξ2
+

∂Mx1x2k−1

∂x1

+
∂Mx2k−1

∂x2

+ Qx2k = 0

(7)

for k = 4 :
∂Qx1k

∂ξ1
+

∂Qx2k

∂ξ2
+

∂Qx1k−1

∂x1

+
∂Qx2k−1

∂x2

− λ0w̃0 = 0

∂Mx1k

∂ξ1
+

∂Mx1x2k

∂ξ2
+

∂Mx1k−1

∂x1

+
∂Mx1x2k−1

∂x2

+ Qx1k = 0

∂Mx1x2k

∂ξ1
+

∂Mx2k

∂ξ2
+

∂Mx1x2k−1

∂x1

+
∂Mx2k−1

∂x2

+ Qx2k = 0.

(8)

In this notations the equations (6)—(8) are five systems, and every system consists of three differential equations.
For convenience of further mathematical transformations and numerical calculations, the system (6)—(8) can be
written concerning transversal deflection as (9)

L0w̃0 = 0,
L1w̃0 + L0w̃1 = 0,
L2w̃0 + L1w̃1 + L0w̃2 = 0,
L3w̃0 + L2w̃1 + L1w̃2 + L0w̃3 = 0,
(L4 − λ0) w̃0 + L3w̃1 + L2w̃2 + L1w̃3 + L0w̃4 = 0.

(9)

We introduce the following notations for the partial derivatives

px1
=

∂

∂x1

, px2
=

∂

∂x2

, pξ1
=

∂

∂ξ1

, pξ2
=

∂

∂ξ2

.

In the system (9) differential operatorsL0, L1, L2, L3, L4 are given by

L0 =pξ1
(pξ1

(D(p2

ξ1
+ µp2

ξ2
)) + pξ2

(D(1 − µ)pξ1
pξ2

))+

+ pξ2
(pξ2

(D(p2

ξ2
+ µp2

ξ1
)) + pξ1

(D(1 − µ)pξ1
pξ2

)),

L1 =L11(pξ1
, pξ2

)px1
+ L11(pξ2

, pξ1
)px2

,

L2 =L21(pξ1
, pξ2

)p2

x1
+ L22(pξ1

, pξ2
)px1

px2
+ L21(pξ2

, pξ1
)p2

x2
,

L3 =L31(pξ1
, pξ2

)p3

x1
+ L32(pξ1

, pξ2
)p2

x1
px2

+ L32(pξ2
, pξ1

)p2

x2
px1

+

+ L31(pξ2
, pξ1

)p3

x2
,

L4 =L41(pξ1
, pξ2

)p4

x1
+ L42(pξ1

, pξ2
)p3

x1
px2

+ L43(pξ2
, pξ1

)p2

x1
p2

x2
+

+ L42(pξ2
, pξ1

)px1
p3

x2
+ L41(pξ2

, pξ1
)p4

x2
,
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where the nonzero operators are equal

L11(pξ1
, pξ2

) = 2p2

ξ2
(2D + 2(Dµ))pξ1

+ pξ1
pξ2

(−2D + Dµ)pξ2
+

+ 6pξ1
Dp2

ξ1
+ 4pξ1

Dpξ1
pξ2

+ 2pξ1
Dp2

ξ2
+

+ 4p3

ξ1
Dp3

ξ1
+ 4pξ1

p2

ξ2
Dpξ1

p2

ξ2
,

L21(pξ1
, pξ2

) = p2

ξ2
((Dµ) + p2

ξ1
D) + 6pξ1

Dpξ1
+ 2pξ2

Dpξ2
+

+ 6Dp2

ξ1
+ 2Dp2

ξ2
,

L22(pξ1
, pξ2

) = 2pξ1
pξ2

((Dµ) − D) + 4pξ2
Dpξ1

+

+ 4pξ1
Dpξ2

+ 8Dpξ1
pξ2

,

L31(pξ1
, pξ2

) = 2pξ1
D + 4Dpξ1

, L32 = 2pξ2
D + 4Dpξ2

,

L41(pξ1
, pξ2

) = D, L43 = 2D.

Assumingx1, x2 andξ1, ξ2 as independent variables the system (9) can be considered asa recurrent chain of
the differential equations of variablesξ1 andξ2 with unknown functionwi(x1, x2, ξ1, ξ2) and parametersx1, x2.
The unknown functionsw0, w1, w2, w3, according to Bahvalov (1984) can be expressed as

w̃0 = v0(x1, x2), w̃1 = N1px1
v0(x1, x2) + N2px2

v0(x1, x2),

w̃2 = M1p
2

x1
v0(x1, x2) + M2px1

px2
v0(x1, x2) + M3p

2

x2
v0(x1, x2),

w̃3 = F1p
3

x1
v0 + F2p

2

x1
px2

v0 + F3px1
p2

x2
v0 + F4p

3

x2
v0,

(10)

whereN1, N2, M1, M2, M3, F1, F2, F3, F4 are functions depending only on variablesξ1 andξ2. Substituting
(10) into (9) we get the system of differential equations of variablesξ1, ξ2 concerning unknown functionsN1, N2,
M1, M2, M3, F1, F2, F3, F4:

L0N1 = 0, L0N2 = 0,
L0M1 + L11(pξ1

, pξ2
)N1 + L21(pξ1

, pξ2
)1 = 0,

L0M2 + L12(pξ1
, pξ2

)N2 + L12(pξ2
, pξ1

)N1 + L22(pξ1
, pξ2

)1 = 0,
L0M3 + L11(pξ2

, pξ1
)N2 + L21(pξ2

, pξ1
)1 = 0,

L0F1 + L11(pξ1
, pξ2

)M1 + L21(pξ1
, pξ2

)N1 + L31(pξ1
, pξ2

)1 = 0,
L0F2 + L11(pξ2

, pξ1
)M1 + L11(pξ1

, pξ2
)M2+

+L21(pξ1
, pξ2

)N2 + L22(pξ1
, pξ2

)N1 + L32(pξ1
, pξ2

)1 = 0,
L0F3 + L11(pξ1

, pξ2
)M2 + L11(pξ1

, pξ2
)M3+

+L21(pξ2
, pξ1

)N1 + L22(pξ1
, pξ2

)N2 + L32(pξ2
, pξ1

)1 = 0,
L0F4 + L11(pξ2

, pξ1
)M3 + L21(pξ2

, pξ1
)N2 + L31(pξ2

, pξ1
)1 = 0.

(11)

Solutions of two first equations in system (11) satisfying the condition of periodicity have the form

N1 = C1, N2 = C2, where C1, C2 = const. (12)

In Bahvalov and P. (1984) periodicity of the solution is studied for the elliptical equation of second order. In our
case it is not hard to prove this fact of the solution periodicity for each equation of system (9).
Following the Asymptotic Homogenization Scheme to obtain the coefficients of the averaged vibrations equation
(15) it is enough to find only functionsM1, M2, M3. Now we must only prove this. For this aim we consider the
first equation of (8)

pξ1
Qx14

+ pξ2
Qx24

+ px1
Qx13

+ px2
Qx23

− λ0w̃0 = 0

and integrate it on a cell, taking periodicity conditions into account
∫∫

s

(px1
Qx13

+ px2
Qx23

− λ0w̃0)dξ1dξ2 = 0.

Moreover, we changeQx13
andQx23

to−(px1
Mx12

+ px2
Mx1x22

) and−(px2
Mx22

+ px1
Mx1x22

), respectively,
using corresponding equations of (7) fork = 3

∫∫
s

((px1
(px1

Mx12
+ px2

Mx1x22
)+

+px2
(px2

Mx22
+ px1

Mx1x22
) + λ0w̃0)dξ1dξ2 = 0.

(13)

Recall thatMx12
, Mx22

, Mx1x22
are the third terms of the expansion (5) for stress-couples.
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The decomposition ofMx12
, Mx22

, Mx1x22
combining with (4) and (12) yields that

Mx12
= D(p2

x1
w̃0 + p2

ξ1
w̃2 + µ(p2

x2
w̃0 + p2

ξ2
w̃2)),

Mx22
= D(p2

x2
w̃0 + p2

ξ2
w̃2 + µ(p2

x1
w̃0 + p2

ξ1
w̃2)),

Mx1x22
= D(1 − µ)(px1

px2
w̃0 + pξ1

pξ2
w̃2).

(14)

Substituting (14) into (13) and taking into account (10), weget the averaged vibrations equation of considered
plate

A1p
4

x1
w̃0 + A2p

3

x1
px2

w̃0 + A3p
2

x1
p2

x2
w̃0+

+A4p
3

x2
px1

w̃0 + A5p
4

x2
w̃0 − λaverw̃0 = 0.

(15)

Hereλaver = 1

S

∫∫
s

λ0(ξ1, ξ2)dξ1dξ2 and coefficientsA1, A2, A3, A4, A5 are defined by formulas

A1 =
1

S

∫∫

s

(D + 6pξ1
Dpξ1

M1 + M1p
2

ξ1
D + 6Dp2

ξ1
M1 + 2pξ2

M1pξ2
D+

+ 2M1pξ2
Dpξ2

µ + M1µp2

ξ2
D + 2Dp2

ξ2
M1 + DM1p

2

ξ2
µ)dξ1ξ2,

A2 =
1

S

∫∫

s

(2pξ2
M2pξ2

D + 2M2pξ2
Dpξ2

µ + M2p
2

ξ2
Dµ + 2Dp2

ξ2
M2+

+ DM2p
2

ξ2
µ + 4pξ1

Dpξ2
M1 − 2pξ1

Dpξ2
µM1 + 4pξ2

Dpξ1
M1+

+ 6pξ1
Dpξ1

M2 − 2M1pξ2
Dpξ1

µ + 2M1pξ2
pξ1

D − 2M1pξ2
pξ1

Dµ+

+ 8Dpξ1
pξ2

M1 − 2M1Dpξ2
pξ1

µ + M2p
2

ξ1
D + 6Dp2

ξ1
M2)dξ1dξ2,

A3 =
1

S

∫∫

s

(2D + 6pξ2
Dpξ2

M1 + 2pξ2
pξ2

M3 − 2pxi2Dpξ2
µM3+

+ 2M1p
2

ξ2
D + p2

ξ2
M3µ + 6Dp2

ξ2
M1 + 2Dpξ2

M3 + Dpξ2
M3+

+ 4pξ1
Dpξ2

M2 − 2pξ1
M2pξ2

µ + 2pξ1
Dpξ1

M1 + 4pξ2
Dpξ1

M2+

+ 6pξ1
Dpξ1

M3 − 2pξ2
Dpξ1

µM2 + 2pξ1
Dpξ1

µM1+

+ 2pξ1
pξ2DM2 − 2Dpξ1

pξ2µM2 + 4pξ1
Dpξ2

M2+

+ 8Dpξ1
pξ2

M2 + M3p
2

ξ1
D + p2

ξ1
DµM1 + 2Dp2

ξ1
M1+

+ 6Dp2

ξ1
M3 + DM1p

2

ξ1
µ + 2M2pξ1

pξ2
D)dξ1dξ2,

A4 =
1

S

∫∫

s

(2pξ1
M2pξ1

D + 2M2pξ1
Dpξ1

µ + M2p
2

ξ1
Dµ + 2Dp2

ξ1
M2+

+ DM2p
2

ξ1
µ + 4pξ2

Dpξ1
M1 − 2pξ2

Dpξ1
µM3 + 4pξ1

Dpξ2
M3+

+ 6pξ2
Dpξ2

M2 − 2M1pξ1
Dpξ2

µ + 2M1pξ1
pξ2

D − 2M3pξ1
pξ2

Dµ+

+ 8Dpξ2
pξ2

M3 − 2M3Dpξ2
pξ1

µ + M2p
2

ξ2
D + 6Dp2

ξ2
M2)dξ1dξ2,

A5 =
1

S

∫∫

s

(D + 6pξ2
Dpξ2

M3 + M3p
2

ξ2
D + 6Dp2

ξ2
M3 + 2pξ1

M3pξ2
D+

+ 2M3pξ1
Dpξ1

µ + M3µp2

ξ1
D + 2Dp2

ξ1
M3 + DM3p

2

ξ1
µ)dξ1ξ2.

Continuing this line of reasoning, we see that coefficientsA1, A2, A3, A4, A5 depend onM1, M2, M3. This
completes the proof.

The vibration frequencies of the heterogeneous plate can beeasily calculated by formulas (16)—(17).

ωaver =

√
λaver

2πρaverh
, ρaver =

ρ1S1 + ρ2S2

S1 + S2

, (16)

λaver = π4(A1k
4/a4 + A3k

2/a2
· l2/b2 + A5l

4/b4), (17)
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wherek and l are the numbers of waves along directionsx1 andx2, respectively;S1, S2 are the areas of the
matrix and the inclusion within one of the cells, andS = S1 +S2. In order to get (16)—(17) we assumed the axial
symmetry of a cell concerning axes parallelx1 andx2 and also a condition of freely supported edges of the plate.
In our case for the square plate the boundary conditions can be expressed as

w̃0 = 0, M̃x12
= 0 for x1 = 0, x1 = L,

w̃0 = 0, M̃x22
= 0 for x2 = 0, x2 = L,

(18)

where
M̃x12

= R11p
2

x1
w̃0 + R12p

2

x2
w̃0, M̃x22

= R12p
2

x1
w̃0 + R22p

2

x2
w̃0, (19)

R11, R12, R22 are the constant coefficients andR11 = R22.

On the basis of the above-stated theory the authors came to the conclusion that in order to find the averaged
equation coefficientsA1, A2, A3, A4, A5 of the equation (15), the solution can be represented as

w = α11x
2

1
+ α12x1x2 + α22x

2

2
+ ε2Ψ(ξ1, ξ2),

whereΨ is a periodic function that can be submitted as the sumΨ = α11Ψ1 + α12Ψ2 + α22Ψ3. Functions
Ψ1,Ψ2,Ψ3 do not depend onαij . Certainly, the solution does not satisfy our boundary conditions, but this fact
does not affect coefficientsA1, A2, A3, A4, A5. The valuesΨ(ξ1, ξ2), D, µ, w are periodic functions that can be
expressed in double Fourier series:

Ψkl(ξ1, ξ2) =
k,l∑

i=0,j=0

Ψcc
ij cos iξ1 cos jξ2 +

k,l∑
i=0,j=1

Ψcs
ij cos iξ1 sin jξ2+

+
k,l∑

i=1,j=0

Ψsc
ij sin iξ1 cos jξ2 +

k,l∑
i=1,j=1

Ψss
ij sin iξ1 sin jξ2, Ψ → D → µ.

Instead of infinite Fourier series forΨ(ξ1, ξ2), D, µ let’s consider the truncated Fourier series expression forthe
equation of vibrations and also equate the coefficients at corresponding products of cosinus and sinus to zero. As a
result we obtain a linear system of equations concerningΨcc

ij , Ψcs
ij , Ψsc

ij , Ψss
ij . To get the coefficients of the

averaged vibrations equation we substitute

w = w0 + ε2
(
M1p

2

x1
w0 + M2px1

px2
w0 + M3p

2

x2
w0

)

into the equations (1)—(3) using an asymptotic homogenization scheme and consider the expression atε = 0. It
is worth noting that forw0 = α11x

2

1
+α12x1x2 +α22x

2

2
, where2α11 = p2

x1
w0, α12 = px1

px2
w0, 2α22 = p2

x2
w0,

we obtainM1 = 1

2
Ψ1, M2 = Ψ2,M3 = 1

2
Ψ3.

Let us remark that in the paper (Naumova and Ivanov, 2007) we tried to solve the problem taking into account the
boundary conditions on the border of a matrix and a inclusion, but it has not resulted in expected results. In the
current paper we apply such solution at which saltus of functions smooths out their expansion in Fourier series.
The delta–function having a saltus between a matrix and a inclusion, does not allow corresponding integrals to
become zero.

4 Numerical results

The numerical calculations were performed for the square plate such that the length,L, is 1 m, the thickness,h,
is 0.01 m and the radius of a inclusion,r, is 0.05 m. Inclusions of the plate arrange in regular intervals and their
quantity is 5 along the length and 5 along the width in the firstexample. We assume the axial symmetry of a cell
concerning axes parallelx1 andx2, and also a condition of freely supported edges of a plate (18). The material
properties (Young’s modulus, the mass density, Poisson’s ratio ) for the considered plates are shown in Table 1.

Material Young’s modulus, Mass density, Poisson’s ratio,
E, 1011 N/m2 ρ, kg/m3 ν

Steel 1.93 8030 0.29
Titan 1.02 4850 0.30

Aluminium 0.73 2720 0.33

Table 1. Material properties.
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To evaluate the lowest vibrations frequencies for the rectangular composite plate we use formulae (16) — (17)
obtained by an Asymptotic Homogenization Scheme and after that we compare asymptotic and finite element
method (FEM). The values of the fundamental frequency for the multifibrous plate are shown in Table 2.

Matrix Inclusion Asymptotic formulas FEM results
(16) — (17)

Steel hole 42.260 42.639
Titan hole 39.752 39.909
Steel Titan 45.677 45.796
Steel Aluminium 46.172 46.207
Titan Steel 43.343 43.760

Table 2. The values of fundamental frequencies, Hz.

The results of the calculations of the fundamental frequency values obtained by the asymptotic formulas (16)—
(17) and by means of finite element method (FEM) are listed in the third and forth columns, respectively. About
11000 four-node shell elements are used in FEM calculations. The computation time of the fundamental frequency
values by FEM is a few minutes. The calculations by means of the asymptotic formulas execute in three stages.
The relative discrepancy in asymptotic and numerical results is less than 5%.
Further we investigate the influence of the quantity of the inclusions on the vibrations frequency. The values of
the fundamental frequency for the steel plate with aluminium inclusions are shown in Table 3. The quantity of
aluminium inclusions (n along the length andm along the width) is listed in the first column, the other plate
parameters have the same values as in the previous examples.

n× m Asymptotic formulas FEM results
(16) — (17)

3 × 3 46.278 46.423
5 × 5 46.172 46.207
7 × 7 45.610 46.017

Table 3. The values of fundamental frequencies for the steelplate with aluminium inclusions, Hz.

Finally we show (see Table 4) the influence of the quantity of the holes on the vibrations frequency. The quantity
of the apertures (n along the length andm along the width) is listed in the first column, other plate parameters have
the same values as in the previous examples.

n× m Asymptotic formulas FEM results
(16) — (17)

3 × 3 44.702 44.704
5 × 5 42.620 42.639
7 × 7 40.341 40.367

Table 4. The values of fundamental frequencies for the steelplate with apertures, Hz.

According to the results presented in Table 3 and Table 4 we conclude that the existence of inclusions and apertures
in the plate reduces the values of the vibration frequencies. So, for example, the continuous steel plate, the sizes
mentioned above, has the fundamental frequency 48.894 Hz, and the plate that is weakened by inclusions from
aluminium (5× 5) — 46.172 Hz. Increase of inclusions quantity does not influence essentially on vibration modes.
The vibration mode plotted by FEM is shown in Figure 2 (top view (left) and side view (right)).

5 Conclusions

The multifibrous plate have been considered as a thin plate with averaged parameters. The approximation asymp-
totic formulas for the fundamental frequencies values are obtained. In contrast to the previously studied problem
(see Naumova and Ivanov (2007)), the problem becomes more difficult. However, the new approach provides ob-
taining more exact and realistic solutions by means of the Asymptotic Homogenization Scheme. The comparison
of asymptotic and FEM results shows the reliability of the presented formulae. It is shown that the replacement of
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Figure 2: The first vibration mode for a plate with apertures (5× 5).

an inhomogeneous rectangular plate by the optimal averagedthin plate with smaller mass can keep the fundamental
frequency of a structure.

Acknowledgment

This work supported by RFBR, grant 07-01-00250.

References

A., A. S.: Theory of Anisotropic Plates. Technomic, Westport (1970).

Bahvalov, N. S.; P., P. G.:Homogenization in periodic continuous mechanics. Nauka, Moscow (1984).

Naumova, N. V.; Ivanov, D. N.: Vibrations of rectangular plate reinforced by fibres.Computers Methods in Con-
tinuous Mechanics, 1, (2007), 118 – 132.

R., V. J.:The Behavior of Thin Walled Structures: Beams, Plates, and Shells. Kluwer, Dordrecht (1991).

Address:Dr. Natalia Naumova, Civil Engineer Denis Ivanov, Department of Theoretical and Applied Mechanics,
St. Petersburg State University, 28 Universitetskii pr., St. Petersburg, 198504, Russia
email:nat n75@mail.ru

32


