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In this paper, the motion of a rigid body about a fixed point under the influence of a Newtonian force field is 
investigated. The Euler-Poisson equations are used to represent that motion. Three first integrals of these 
equations are well known. The exact solutions of these equations require, in general, a  fourth algebraic first 
integral. The necessary and sufficient condition for some functions to be a fourth first integral of the governing 
equations is obtained. 
 
 
1    Introduction 

 
The problem of the motion of a rigid body about a fixed point in a uniform force field or in a Newtonian one has 
attracted the interest of many researchers during the last two centuries (Arkhangel’skii 1963; Kharlamov 1964; 
Keis 1964; Gorr et al. 2002; Gao 2003; Burov 2003; Burov 2005; Kuleshov 2006). This motion is governed by 
six non-linear differential equations with three first integrals, Arkhangel'skii (1963). Many attempts were made 
by outstanding scientists to find the solution of these equations but they have not found it in its full generality, 
except for three special cases (Euler-Poinsot, Lagrange-Poisson and Kovalevskaya). These cases have certain 
restrictions on the location of the body’s centre of mass and on the values of the principal moments of inertia 
(Arkhangel’skii 1963; Kharlamov 1964; Keis 1964). Arkhangel’skii (1963) showed that this fourth algebraic 
integral exists only in two special cases analogous to those of Euler and Lagrange, and that other cases with 
single-valued integrals are not independent cases but it can be reduced to previous cases. Gorr et al. (2002) 
obtained new ways of integrating Poisson's equations, which correspond to the case when a fractionally linear 
first integral exists in these equations. Gao (2003) extended Kovalevskaya's work in terms of hyperelliptic 
functions. In Burov 2003; Burov 2005, the problem of the existence of  integrable cases for the motion of a 
heavy rigid body is studied. The author considered the integrable cases of the Euler and Lagrange types and 
some particular cases. An explicit form of two first integrals of the equations of motion of the gyrostat is 
presented in Kuleshov (2006). In this work, we obtain a necessary and sufficient condition for some functions 

),,,,,( γγγ ′′′rqpF  to be a first integral for the Euler- Poisson equations when the motion of a rigid body is 
acted upon by a central Newtonian force field.   
 
 
2    Formulation of the Problem 
 
 Consider a rigid body of mass M , its center of mass is c , a point O  fixed in that body, whose ellipsoid of 
inertia is arbitrary and its center of mass does not coincide with the fixed point. Let the body be subjected to a 
Newtonian potential field exerted by an attracting center located on a fixed vertical downward OZ - axis at 
distance R  from the point O . Choosing the axes OYOX , and OZ to represent a fixed frame in space and the 
axes OyOx, and Oz to represent the principal axes of the ellipsoid of inertia constructed for the body at the 
fixed point O , which rotate in space with the same angular velocity of the body. Let ji,  and k  be the unit 

vectors in the direction of the moving axes OyOx, and Oz , respectively, and K̂  be the unit vector in the 
direction of the fixed vertical OZ - axis, its direction cosines with respect to the moving axes are γγ ′,  and  γ ′′ , 
respectively. So one writes 
 

.ˆ kjiK γγγ ′′+′+=  (1)  
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The position vector of the center of mass is defined as follow 
 
 .kzjyixr cccc ++=   (2) 
 
Let ω  be the angular velocity vector of the body with components qp,  and r , expressed with respect to the 
basis  ji,  and k ,  
 

.krjqip ++=ω  (3) 
  
To describe the motion of the rigid body about the fixed point O , the Euler - Poisson equations are used 
(Arkhangel’skii 1977) 
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The other equations for rq,  and γγ ′′′, are obtained from those for p and γ  by cyclic exchange of 

),,(),,,(),,,(),,,( 321 HHHrqpCBA γγγ ′′′ and ),,( 321 hhh . Here, CBA ,,  are the principal moments of 
inertia and g  is the acceleration due to gravity. System (4) is a simple autonomous system of six non-linear 
ordinary differential equations. The three well known first integrals of this system are the conservation of 
energy, the constant kinetic moment about the vertical axis and the geometrical constraint on the direction 
cosines ),,( γγγ ′′′  
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where 1C  and 2C  are constants. 
 
System (4) has the Jacobi last multiplier 1≡M . For that case holds: If four integrals are known, the fifth one 
follows by a quadrature see, Leimanis (1965). Many attempts were made by outstanding scientists during the last 
two centuries to realize such the fourth first integral. These attempts required operations of the results which 
could not be expressed explicitly in the general case except for two known special cases namely the Euler case 

)0( === ccc zyx  and the Lagrange one )0,( === cc yxBA . These cases have certain restrictions on the 
location of the body's center of mass c and on the values of the principal moments of inertia, Arkhangel'skii 
(1963). 
 
 
3    General identity for the first integrals 
  
Let the function .),,,,,( constrqpF =′′′ γγγ  be a first integral of system (4). So one can write 
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Furthermore, the geometric integral can be rewritten in the following way 
 
 3

222 C=′′+′+ γγγ , (8) 
 
where 3C  is an arbitrary positive constant. This assumption does not introduce any discrepancies into the 
equations since the derivative of (8) is null.  
 
Equation (8) allows the initial conditions ),,( 000 γγγ ′′′  to be arbitrary. This fact will be used below. However, 
having found the fourth first integral, nothing stands in the way of substituting 13 =C . Equation (7) has to be 
considered as an identity with respect to the variables γγ ′,,,, rqp  and γ ′′  (Goursat 1959). Indeed it has to be 

satisfied for each solution of equations (4) at any moment in time and at the initial moment 0t , as well. 
However, at the initial moment, the values 00000 ,,,, γγ ′rqp  and 0γ ′′  are entirely arbitrary. Hence equation (7) 
is indeed an identity. Thus, the partial derivation of (7) with respect to each of variables γγ ′,,,, rqp  and γ ′′  is 
legitimate. In fact, Equation (7) is a partial differential equation for the function ),,,,,( γγγ ′′′rqpF . This 
equation has five independent solutions. Three of them are the functions (5). To find a fourth first integral means 
to find a solution of the partial differential equation (7) independent of the solutions (5). We can give new partial 
differential equations for the fourth first integral alone. The functions (5) are not solutions of these equations, 
i.e., the three first integrals are eliminated from equation (7). 
 
 
4    Formulation of the Theorem  
 
Theorem: A necessary and sufficient condition for the function ),,,,,( γγγ ′′′= rqpFF  to be a new first integral 

of system (4) is the following system of linear inhomogeneous partial differential equations 
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where iΩ  and )3,2,1( =Γ ii  are the corresponding partial derivatives of the function F , i.e., 
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Here, the functions )3,2,1( =iU i  form a non-zero solution of the following system 
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and satisfying the condition 
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Proof: 
 Let the function ),,,,,( γγγ ′′′= rqpFF  be a new first integral of system (4), then using partial 
differential equation (7), we get 
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This equation is considered as an identity with respect to the variables γγ ′,,,, rqp and γ ′′  and can be 
differentiated with respect to these variables. Partial derivation of (13) with respect to p , taking (4) into account,  
leads to 
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Because of the equality between the second mixed derivatives of the function F , equation (14) can be written 
down as follows 
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The left hand side of this equality is dtd 1Ω . Partial derivation of (13) in the same way with respect to the other 
variables, leads to the following system of six partial differential equations with respect to the functions iΩ  and 

)3,2,1( =iFi  
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It is obvious that the vectors composed of the corresponding partial derivatives of each autonomous first integral 
of system (4) are solutions of system (16).  
 
Consider the following substitution in system (16) 
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where 321321 ,,,,, UUUSSS  can be grasped as auxiliary function of the time. 
 
Solving (17) for 321321 ,,,,, UUUSSS  leads by (16) to the time derivatives, we have 
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and         
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The obtained system (18) can be treated as a system of five equations because the right-hand sides of (18) do not 
depend on 3S . Actually these five equations are the first five equations of (18). 
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Taking (17) into account, it is not difficult to prove that (9) and (12) are satisfied. Indeed, solving (17) with 

respect to )3,2,1( =iU i , one obtains (9). After multiplying the left three equations of (17) by 
dt
dr

dt
dq

dt
dp ,,  

and the right three equations by 
dt

d
dt

d
dt
d γγγ ′′′

,,  respectively and summing, one gets 
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According to (13) the left-hand side of (19) equals zero. The expressions )3,2,1( =idtdLi equal zero 
according to (5). Hence (12) is satisfied too. To complete the proof of necessity, we have only to prove that 

)3,2,1(0 =≡ iU i  is impossible. We give a proof by contradiction. Let us suppose )3,2,1(0 == iU i , then 
system (9) becomes a homogenous system of linear partial differential equations for the function F , i.e., 
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The expressions )]([)]([ FZZFZZ jkkj −  are Poisson brackets for the operators )(FZ k  and 

),3,2,1,()( kjkjFZ j >= . Having composed all kinds of Poisson brackets for system (20), it turns out to 
be a complete system (Goursat 1959). There exists a theorem that every complete system of k  equations in  

−n independent variables has )( kn −  independent integrals, and the general integral of the system is an 
arbitrary function of these )( kn −  particular integrals. Applying this theorem, we conclude that system (20) has 
three independent solutions and any other solution is a function of them. It is not difficult to verify that the first 
integrals (5) satisfy system (20). Hence the general solution of (20) is represented as an arbitrary function of first 
integral (5). However, the function F , according to the condition of the theorem, is a new first integral of 
system (4) and therefore it can not be expressed as a function of the integrals (5). Thus )3,2,1(0 == iU i  is 
impossible, i.e., )3,2,1(0 == iU i  form a non- zero solution of system (11). Thus, the necessity of the theorem 
is proved. 
 
Let equations (9) and (12) be satisfied by a function ),,,,,( γγγ ′′′= rqpFF . There exist such functions. 
Indeed, as we have seen by the proof of the necessity of the theorem, the new first integral of system (4) is such a 

function. After multiplying equations (9) by 
dt
dq

dt
dp ,   and 

dt
dr  respectively and summing, one has 
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Equation (21) shows that the function F  is a first integral of system (4). We will prove that this first integral is 
the fourth first integral, i.e., that the function F  is independent of first integrals (5). We give a proof by 
contradiction. Let us suppose that the first integral obtained depends on the integral (5), then it will satisfy (9), 
provided that )3,2,1(0 == iU i . This is a contradiction because, according to the condition of the theorem 

)3,2,1(0 == iU i  form a non-zero solution of (11). The proof of the theorem is completed.    
 
 
5    Example 
 
As an illustration of this approach, the Euler, Lagrange and kinetic symmetry cases have been examined. 
(i)    Euler’s case )0( === ccc zyx : 
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The following functions satisfy system (18) 
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Using (17), we obtain the partial derivatives of the fourth first integral as follow  
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Thus, the fourth first integral is 
 
 ).( 222222222 γγγα ′′+′+−++= ABACBCrCqBpAF  (24) 
 
(ii)    Lagrange’s case )0,( === cc yxBA : 
Also, the functions 
 
 ,0,0,0,1,0,0 321321 ====== SSSUUU  (25) 
 
satisfy system (18), then using (17), we obtain the partial derivatives of the fourth first integral as follow 
 
 .0,0,0,1,0,0 321321 =Γ=Γ=Γ=Ω=Ω=Ω  (26) 
 
Thus, the fourth first integral is 
 
 .rF =  (27) 
 
This result agrees with that obtained in Arkhangel’skii  (1977).  
 
(iii)    Kinetic symmetry case  
Using the same manner as cases (i) and (ii), the functions 

 
 

 ,0,0,0,,, 321321 ====== SSSzUyUxU ccc  (28) 
 
satisfy system (18). Using (17), we obtain the partial derivatives of the fourth first integral as follow 
 
 .0,0,0,,, 321321 =Γ=Γ=Γ=Ω=Ω=Ω ccc zyx   (29) 
 
The fourth first integral obtained as follow 
  
 .rzqypxF ccc ++=  (30) 
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6    Conclusion 
 
The equations of motion of a rigid body about a fixed point in a Newtonian force field are investigated. The 
necessary and sufficient condition for some functions F  to be a fourth first integral of the governing equations 
is obtained. The condition for the fourth first integral is checked by applying it to some special cases (in a 
uniform field and a Newtonian one).  This study is considered as a generalization of some previous studies such 
as Arkhangel'skii  (1963) and Popov (1990).  
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