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Nonholonomic Motion Planning for a Free-Falling Cat Using
Quasi-Newton M ethod

Xin-Sheng Ge, Wei-Jia Zhao, Yan-Zhu Liu

The motion planning problem of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat
subject to nonintegrable velocity constraints or nonintegrable conservation laws. When the total angular
momentum is zero, the rotational motion of the cat subjects to nonholonomic constraints. The equation of
dynamics of a free-falling cat is obtained by using the model of two symmetric rigid bodies. The control of
system can be converted to the motion planning problem for a driftless system. Based on the input
parameterization, the continuous optimal control problem is transformed into the discrete one. The quasi-
Newton method of motion planning for nonholonomic multibody system is proposed. The effectiveness of the
numerical algorithmis demonstrated by numerical simulation.

1 Introduction

It is well known that a cat, when released fronmupside down configuration starting from rest, ieab land on
her feet. At the end of 19th century, people befgairy to explain this interesting phenomenon. Guymd
Marey (Liu, 1982) first explained from classical chanics that the angular momentum of a falling isat
conserved. McDonald (1955) also represents thibleno from a point of view of physiology. He believa cat
firstly contracts its front feet, then protracte tihont feet while rotating its front body. Meaniehiits rear body
also experiences a rotation. According to the caagien law of angular momentum, the rotation angflehe
front body is larger than that of the rear bodythe opposite direction. This theory satisfied thimgple of
mechanics, however, in free-falling cat experiments hardly find any obvious protract-contract raotof the
cat’s feetJloiusuckuii (1954) present another explanation that the reqtation of the cat’s tail makes its body
turn over in the opposite direction. But his cohjee can not stand either. Experiments show thet avithout
tail can also finish the rotating motion. Kane addher (1969) proposed the dynamical explanatiothef
phenomenon that a free-falling cat usually landst®feet. They assumed the cat’s turning motiott its waist

as the top point using the model of two symmeigmrbodies. Based on this model, a set of govereiquation
was established and the general characteristibeofturning motion was obtained. Further numericellysis
showed that this model matches the experiment tresuly well. For the more general condition of two
unsymmetrical rigid body’s turning motion, a setdghamics equation was set up by Yanzhu(L2B2).

Recently, with the development of manned spaceciafid exploratory researches of human turning motio
under zero-gravity conditions, the research onea-falling cat becomes a significant topic. Duettte non-
integrable angle velocity, the first integrationtbé equation of cat’s rotation is an equation wittnholonomic
constrains, and it is a special nonlinear systenthis equation, the dimension of generalized coatds is
larger than that of the control input. Brockett 39 first finished a systematic research on themmtcontrol
problem of driftless nonholonmic system. Using colnbbjective functions to construct Lagrangiandiions,
they reached conclusions under optimal input ofisddal function and elliptical function respectiveMurray
and Sastry (1993) extended Brockett’s conclusiotméocontrol of nonholonomic chain system undeusiidal
input. A similar motion planning method was also given Reyhanoglu and Mukherjee (1994), which used
Stokes theorem and Taylor series expansion to zmdhe dynamic model of nonholonomic system. Fatiano
planning problems of nonholonomic control systewatious numerical methods were achieved by some
researches. Fernandes et al (1995) formulatedahkotonomic motion planning problem as an optinmaitml
problem, and developed a simple algorithm for gpéedirigid body systemsing ideas from Ritz approximation

42



theory. Yih and Ro (1996, 1997) proposed the aligos of near optimal motion planning using multigoi
shooting and quasi Newton method for nonholononystesns. Duleba and Sasiadek (2003) discuss a
modification of the Newton algorithm applied to hefonomic motion planning with energy optimizatidrhe
Lyapunov control method for solving motion planniwgs proposed by Tsuchiya et al. (2002). In thishoe

the control input is obtained by multiplying theadrent vector of the Lyapunov function by a tensse. et al
(2007, 2006) studied an optimal algorithm to fieédible trajectories for motion planning of a ffakling cat.
Based on the Ritz approximation theory in functloanalysis, they approximated a solution of annitg-
dimensional optimization problem by a family ofifexdimensional Fourier basis function expansion.

In this paper, the motion of a free-falling catfsmulated through a double rigid body model whidm
represent the front and rear half of its body. Ti@ion equation of a free-falling cat is establgh®msed on
multibody dynamics and conservation of angular muoma. When the total angular momentum is zero, the
attitude motion of a free-falling cat subjects tmholonomic constraints. The control of a freekfalicat can be
converted to the motion planning problem withouftdifo find a globally convergence strategy, thatistep
functions are introduced to form the control inpuasid a quasi-Newton method is designed to solee th
nonholonomic motion planning problem. Finally, tigorithm is tested through simulation, and theusation
results indicate that the algorithm is an effectipproach to deal with a free-falling cat.

2 Kinematicsin Mixture Theories

To simplify the free-falling motion model, the body a cat is taken as two symmetric rigid boddeandB,
which are joined a®. Assume the rigid bodies are torsion free. Onlydieg exists when the cat bends its spine.
The coordinate syster- X;Y,Z;(i =1, 2)are prescribed as follow®X; is centroid axis of the rigid bodies
pointing fromO to the head of the cat £€1) or the tail of the cati(= 2), OZ, points to the abdomen of the cat.
The coordinate syster®- X,Y,Z, is obtained by first rotating about axi, through angle/ to obtain

O- X;Y, Z, , then rotating about axi®Y, through anglé to obtainO- X{Y,*Z, and finally rotating about axis
OX; through angledto obtainO- X,Y,Z,. After gettingO- X,Y,Z,, we construct a new coordinate system
O- XY Z", in which OX™ and OZ" are along the bisector aiX,0X# and 0Z;0Z¢ separately, an@®Y" is
coincident tcOYl* and OYl#. The anglg/, which equals ta9/2, is the angularity between the front half (or rear
half) spine an@®X" . X OZ" is the spine-curving plane/ denotes the position of the plane in the cat’s body

Xy
X xr
— Xo x+
X, xt b
Figure 1: A free-falling cat model Figure 2 : Attitude angle transform

The angular velocity' of B, with respect td, is obtained by projection on tH®- X'Y"Z" coordinate system
as

W= (Y+P)eosyi + Fj + @9 )sink (1)
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According to the torsion free condition, the vetpc@iomponent along ax@X " must be zero, and then we obtain
the relationshigh = —¢/ . Since the initial condition is also torsion free getp = —(/ by employing integration.
Considering the relation between angfgand { , the equation (1) can be simplify as

o =2y +ysinyk’ ). @)
After bending the spine, the center of mass ot#i®, locates on axi®Z" . If we move the origin fror® to 0.,
the axig0, X, keeps a steady horizontal direction during the ofag®n of a free-falling cat. A new coordinate
systemO,-XYZ is built, in whichO,X is coincident t@,X,, the axi<O,Z goes upward and vertically to the
ground. During the process of free falling, thertigeforces irO,-XYZ are balanced with gravity. When we
consider rotating about the center of mass anddovatesO_-XYZ can be taking as the inertial reference frame.
Set vertical plan&O,Z as/7,, and letz be the clockwise angle from plang, to /7,. The purpose of rotational
motion of the cat is to make its abdomen from fgeipward to downward, namely, the anglieom O tor .
The angular velocities & (i =1, 2)with respect t®-X"Y Z reference frame are

o =-yeoyyi’ - yi —ysink

= a +df =—yeoyi +yj +ysink
LettingA. B. C. mandabe the central inertia moments, mass and distartgebn centroid and of
B (i =1, 2) respectively. The moment of momenttn of B, with respect taO, could be computed. The

vectorH; can be decomposed into components with respect tioeD - X;Y,Z; (i =1, 2)coordinate systems; we
have(Liu, 1982)

H:Lx H2x A: _Fc _Ec p

®3)

Hly = _H2y = -k B. -D¢[1q (4)
Hy, —Hy, B D G r

where
A = A+ma’cosy sify , B, =B+ma® co§ (cdy+ sfr cés )
C. =C+ma’cos’y (cody+ sifly sify ),D,=ma’ cdg sp aps @i (5)
E. =ma’cos’y siry cog ,F.=ma’ cdg gn gin

and

p=[(¢ cosy+y siry cog sig ) @ shy chg -p lopsy

q=[(¢ cosy+y siry cog sig ) @ shy c@s -p Isn gy oo (6)

r =[¢-(¢ cosy+y siy coy sig ) (& sfy cbg g sy g
AddingH,andH ,, the sum is the total moment of momentum of therespect t®, . After transformation to
theO- XY Z coordinate system, the component of the sum algisgX " is

H = -2{[ Acos’y+ Bsinfy +Ccody )sify - ¢ cog+y sin cgs  sn/ ) {lingrosy )]
+AY coy+ B-C J sip cag sini}

During the process of falling of cat, the momenthwiespect to centroid is zero. Since the angulamentum
H is conservative, the assumption of invariance oedlion of axisO,X or O.X is proved to be true.
ConsideringH =0, we can obtain the motion equation from equati®)rg{ven by

_{ygcosy siy B+ (1 g)cody }y cog sip e+ Sip )isin
(1-sirfy cody )[¥ A—-& co&y )sify ]

whereA =(B-A)/ A, €¢=(B-C)/ Aare parameters associated with the mass of catatiequ(8) is the
nonholonomic attitude motion equation of free-fajlicat.

(8)

3 The quasi-Newton method for nonholonomic motion planning

The motion planning is to find control input to&tex nonholonomic system from an initial configimatto final
configuration along a feasible trajectory in tiiéWe can formulate the motion planning problem asmlinear
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optimal control problem using a performance funmio Without loss of generality we assume thatea-falling
cat has been formulated in the form

X=G(x)u, X, % OR 9)
1 0
G(x)= 0 1
cosy sify P+ (& )cody ] cag sih gn {E+1  din )
| (1-sin’y cody ¥ f—-¢ cody )sify | @ sy cds MAce cgssing]

wherex = (¢, y, )’ OR%is the configuration variablej R2is the control input noted ag =¢ and
u=y,G(x)0 R*>?is a regular 2-dimensional distribution and thet éosction to be minimized is

J(u):IJ<u,u>d (10)

We assume that the system is controllafffernandes et al. 199%nd thus there exists a solution
u O L, ([0, T]) for the problem. Herd, ([0, T]) denotes the Hilbert space of measurable vectoeddiunctions
of the formu(t) =[u,(t), u2(t)]T,tD[O,T]. By Ritz's approximation theory, the problem ofnholonomic
motion planning is equivalent to an infinite dimiemeal optimization problem.

One can use the calculus of variations to find rbeessary optimality conditions for the nonlineatiroal
control problem. Since the system is nonlinear, dpémal control depends on the solution of the linear
multi-point boundary value problem (Yih 1996, Mwrrd994). Numerical schemes such as multi-point 8hgo
method and quasi-linearization method can be usedlve the boundary value problem. However, oregls¢o
find an initial solution close to the optimum poiimt order to ensure the convergence of these nuaieri
algorithms.

Also, since only necessary conditions are satisti®eel minimum point is not guaranteed to be thetsm of the
optimization problem. For complicated underactuagstems such as the rigid spacecraft with two ighéds a
very difficult task to test the optimality conditis.

The problems mentioned above can be overcome hygusbntrol parameterization method. Using the
parameterization of the control variables, one ttansform the infinite dimensional optimization pkem to a
finite dimensional one. In this paper, each conimplt is approximated by a piecewise constantroymthich
makes it easier to implement the algorithm. Thermbinputs can be expressed as follows

N-1
U(t) = Dy [1(t=1 ) ~1(t=ti, )] (11)
i=0
wherel (t) is the unit step functiot ;,,is the control input iff;, t.,], j=1,2:-- m. Then, one can recast the

optimal motion planning as an optimal parametercdeéag problem. The advantages of this indirectragaph
are: First, we do not need a very close startingsguo the optimal solution because a globally eogent
method can be utilized to find the minimum solutifor the motion planning problem. Second, the
parameterization of the control variables makesatgerithm easier to implement.

By using penalty functions to describe the costfiam, the cost function can be approximated by

m N-1
IO=DD () +Ex(T)=x | (12)

j=Li=0

where parametétis the penalty factorx(T) is the solution of Equation (9) at time=T with initial condition

X -

Actually, restricting the control input at the iaitand final time leads to another constraint,althintroduces a
new penalty factoZ . .OnceN , & and{ are chosen, the cost function given by (10) isretion of h which can

be expressed as

3(hy=<h,h>+&]f (h)=x; | +¢(hlo hogt Worh o) (13)
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whereh_, =[h; h,]",h_; =[h h,,]". Therefore the problem now is to fihduch that the cost function in
(10) is minimized.

A robust and globally convergent quasi-Newton metle used to find the solution for the optimal roati
planning problem. Quasi-Newton methods use antitergrocess to approximate the inverse Hessianixrsd
that no calculation for the second derivativesasded for carrying out the search of the optimahpeters.
Using line search, the quasi-Newton method alsobdoes a globally convergence strategy with a fasall
convergence rate of Newton’s method.

Defineh” to be the minimum of the cost functionkh) . Leth, be the current parameter addh, be the
difference betweem” and h, as follows

h" =h +Ah, (14)

where
Ah = =073 (h) ™ Fpd () (15)

The above update algorithm is known as Newton'shogtivhich is quadraticly convergent in the neighiood
of the minimum. However, there are problems assediavith Newton’s method. First, the computationtius
inverse of the Hessian matrix is a very difficalsk. Here we use the BFGS (Broyden-Felether-Gdieranno)
algorithm to update the inverse of a Hessian ma@BGS method has been known to have a global cgemee.
Using the BFGS algorithm to approximate the invep§ehe Hessian matrix(DﬁJ(hk)'l) can be replaced
by B, which is given by (Joshi, 2004)

Bk 1:Bk+(1+yl-<eryk )(Jkd;r)_(a-kyl-(er-'-Bkykd;r) (16)
+
X Wi A Wi X Wi

where

Jk = hk+1 - hk

Vi =03(h,1) —0I(h)
We can use a line search to censure the globalecgence of the quasi-Newton method. The following
algorithm can be used to update vebtteuch that a minimization od will be reached

7)

e = he +ADy (18)
where

P =-B0JI(h) (19)
To minimizeJ (h, + A, p,) with respect tdl by the line search, Define

I =3I+ AP (20)
With the following conditions

JO=I(R). I @=036) P, I (D= b B ) (21)

To guarantee thatH } converge to a minimize of the cakth) and to avoid very small decreased (h) relative
to the lengths of the steps, we can write the atE@ptance criteria as follows (Yih, 1997)
J(1)< J(0)+3'(0), €0 (0, 1 (22)
If 3(1)dose not satisfy Equation (22), we can approxini]a(na) by the following quadratic model which satisfies
conditions (21)

I =[3Q)-3(0)-I' QN>+ (0N +I (0) (23)
By settingd’ (1) =0, we obtain
- -3
A= © (24)

2((1)-3(0)-J'(0)
It is easy to verify thai”(ﬁ) >0, thusi minimizesj(/I) . Now we can repla(xkk in Equation (18) bﬁ to update
vectorh . Hence, the quasi-Newton iteration procedure sedeed as follows:
Step 1: Setting up initial and final configuratiors, x; O R® andG(q)J R¥2.
Step 2: Assign initial parameteés: {- h,. 0. Bjyand the control erray.
Step 3: Solve the differential equations given %)y &nd computé(h,) using (13).
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Step 4: ComputelJ(h,) using (15), substituting, and0J(h,) into equation (19) to computg, , and
substituting1J (h,) , hy and p, into equations (21)~(22) and (24) to compije

Step 5: Computdy, (k=1) using (18), and check the conditjauhi| <r, . If the condition is not satisfied,
compute B, (k=1) using (16), and repeat Step 2, otherwise exit.

4 Numerical smulation

Assume that during the process of a cat’s freefallonly its spine bends, there is no rotatiorween the front
and rear body. The cat bends its spine forwardl tih@ directions in turn and keeps angleonstant. When the
front body of the cat moves a whole circle, the lehmody of the cat turns radiamin the reverse direction, i.e.
when angle/ changes from 0 t2r , the angl@ changes from 0 t8r . From the experiment dath= 3, |e1<< 1.
In the simulation experimemd,=3,£=0.01, N =20, £=120 diag[30 7.8 2.!, { =194.85 €=10", the
time interval of falling ist =1s. The prescribed time space in simulation coatfmrt is 0.05s. We denote the
initial position and the end position of the fredlihg cat as

X =0 a/6 0f , x;=(2n n/6 )

The simulation results are shown in Figure 4~7,retidgure 4 shows plots of the optimal control itspior the
middle joint of the double rigid body. Figure 5Hfosvs the attitude optimal trajectory of the catidgiits falling.
The two ends of the curves are separately thalmbint and the landing point. We can see frogufé 4 that
the control input curve is not as smooth as thadome other papers such as (Ge, 2006) when we ehbes
stepwise shape function (11), which means that #mecanditions of it have to be considered if smoathtrol
input is required. From Figure 5 and Figure 7 sibbvious the cat experiences a steady rotatioarel$ no
detour behavior in the turndown motion. From FigGrenve can see the bending angle has a small ahplit
variation. These simulation results are very inteteuto the experiment record.
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Figure 4: The optimal control input for free-fatlicat
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Figure 7: The optimal trajectory of angle

5 Conclusion

From the modeling of free-falling cat and numerigahlysis, we get the following conclusion:

1) The nonlinear control problem of free-fallingt aan be transformed to a nonholonmic motion plagni
problem of a driftless system.

2) The nonholonomic motion planning problem cansoé/ed effectively by quasi-Newton method, which
implements the attitude planning of free-falling ead the optimal of control input. During the slation
computation, the quasi-Newton method shows fastergence speed and good accuracy.

3) Using the stepwise shape function as the compit is a new attempt. It has some advantagels as
convenient in use and high convergent speed. Hawetérings about some difficulties in designing
actuators in the engineering practices.

Acknowledgments

This work was supported by the National Naturak8ce Foundation of P. R. China (No. 10772020).

Refer ences

Liu Y. Z., On the turning motion of a free-falliregt, Acta Mechanica Snica, 149, (1982), 388-393. (in Chinese).
McDonald D. A., How dose a falling cat turn ovAmer. J. Physiol. 129, (1955), 34-35.
Jlowiusiaekmii JIL.T., Jlypse A. U., Kypc meopemuUueckas mexanUka, locrexusnar, Mocksa, (1954).

Kane T. R., Scher M. P., A dynamical explanatiotheffalling cat phenomenomt. J. Solids Structures, 5, (1969), 663-
670.

Brockett R. W., Dai L., Nonholonomic kinematics ameé role of elliptic functions in constructive cagitability. In Li Z.
and Canny J. F. editoripnholonomic Motion Planning, Kluwer, (1993), 1-22

Murray R. M., Sastry S. S., Nonholonomic Motion Rimy: steering using sinusoiddEEE Transactions on Automatic
Control. 38 (5), (1993), 700-716

Reyhanoglu M., A general nonholonomic motion plagnitrategy for Chaplygin systenRroceedings of the 33 IEEE
Conference on Decision and Control. 2964-2966, (1994).

Mukherjee R., Anderson D. P., A Surface integralrapph to the motion planning of nonholonomic systeSME Journal
of Dynamic Systems, Measurement and Control, 116 (9), (1994), 315-325

48



Fernandes C., Gurvits L., Li Z., Near-optimal nommmic motion planning for a system of coupleddigiodies |[EEE
Transaction Automation Control, 39 (3), ( 1995), 450-464

Yih C. C., Ro P. I, Near-optimal motion planning famnholonomic systems using multi- point shootinghud, in:Proc.
IEEE Conf. Robotics and Automation, Minneapolis, M N, (1996).

Yih C. C., Ro P. I., Near-optimal motion planning faonholonomic systems with state/input constraimsquasi-Newton
method, in:Proc. |EEE Conf. Robotics and Automation, Albuquerque, New Mexico, (1997).

Duleba I., Sasiadek J. Z., Nonholonomic Motion Rlag Based on Newton Algorithm with Energy Optimiaat |EEE
Transactions on Control Systems Technology, 11 (3), (2003), 355-363.

Tsuchiya K., Urakubo T., Tsujita K., Motion Contii a Nonholonomic Systems Based on the Lyapunov Gbktethod,
Journal of Guidance, Control and Dynamics, 25(2), (2002), 285-290.

Xin-Sheng Ge, Li-Qun Chen. Optimal Control of Nonhwmic Motion Planning for a Free-Falling Caipplied
Mathematics and Mechanics 28 (5), (2007), 601-607

Xinsheng Ge, Qi-Zhi Zhang. Optimal Control of Nondirwdmic Motion Planning for a Free-Falling Cat. IRirst
International Conference on Innovative Computing, Information and Control, Beijing, China, (2006)

Murray R. M., Li Z., Sastry S. SA Mathematical Introduction to Robotic Manipulation. CRC Press, (1994).

Joshi M. C., Moudgalya K. NQptimization Theory and Practices, ASI Ltd. Harrow, U. K., (2004).

Addresses: Prof. Xin-Sheng Ge, College of Mechanical & ElezdtiEngineering, Beijing Information Science &
Technology University, Beijing, 100192, China. Pri¥ei-Jia Zhao, Science College of Qingdao Univgrsi
Qingdao 266071, China. Prof. Yan-Zhu Liu, Departmefi Engineering Mechanics, Shanghai Jiaotong
University, Shanghai, 200030, China.

email:gebim@vip.sina.com: zhweijia@vip.soho.com: liuyzhuc@online.sh.cn

49



