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Asymptotic Analysis of Thin Interface in Composite Materials 
with Coated Boundary 
 
I.V. Andrianov, G.A. Starushenko, D. Weichert  
 
 
This paper considers the problem of thin interface in a fibre reinforced composite material. Using the singular 
asymptotic procedure, the authors obtain simplified relations known as spring model. Phenomenon of edge effect 
is also studied using the Papkovich-Fadle approach. The singularities of the limit problem are analysed. 
 
 
1 Introduction 
 
Thin coatings at the interfaces of the constituents of a composite material can make a substantial difference in 
the functional characteristics and reliability of composites. The optimum use of stiffness and strength properties 
of composites directly depends on the effectiveness of the transfer of load from the inclusions to the matrix, 
proceeding through the coatings. Furthermore, in the heterogeneous materials the greatest concentrations of local 
stresses occur, as a rule, on the interfaces between the constituents and, thus, the strength of coatings is one of 
the key factors, determining the load bearing capacity of composite as a whole. The fracture of coatings leads to 
the development of dislocations and cracks, which in the majority of the cases entails the rapid destruction of 
entire material. 
 
The problems of analysis of the composites with the coatings were examined by many authors, see, e.g., 
Achenbach and Zhu, 1990; Chen and Liu, 2001; Hashin, 2002; Jasiuk and Kouider, 1993; Lagache et al., 1994; 
Lucas da Silva et al., 2008 a, b; Milton, 2002; Van Fo Fy, 1971. The analysis of the limiting cases of soft and 
rigid coatings is given by Benveniste and Miloh, 2001. 
 
It should be noted, that interaction between the neighbouring fibres can cause a significant variation of physical 
fields in the composite on the microlevel. Increase in the rigidity of fibers and their volume fraction (i.e., the 
decrease of distances between the neighbouring fibres) leads to an increase in the local stresses on the interface 
of constituents. In this case the application of many known analysis methods can be limited by the difficulties of 
computational nature. Thus, analytical approaches based on representing stress fields in the form of expansions 
in various infinite series, can experience a deficiency in the convergence. Numerical methods require an increase 
in the mesh density and, accordingly, a significant increase in computing time (Mishuris and Öchsner, 2005). 
Mentioned difficulties justify the introduction of a model of the interface which simplifies the computation of the 
solution and furnishes a good approximation. The interface between fibre and matrix can play an important role 
in determining the properties of the composite material. Usually, stresses are continuous across the interface, 
while the displacements may be continuous or discontinuous. In the former case the interface is called “strong”, 
whereas in the latter case it is called “weak”. We deal with a weak interface described by the spring-layer model, 
which assumes that the interfacial stress is a function of the gap in the displacements. This model was initially 
proposed by Golland and Reissner (1944). Asymptotic justification of spring-layer model was proposed by many 
authors, e.g., Geymonat et al., 1999; Klarbring, 1991; Krasucki and Lenci, 2000 a, b; Lenci, 1999. As a rule they 
dealt with infinite domains, but for real composite materials it is very important behaviour near the boundaries. 
In the present work we propose an asymptotic analysis of the interface taking into account edge effects near the 
boundary for dilute fibre composite materials with coated boundary. 
 
 
2 Governing relations 
 
We will consider the case of a single fibre weakly bonded to a surrounding half-space (Fig. 1). The fibre is 
loaded by uniformly distributed across its cross-section load P.     
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Fig. 1. A single fibre embedded in an elastic half-space with thin unterface. 
 
The matrix material is assumed to be isotropic and linear elastic with elastic constants E  and ν . The axial 
Young’s modulus of the circular fibre with radius R  is denoted by 1E . We will use a circular cylindrical 
coordinate system ( )z,,r θ ; axis of the fibre coincides with the z -axis. The problem is axially symmetric. The 
axial displacement of the fibre is denoted by ( )zU f  and the radial and longitudinal displacement of the matrix 

by ( )z,rU r  and ( )z,rU z , respectively. We also denote stresses in the matrix by ( )z,rrσ , ( )z,rzσ , ( )z,rθσ , 
( )z,rrzτ . Now let us suppose that the matrix is coated by thin elastic layer with the small thickness, rigidly 

bonded to the elastic half-space.  
 
Let as discuss the possible nature of this coating. As it is known that in elastic bodies the natural surface 
nonuniformity takes place. This effect is closely connected with the interaction of particles. In the bulk of the 
body there is a statistical symmetry of the forces with which the particles interact, but the particles at the surface 
experience a one-sided action from other particles. This leads to considerable nonuniformity of the mechanical 
properties near the boundary and to surface tension. The last factor is small for solid bodies. On the other hand, 
experimental and theoretical investigations of polymers show that the modulus of the very thin surface layer can 
exceed the modulus in the bulk of the body by a factor 2-3 (Alexandrov et al., 1981; Alexandrov and 
Mkhitaryan, 1983, Chapt. VI). On the other hand, the boundary of composite materials very often is coated by 
thin strengthening layer. For example, for a polymer material often apply a metal coating (Alexandrov and 
Mkhitaryan, 1983, Chapt. VI). A thin coating can be treat as an inextensible membrane ideally bonded to the 
matrix at the half-space boundary (Kovalenko, 2001).  
 
 
3 Analysis of interface far from half-space boundary 
 
Let us analyze in more detail the stress in the interface. We suppose now the interface as cylinder of small 
thickness h  (Fig. 1), i.e. 1<<Rh . Then we can replace the governing axially symmetric problem to the plane 
strain one (Fig. 2) and use the lubrication approach (Christensen, 2005). It allows us dramatically simplify the 
governing equilibrium Eqs. for the interface 

 
( ) 02

2
=

∂
∂

r
zU ir , (3.1) 

( ) 02

2
=

∂
∂

r
zU iz .  (3.2) 

 
Here and further we use a subscript “i” for all displacements and stresses related to the interface. 
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Fig. 2. Reduction of the axially symmetric problem to the plane strain one. 
 
Now let us apply BCs. We consider the fibre as a continuum without transversal deformation and suppose 
perfect adherence of the fibre and the interface and the interface and the matrix. From these assumptions one 
obtains the following BCs  

 
for Rr = :        0=irU , (3.3) 
                         fiz UU = , (3.4) 

for hRr += :  rir UU = , (3.5) 

ziz UU = , (3.6) 

rir σσ = , (3.7) 

rzirz ττ = . (3.8) 
 

Solutions of Eqs. (3.1), (3.2) can be written as follows 
 

( )RrCCU ir −+= 21 ,                                                                                                                               (3.9)  
( )RrCCU iz −+= 43 . (3.10) 

 
From BCs (3.3), (3.4) and (3.5) - (3.8) one obtains fUC,C == 31 0 ,   

                        
( ) rri z,hRU σβ =+ ,                                                      (3.11) 

( ) rzfz Uz,RUk τ=



 − , (3.12) 

 

where 
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ii
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Eqs. (3.11), (3.12) coincide with the equations obtained by Geymonat et al. (1999, p. 209). 

 
BCs for 0=z can be written as follows 

 
0=irU  for 0=z ,   (3.13) 

0=izσ      for 0=z .   (3.14) 
 

Solution (3.9) satisfies BC (3.13). Substitute solution (3.10) to BC (3.14) one obtains 
01 ≠= Pizσ  for 0=z ,              (3.15) 
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where 
f

i

ER
PGP 21

2
π

= . 

For compensation of the discrepancy in BC (3.14) one must construct the boundary layer solution.  
 
 

4 Boundary layer in the interface 
 
For solving a plane strain problem for a half-strip we use Papkovich-Fadle bi-orthogonal eigenfunctions 
expansions (Papkovich, 1940; Fadle, 1940) following Little (1969). Let us introduce new 
variables ( ) hzhhRr 2,5,02 =−−= ψρ , then 10 ≤≥ ρψ , . BCs in new variables can be written as 
follows 

 
01 == ρψσ ii U,P for 0=ψ . (4.1) 

 
We deal with the boundary layer state; therefore we are interested in self-equilibrating solution. We add to the 

uniform load ( )1P−  equilibrating reactions ( ) ( )



 −++ 111 ρδρδP , where ( )...δ  is the Dirac’s delta-function. 

Then BCs (4.1) can be written as follows 
 

0,)( == ρψ ρσ ii UQ for 0=ψ , (4.2a) 

where ( ) ( ) ( )



 −+++−= 1111 ρδρδρ PQ , ( ) ( ) 0

1

1

1

1

== ∫∫
−−

ρρρρρ dQdQ . 

Searching solution must decay for ∞→ψ  
 

0→ψρ ii U,U  for ∞→ψ . (4.2b) 
 

For weak interface one has 1EE,EE ii <<<< , then one can approximately suppose  
 

0== ψρ ii UU  for 1±=ρ . (4.3) 
 

Equilibrium and compatibility equations are 
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We also introduce a function ( )ψρΩ ,  as follows 

   

ρ

σ
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Ω ψ
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∂ i .    

 
Eqs. (4.4) can be written in the following matrix form 
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BCs (4.2a), (4.2b) and (4.3) can be rewritten as follows 
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0→f                                            for ∞→ψ ; (4.6) 

1311 Pf;Pf i ==ν                          for 0=z ; (4.7) 
( ) 020 4213 =++=− ff;ff ii νν  for 1±=ρ . (4.8) 

 
Let us suppose 
 

( )ψρ ,f n
n

nC ϕ∑
=

=
1

( )ρ ( )ψβniexp . (4.9) 

 
Substituting Eq. (4.9) to Eqs. (4.5) and BCs (4.8) one obtains 
 

0=+ nn
n βi
ρd

d
ϕΑ

ϕ , 1−=i ; (4.10) 

( ) ( ) ( ) ( ) ( )2413 2 ninnin ; ϕνϕϕνϕ +−== . (4.11) 
 
Solutions of the boundary value problem (4.10), (4.11) can be written as follows  
 

( ) ( ) ( )( ) ( )[ ]ρββνββρββρββϕ nnnnnnnnn chchshshch −+−−= 1221 ; 
( ) ( ) ( )( ) ( )[ ]ρββνββρββρββϕ nnnnnnnnn shchshchchi 2122 −+−= ; 
( ) ( ) ( ) ( )[ ]ρββνββρββρββϕ nnnnnnnnn chchshshch 223 −−= ; 
( ) ( ) ( )( ) ( )[ ]ρββνββρββρββϕ nnnnnnnnn shchshchchi 2124 ++−−= ; 

 
where nβ  are the roots of the following transcendental equation 
 

β
ν

β
i

sh
43
22

−
= . (4.12) 

 
Eq. (4.12) is solved numerically. In tables 1, 2 we show first ten roots of Eq. (4.12) for 0=ν  and 30,=ν .   

 
Table 1. Comparison of numerical and asymptotic solutions for 0=ν  

 
Numerical solution Asymptotic formula (4.13) 

01,139431330 == ββ Im;Re  350,78539816500,23058798 == ββ Im;Re  
63,81446498600,80654096 == ββ Im;Re  83,92699081450,82777775 == ββ Im;Re  
56,9875314201,11679601 == ββ Im;Re  27,0685834781,12167108 == ββ Im;Re  
210,145579601,30383552 == ββ Im;Re  310,210176181,30553347 == ββ Im;Re  
413,297531321,43899834 == ββ Im;Re  813,351768701,43966547 == ββ Im;Re  
616,446332531,54507343 == ββ Im;Re  316,493361481,54532001 == ββ Im;Re  
619,593270821,63244450 == ββ Im;Re  919,634954011,63249671 == ββ Im;Re  
422,739006851,70675075 == ββ Im;Re  422,776546741,70670671 == ββ Im;Re  
325,883917321,77140566 == ββ Im;Re  025,918139401,77131258 == ββ Im;Re  
829,028234261,82863549 == ββ Im;Re  529,059732051,82851775 == ββ Im;Re  

 
 
 
 
 
 
 
 

Table 2. Comparison of numerical and asymptotic solutions for 30,=ν  
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Numerical solution Asymptotic formula (4.13) 

882931332000 ,Im;Re == ββ  350,78539816050,27847161 == ββ Im;Re  
78460277630786367891 ,Im;,Re == ββ  83,9269908171,08319056 == ββ Im;Re  

06,9702353401,37779714 == ββ Im;Re  27,0685834791,37708389 == ββ Im;Re  
810,133408591,56212352 == ββ Im;Re  310,210176101,56094629 == ββ Im;Re  
813,288146601,69618366 == ββ Im;Re  813,351768721,69507828 == ββ Im;Re  
716,438698471,80169633 == ββ Im;Re  316,493361401,80073283 == ββ Im;Re  
419,586838181,88873979 == ββ Im;Re  919,634954031,88790952 == ββ Im;Re  
722,733449441,96283764 == ββ Im;Re  422,776546761,96211952 == ββ Im;Re  
325,879026082,02735135 == ββ Im;Re  025,918139412,02672539 == ββ Im;Re  
229,023866752,08448089 == ββ Im;Re  529,059732072,08393056 == ββ Im;Re  

 
The first roots give possibility to estimate decaying of stress-strain state in the interface. 
For ∞→n  Little (1969) proposed the following asymptotic formula 

 
( ) ( )













++







−

+
≈ 502

43
14

2
1 ,ninln

i
n π

ν
π

β                                                                                                  (4.13) 

 
Numerical results based on formula (4.13) are shown in tables 1, 2. It is obvious that in practical calculation one 
can use formula (4.13) for all roots of the transcendental equation (4.12).   
Only the eigenvalues in the first quadrant are listed, but *

nβ , nβ−  and *
nβ−  are also roots, where ( )*...  denotes 

the complex conjugate of ( )... . Only roots in the upper half plane will be used, due to condition (4.2b). 
 
For satisfying BCs (4.7) one must construct biorthogonal vectors. The adjoint equation of Eq. (4.10) is  

 

0* =+ +
nn

n βi
dρ

d
ψΑ

ψ
, (4.14) 

 
where ( )+...  denotes the complex conjugate transpose of the matrix. 
 
We choose BCs on ψ  as follows 
 

( ) ( ) ( ) ( ) ( )2413 2 ninnin ψνψ;ψνψ +=−= . (4.15) 
 
The following biorthogonality conditions holds 

 

kn,ρdkn ≠∫ + ϕAψ
1

1-

. (4.16) 

 
The components of the biorthogonal vector become 

 
( ) ( ) ( )( ) ( )ρββνββρββρβψ *******

nnnnnnnn shchshchch 231 −+−= ; 

( ) ( ) ( )( ) ( )



 −+−= ρββνββρββρβψ *******

nnnnnnnn chchshshchi 22 ; 

( ) ( ) ( )( ) ( )ρββνββρββρβψ *
n

*
n

*
n

*
n

*
n

*
n

*
nn shchshchch 213 −+−= ; 

( ) ( ) ( )( ) ( )



 −+−= ρββνββρββρβψ *******

nnnnnnnn chchshshchi 2124 . 
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Using Eq. (4.16) one obtains constants nC   
 

( )∫
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1 ρd
M

C b
n

n
n fAψ , 

 

where ;ρdM nnn ∫
−

+=
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1

ϕAψ ( ) ,Pνf i
b

11 = ( ) ( )( ),ρCf n
n

n
b 2

1
2 ϕ∑

=

= ( ) ,Pf b
13 = ( ) ( )( )ρCf n

n
n

b 4

1
4 ϕ∑

=

= . 

  
The inner biorthogonality conditions are 
 

( ) ( ) ( ) ( )[ ] k
nnknkn M,ρdψψ δϕϕ 50

1

1

4321 =+∫
−

** , 

 
where k

nδ  is Kronekker’s symbol. 
Then one obtains constants nC  

 

( ) ( ) ( )[ ]∫
−

−+=
1

1

241 22 ρdψψ
M

PC nni
n

n
**ν . 

 
 

5 Corner singularities in the interface and matrix 
 

For complete understanding of the deformation of the interface we must analyze singularities at the points 
10 ±== ρψ ,  more detail. As mentioned by Sinclair (2004 a, b), for axially symmetric configurations one 

expects that, in the local vicinity of greatest interest, a state of plane strain dominates response. So we deal with 
the plane strain problems of edge-bonded elastic quarter-planes loaded at the boundary. At the point 

10 −== ρψ ,  takes place the contact between the fibre and the interface and at the point 10 == ρψ ,  takes 
place the contact of the interface and the matrix. Now we can use results obtained by Rössle (2000). At the point 

10 −== ρψ ,  we will treat the interface as the elastic quarter-plane hardly clamped of one part of boundary 
(edge-bonded with the fibre) and simply supported on half-space boundary: 
         00 == ρψσ ii U,  for 0=ψ .  
As it is shown by Rössle (2000), presence or absence of stress singularity at the corner points depends on the 
corner inner angle χ : stress singularity is absent for 2πχ <  and is present for 2πχ > . So we have some 
uncertainty, closely connected with our rough assumption about the hard clamping of the interface half-strip on 
the long sides. In reality on the boundary of the interface and the fibre one has elastic clamping, 

 
ρψψρρ τσ iiii fU,fU 21 == ,    

 
where 21 f,f  are some parameters, which characterized degree of elastic clamping, ∞≤≤ if0 .  

For ∞=if  singularities take place for 2πχ ≤ , for 0=if  singularities take place for 2πχ >  (Rössle, 
2000). Using the principle of continuity we can conclude that for ∞<if  stress singularities are absent. The 
same conclusion is correct for the singularity at the point 10 == ρψ , . 
 
For the matrix at the corner point 10 == ρψ ,  one has the elastic quarter-plane stress-free on part of the 
boundary (edge-bonded with the interface) and simply supported on half-space boundary. As it is shown by 
Rössle (2000), in this case the singularity is absent. 
So, for the problem under consideration, the weak interface avoids the stress singularities. But if the boundary of  
half-space is free from the stresses, the stress singularities at the corner points on the lines of contact between the 
fibre and the interface and the interface and the matrix take place (Geymonat et al., 1999). 
 
 
6 Conclusion 
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Composite materials with interfaces between the matrix and the inclusions are referred to as the most actively 
developed contemporary materials which are widely used in engineering. An adhesion of components usually 
leads to the appearance of interface cracks which can situate in the interface till the appearance of certain critical 
conditions which lead to growth and propagation of a crack into the matrix. For the prediction of cracks the 
appearance and behaviour it is very important to analyze stresses in the interface. Failure of the assemblage starts 
in the external boundary of the adhesive and then continues along the interface (Adams and Harris, 1987; Lucas 
da Silva et al., 2009 a, b). However, papers devoted to the composite materials with interfaces, usually deal with 
the simplest case of domain without boundaries. In the present work we analyze edge effects in the interface near 
the boundary for the fibre composite materials in the dilute case.  
 
The analysis of singularities at the corner points of the interface is also very important. To increase the resistance 
of the joint, in practice it is common to avoid (or at least to reduce) the singularity (Adams and Harris, 1987). As 
it is shown above, a coating of the interface and matrix by the inextensible membrane leads to this aim. So this 
procedure can be recommended for practical engineers for increasing of the composite materials strengths.  
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