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On Approximate Analytical Solutions of Nonlinear Thermal Emission
Problems

V.Z. Gristchak, A.M. Pogrebitskaya

In this paper, a hybrid asymptotic method on the basis of a double asymptotic expansion for the investigation of the
nonlinear inhomogeneous systems is described. This approach can be used for the solution of heat transfer prob-
lems that are reduced to the solution of the second order nonlinear differential equation with variable coefficients.

1 Introduction

Most of the mathematical models of real processes have a number of essential singularities that do not allow for
an exact analytical solution. For the solution of such problems one has to apply straight numerical or approxi-
mate analytical methods. Among approximate analytical methods, asymptotic perturbation methods with a small
parameter that naturally occur in the equations or are introduced artificially, are important (Samoilenko V. and
Samoilenko Yu., 2007; Starun and Shkil, 2002).

As it is described in the papers (Gristchak and Dmitrieva, 1999; Geer and Andersen, 1990), one of effective asymp-
totic approaches is a hybrid method, the idea of which is in the creation of any asymptotic expansion (perturbation
method, WKB method, etc.) and Galerkin’s orthogonality principle. The application of the hybrid asymptotic-
numerical method on the basis of the double asymptotic expansion together with the perturbation method in the
nonlinear equations is one of the new trends in heat emission investigation.

2 Description of the Method

The main idea of the proposed hybrid approach for the solution of nonlinear problems consists of the following.

The nonlinear second order differential equation with variable coefficients

ε2U ′′(r) + a(r, ε)U ′(r)− βb(r, ε)U4(r) = 0, U(0) = 1, U ′(1) = 0, (1)

is analyzed, where ε, β are small parameters, a(r, ε), b(r, ε) are some continuously differentiable functions and
a2(r)
4ε2 + a′(r)

2 6= 0 for all r ∈ [0; 1].

To obtain the solution of the equation (1) we will use the method of double asymptotic expansion according to
which, using Poincaré’s (small parameter) method at the first stage, the function U is assumed as an expansion by
the degrees of parameter β (external asymptotic):

U(r) = U0(r) + βU1(r) + β2U2(r) + . . . (2)

By equating coefficients at equal degrees of parameter β, as a result of the external expansion we obtain a system
of linear differential equations for finding the unknown functions U0(r), U1(r), . . . :

for the coefficients at β0 : ε2U ′′
0 + a(r)U ′

0 = 0, (3)

for the coefficients at β1 : ε2U ′′
1 + a(r)U ′

1 = b(r)U4
0 . (4)
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We will consider two terms in the expansion (2). Equations (3)–(4) could have been solved exactly, however in
the exact solution of formula (2) the truncation of the series takes place and the hybrid solution gives an integral
characteristic. As a result of Bernoulli’s method, equation (3) takes a form

ε2Z ′′ − g(r)Z = 0, (5)

where

g(r) =
a2(r)
4ε2

+
a′(r)

2
, Y (r) = exp


− 1

2ε2

r∫

0

a(x) dx


 , U0(r) = Z(r) · Y (r).

The homogeneous linear differential equation (5) has a small parameter ε2, therefore we look for its general
solution by the hybrid WKB-Galerkin method, according to which the solution of equation (5) is described by the
analytical expression (internal asymptotic)

ZH(r, ε) = exp




r∫

0

(δ0ϕ0 + . . .) dx


 . (6)

We take only one term in the expansion (6) and apply the phase integral method to find the unknown value of
function ϕ0 and Galerkin’s orthogonality criterion to find the value of parameter δ0. A detailed solution of the
equation (1) by the WKB-method and also the calculation of the function ϕ0 is described in the paper (Gristchak
and Pogrebitskaya, 2009). So,

ZH(r) = c1,2 exp




r∫

0

δ01,2g
1
2 (x) dx


 ,

where

δ01,2 =
g(0)− g(1)

4
1∫
0

√
g3(x) dx

±

√√√√√√√√
1
ε2

+




g(1)− g(0)

4
1∫
0

√
g3(x) dx




2

.

Then

U0(r) = c1,2 exp




r∫

0

(δ01,2g
1
2 (x)− 1

2ε2
a(x)) dx




is a general solution of the equation (3).

Using the notation

G1(r) = exp




r∫

0

δ01g
1
2 (x) dx


 , G2(r) = exp




r∫

0

δ02g
1
2 (x) dx


 ,

e(r) = exp


 1

2ε2

r∫

0

a(x) dx


 ,

the solution can be written in the form

U0(r) = c1
G1(r)
e(r)

+ c2
G2(r)
e(r)

.

Using the variation of arbitrary constants method for solving the equation (4), function U1(r) can be written as:

U1(r) = k1(r)
G1(r)
e(r)

+ k2(r)
G2(r)
e(r)

.

We also form the system of equations for calculating the unknown functions k1(r) and k2(r)

k′1(r)
G1(r)
e(r)

+ k′2(r)
G2(r)
e(r)

= 0,
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k′1(r)
G1(r)
e(r)

(
δ01g

1
2 (r)− a(r)

2ε2

)
+ k′2(r)

G2(r)
e(r)

(
δ02g

1
2 (r)− a(r)

2ε2

)
=

b(r)U4
0 (r)

ε2
. (7)

The solution of the system (7) is

k1(r) = − 1
ε2(δ02 − δ01)




r∫

0

e(x)b(x)U4
0 (x)

g
1
2 (x)G1(x)

dx + t1


 ,

k2(r) =
1

ε2(δ02 − δ01)




r∫

0

e(x)b(x)U4
0 (x)

g
1
2 (x)G2(x)

dx + t2


 .

Then the solution of the equation (4) takes a form

U1(r) = − G1(r)
ε2(δ02 − δ01)e(r)




r∫

0

e(x)b(x)U4
0 (x)

g
1
2 (x)G1(x)

dx + t1


 +

+
G2(r)

ε2(δ02 − δ01)e(r)




r∫

0

e(x)b(x)U4
0 (x)

g
1
2 (x)G2(x)

dx + t2


 .

Having found functions U0(r), U1(r) and substituting them to the series (2), we obtain the approximate analytical
solution in the form

UH(r) = c1
G1(r)
e(r)

+ c2
G2(r)
e(r)

+

+β


− G1(r)

ε2(δ02 − δ01)e(r)




r∫

0

e(x)b(x)U4
0 (x)

g
1
2 (x)G1(x)

dx + t1


 +

+
G2(r)

ε2(δ02 − δ01)e(r)




r∫

0

e(x)b(x)U4
0 (x)

g
1
2 (x)G2(x)

dx + t2





 . (8)

Note that by taking only two terms in the expansion (2) we obtain the approximate analytical solution (8) for the
nonlinear homogeneous equation (1).

We separately transform the function U4
0 (r):

U4
0 (r) =

1
e4(r)

(
c4
1G

4
1(r) + 4c3

1c2G
3
1(r)G2(r) + 6c2

1c
2
2G

2
1(r)G

2
2(r) + 4c1c

3
2G1(r)G3

2(r) + c4
2G

4
2(r)

)
. (9)

Substituting expression (9) in formula (8) we obtain

UH(r) = c1
G1(r)
e(r)

+ c2
G2(r)
e(r)

+

+β(− G1(r)
ε2(δ02 − δ01)e(r)

{
r∫

0

b(x)
e3(x)g

1
2 (x)

(
c4
1G

3
1 + 4c3

1c2G
2
1G2+

+6c2
1c

2
2G1G

2
2 + 4c1c

3
2G

3
2 + c4

2G
−1
1 G4

2

)
dx + t1}+

+
G2(r)

ε2(δ02 − δ01)e(r)
{

r∫

0

b(x)
e3(x)g

1
2 (x)

(
c4
1G

4
1G

−1
2 + 4c3

1c2G
3
1+

+6c2
1c

2
2G

2
1G2 + 4c1c

3
2G1G

2
2 + c4

2G
3
2

)
dx + t2}).

We introduce the notations
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f(x) =
b(x)

e3(x)g
1
2 (x)

h(x) =

x∫

0

g
1
2 (τ) dτ,

I1(r) =

r∫

0

f(x) exp(3δ01h(x)) dx, I4(r) =

r∫

0

f(x) exp(3δ02h(x)) dx,

I2(r) =

r∫

0

f(x) exp((2δ01 + δ02)h(x)) dx, I5(r) =

r∫

0

f(x) exp((4δ02 − δ01)h(x)) dx,

I3(r) =

r∫

0

f(x) exp((δ01 + 2δ02)h(x)) dx, I6(r) =

r∫

0

f(x) exp((4δ01 − δ02)h(x)) dx. (10)

Then finally the hybrid asymptotic solution of the equation (1) takes a form

UH(r) = c1
G1(r)
e(r)

+ c2
G2(r)
e(r)

+

+β

(
− G1(r)

ε2(δ02 − δ01)e(r)
(
c4
1I1(r) + 4c3

1c2I2(r) + 6c2
1c

2
2I3(r) + 4c1c

3
2I4(r) + c4

2I5(r) + t1
)
+

+
G2(r)

ε2(δ02 − δ01)e(r)
(
c4
1I6(r) + 4c3

1c2I1(r) + 6c2
1c

2
2I2(r) + 4c1c

3
2I3(r) + c4

2I4(r) + t2
))

. (11)

The integrals (10), which are quadrature free in general, are included to the solution (11). So to find their approxi-
mate values the method of their analytical estimate can be used.

To estimate integrals Ij(r), j = 1 . . . 6, applying the method of integration by parts, we get

r∫

0

f(x) exp(kh(x)) dx =
1
k

[
f(r)
h′(r)

exp(kh(r))− f(0)
h′(0)

exp(kh(0))
]

+

+
1
k2

[(
f(0)
h′(0)

)′ exp(kh(0))
h′(0)

−
(

f(r)
h′(r)

)′ exp(kh(r))
h′(r)

]
+

+
1
k3

[((
f(r)
h′(r)

)′ 1
h′(r)

)′
exp(kh(r))

h′(r)
−

((
f(0)
h′(0)

)′ 1
h′(0)

)′
exp(kh(0))

h′(0)

]
+ O

(
1
k4

)
.

where k = 3δ01 , 2δ01 + δ02 , δ01 + 2δ02 , 3δ02 , 4δ02 − δ01 , 4δ01 − δ02 .

An analytical estimation of the integrals is described in detail in the paper (Gristchak and Kabak,1999). Arbitrary
constants c1, c2 and t1, t2 are found from initial conditions U ′

0(1) = 0, U0(0) = 1 and U ′
1(1) = 0, U1(0) = 0

correspondingly.

3 Application of the Method

This approach has been investigated in the paper (Pogrebitskaya, 2008) and used for the applied problem of math-
ematical physics that describes the process of the diffusion of heat in a sphere.

We apply this method to the concrete problem of thermal emission. We consider a problem of thermal emis-
sion of ring plates of a trapezoidal intersection radiator that is described by the following nonlinear second order
differential equation with variable coefficients in the dimensionless form

tgαU ′′(r) + tgα

(
1

r + ρ
− 1

(1− r) + θtg−1α

)
U ′(r)− βU4(r)

(1− r) + θtg−1α
= 0, (12)
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U(0) = 1, U ′(1) = 0,

where k is the coefficient of the heat conduction, R is the flow radius, RB is radius of the base of the edge, RT is
radius of the vertex of the edge, r = (R − RB)/(RT − RB), T is the temperature, TB is the temperature of the
base of the edge, U = T/TB , ZB is the thickness of the edge at the base, ZT is the thickness of the edge at the
top, α is the angle of the edge narration, e is the blackness degree, σ is the Stefan-Boltzmann constant,

β = (RT −RB)eσT 3
B/k cos α, θ = ZT /(RT −RB), ρ = RB/(RT −RB).

Figure 1. Scheme for annular fins of trapezoidal profile 1 is the insolation; 2 is the heat conducting sub-
structure of the edge; 3 is the ring shaped edge of the trapezoidal profile

The scheme for annular fins of trapezoidal profile is shown in the Figure 1. While solving the problem we suppose
the following assumptions that led to the equation (12):

1. The heat transmission by heat conduction is going in the radial direction.

2. The heat flow and temperature distribution in the edge do not depend on time.

3. There are no heat sources and flows in the edge.

4. The temperature at the base of the edge is constant.

5. The edge is made from a homogeneous material the properties of which do not depend on the temperature.

6. The edge surface does not absorb any radial energy from the outside.

7. There is no heat transmission from the vertex of the edge.

8. The edge is a grey body.

Here α, θ and ρ are three parameters that characterize the geometry of the edge (tgα = ε2). Value α = 0
corresponds to the rectangular profile. This case will be considered separately. Value θ = 0 corresponds to the
triangle profile. Inequality to zero of α and θ points to a trapezoidal edge profile. Straight edges with each of these
three profiles can be assumed if ρ ≥ 10.

To obtain the solution of the equation (12) the hybrid asymptotic method as described above is used. We determine
the results of a comparison of the approximates that were received by the usage of the hybrid approach and the
phase integrals method with numerous results that were received by the use of the fourth order Runge-Kutta method
for the concrete parameters of the system under consideration. Calculations have been made in the environment of
the software ”Mathcad”.

The values of the parameters that characterize the geometry of the edge are taken from the paper (Keleer and
Holdrege, 1970): α = 6o, θ = 0, 1 and ρ = 0, 5, then ε =

√
tgα = 0, 324.
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We trace the influence of the small parameter β on the correlation of the results. So in Fig. 2, 3, 4 it is seen that with
the rising of β the divergence of the results increases. The hybrid approach is a rather satisfactory approximation
of the numerical solution for all values of the parameter of external expansion. The results that are received by the
usage of the phase integral method show a smaller precision when β = 0, 05, and they become unacceptable at all
when β = 0, 07 and β = 0, 1.

Figure 2. Comparison of the asymptotic solutions of Eq. (12) with the numerical solution for β = 0, 05,
where U(r) is the numeral solution, H(r) is the hybrid solution, V (r) is the WKB solution

Figure 3. U(r) is the numerical solution, H(r) is the hybrid solution, V (r) is the WKB solution

117



Figure 4. U(r) is the numerical solution, H(r) is the hybrid solution, V (r) is the WKB solution

We put α = 51o, then ε = 1, 111. As it is seen in Fig. 5, 6, 7, the hybrid approximation reiterate the character of
the numerical solution.

Figure 5. Comparison of the hybrid and WKB solutions of Eq. (12) with the numerical solution for β =
0, 05, where U(r) is the numerical solution, H(r) is the hybrid solution, V (r) is the WKB
solution

Figure 6. U(r) is the numerical solution, H(r) is the hybrid solution, V (r) is the WKB solution β = 0, 07

Figure 7. U(r) is the numerical solution, H(r) is the hybrid solution, V (r) is the WKB solution β = 0, 1

118



We put θ = 0, 05 and ρ = 10, then the obtained results also show the increase of the divergence between numerical
and hybrid methods at the whole interval of change of the independent variable r. For this value ρ (even if the
parameter of the internal expansion ε < 1) WKB gives unacceptable result. It is seen from data in Table 1.

Table 1. The results of the numerical and hybrid solutions for the parameter ε < 1.

ρ = 10 θ = 0, 05 α = π/30
r β = 0, 01 β = 0, 05 β = 0, 1

U UH UWKB U UH UWKB U UH UWKB

0 1 1 1 1 1 1 1 1 1
0,1 0,994 0,993 1,027 0,977 0,969 1,036 0,963 0,938 1,047
0,2 0,988 0,987 1,055 0,956 0,939 1,076 0,93 0,879 1,102
0,3 0,983 0,981 1,086 0,937 0,911 1,122 0,901 0,824 1,168
0,4 0,978 0,975 1,118 0,92 0,885 1,175 0,874 0,772 1,45
0,5 0,973 0,971 1,153 0,904 0,862 1,234 0,851 0,725 1,336
0,6 0,969 0,967 1,189 0,89 0,84 1,301 0,831 0,682 1,44
0,7 0,966 0,964 1,227 0,879 0,822 1,373 0,814 0,645 1,556
0,8 0,963 0,961 1,263 0,869 0,808 1,449 0,801 0,616 1,681
0,9 0,961 0,96 1,294 0,863 0,798 1,517 0,792 0,595 1,795
1,0 0,96 0,96 1,309 0,861 0,794 1,551 0,789 0,587 1,855

Table 2. The results of the numerical and hybrid solutions for the parameter ε > 1 .

ρ = 10 θ = 0, 05
α = π/4 α = π/3

r β = 0, 01 β = 0, 05 β = 0, 1 β = 0, 01 β = 0, 05 β = 0, 1

U UH U UH U UH U UH U UH U UH

0 1 1 1 1 1 1 1 1 1 1 1 1
0,1 0,999 0,993 0,995 0,989 0,992 0,985 0,999 0,992 0,997 0,99 0,995 0,988
0,2 0,998 0,986 0,991 0,979 0,983 0,971 0,999 0,984 0,994 0,981 0,99 0,976
0,3 0,997 0,979 0,987 0,97 0,975 0,958 0,998 0,977 0,992 0,972 0,984 0,965
0,4 0,996 0,973 0,982 0,961 0,968 0,945 0,998 0,97 0,989 0,963 0,979 0,954
0,5 0,995 0,968 0,978 0,953 0,96 0,933 0,997 0,964 0,987 0,955 0,975 0,944
0,6 0,994 0,963 0,974 0,945 0,953 0,922 0,997 0,958 0,984 0,947 0,97 0,934
0,7 0,994 0,959 0,97 0,938 0,946 0,912 0,996 0,953 0,981 0,941 0,965 0,926
0,8 0,993 0,956 0,967 0,933 0,94 0,903 0,996 0,949 0,979 0,935 0,961 0,918
0,9 0,992 0,955 0,963 0,929 0,934 0,897 0,995 0,946 0,977 0,931 0,957 0,912
1,0 0,992 0,956 0,962 0,929 0,93 0,895 0,995 0,946 0,975 0,931 0,954 0,911

As a result of the investigation, a closed analytical solution of the thermal emission problem with variable charac-
teristics is obtained. Comparison of the results with the straight numerical method show that the given approximate
analytical solution holds both for small and for large parameter values of the internal expansion. For example, if
the phase integrals method is effective for the parameter β ≤ 0, 05 but for the hybrid WKB-Galerkin approach the
range of values of the external expansion parameter increases, in practice, twice, namely up to β = 0, 1.
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