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On the rate-dependent properties of open-cell polyurethane foams

Gianpietro Del Piero, Giampiero Pampolini

Experiments on blocks of open-cell polyurethane foam in uniaxial compression show a progressive strain localiza-
tion. In a preceding paper, localization is described by a model involving a two-phase nonlinear elastic material.
The model is in a good qualitative agreement with experiments, but it was unable to capture some finer aspects
of the experimental response, such as stress softening, rate-dependence, and some memory effects. In the context
of filler-reinforced rubbers, the inelastic aspects of the response have been studied by several authors. Several
models have been proposed, in which a specimen is generally represented as a chain of rheological elements, each
consisting of a linear elastic spring set in parallel with one or more dissipative elements. Here we anticipate some
results of a research still in progress, in which a good description of the response of open-cell foams is obtained
from the existing models for filler-reinforced rubbers by taking visco-elastic dissipative elements obeying a frac-
tional exponential law, and by replacing the convex elasticstrain energy of the springs with a non-convex energy
of the double-well type.

1 Introduction

Polymeric open-cell foams exhibit a complex non-linear behavior. As shown in Fig. 2, the response curve for
uniaxial compression shows three well distinguishable regimes: an initial ascending branch, an almost horizontal
plateau, and a second ascending branch. The same three regimes are present at unloading but, instead of following
backwards the loading path, the response exhibits a hysteresis loop. Moreover, in the plateau regime a localization
of deformation occurs on layers orthogonal to the loading direction, see Fig. 1 and [Lakes et al. (1993); Wang and
Cuitinho (2002); Pampolini and Del Piero (2008)].

Many studies, mostly based on numerical simulations, have been addressed to the modeling of macroscopic re-
sponse in terms of microstructure [Gibson and Ashby (1997);Warren and Kraynik (1997); Laroussi et al. (2002);
Gong et al. (2005); Jang et al. (2008)]. Usually, the foam is represented as a periodic structure made of linear
elastic beams, and strain localization is attributed to thebuckling of the cell ligaments. In the model proposed
in [Gioia et al. (2001)] and developed in [Pampolini and Del Piero (2008)], strain localization is attributed to a
special non-convex shape of the strain energy density, which is also responsible of the hysteresis loops observed in
cyclic tests. This elastic model succeeds in reproducing many general features of the observed response. But it is
unable to capture some typical inelastic effects, such as:

- Rate dependence, revealed by an increase of the stress with increasing loading rate, see Fig. 2a and the
experiments in [Sorrentino et al. (2000)],

- Stress softening, that is, a decay of the stress in the subsequent cycles of a cyclic test, see Fig. 2b and the
experiments in [White et al. (2000); Deng et al. (2006)],

- A memory effect, consisting of a partial stress recovery after a sufficiently long period of rest, see Fig. 3 and
the experiments in [White et al. (2000)].

The same effects are present in filled rubbery polymers. In particular, the stress softening observed in these
materials is called the Mullins effect [Mullins (1948, 1969); Mullins and Tobin (1957)]. It is generally attributed
to the interactions between the polymeric matrix and the fillers [Bueche (1961)], and is regarded as a form of
isotropic damage [Ogden and Roxburg (1999); Beatty and Krishnaswamy (2000); Dorfmann and Ogden (2003)].

For polymeric foams, the recovery in time of the loading curves, Fig. 3d, rather suggests that this phenomenon
be due to a memory effect. For this reason, we decided to include in the model a rate-dependent dissipation,
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Figure 1: The progressive localization mechanism: the initial homogeneous deformation (a), the first strain lo-
calization at the specimens’ ends (b), the subsequent propagation to the central layers (c), (d), (e), and the new
homogeneous deformation (f).

by introducing visco-elastic damping elements associatedwith each elastic spring. Here we summarize the first
results of our investigation. Throughout this paper, bystresswe mean the force divided by the initial area, and
by deformationwe mean the ratio between the upper crosshead displacement and the initial distance of the upper
crosshead from the fixed lower basis.

2 Experiments

The experiments described below were made on a load frame Instron 4467 with a 500 N load cell, located at
the Laboratorio di Materiali Polimerici of the University of Ferrara. The specimens were parallelepipeds with
base dimensions 100 x 100 mm, cut out from a 50 mm thick sheet ofcommercial open-cell polyurethane foam.
The cutting was done manually, using a ribbon saw. All tests were made at room temperature, controlling the
displacement of the upper crosshead, and measuring the force exerted by the sample.

2.1 Strain localization

To visualize the phenomenon of strain localization, a rectangular grid has been drawn on one of the specimens’
sides. In Fig. 1 the deformation of the grid under uniaxial compression at the constant speed of 5 mm/min
is shown. After an initial regime of homogeneous deformation, Fig. 1a, a severe deformation occurred at the
specimens’ bases, Fig. 1b. This deformation then propagated to the central layers, Fig. 1c,1d, 1e, and finally, after
all layers had been reached, the deformation again became homogeneous, Fig. 1f.

2.2 Cyclic compression tests

Cyclic compression tests have been performed at the crosshead speeds of 0.1, 5, and 100 mm/min. Three samples
were tested for each speed. In all tests, the direction of motion of the crosshead has been reversed when the
displacement reached the value of 35 mm, and reversed again at complete unloading, that is, as soon as the load
cell measured a null force. Each test consisted of four loading-unloading cycles. The average stress-deformation
curves at the first cycle for each of the three speeds are shownin Fig. 2a, while Fig. 2b shows the average curves
of the first four cycles for the samples subject to the crosshead speed of 5 mm/min.
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Figure 2: (a) Compression tests at different rates. Force - elongation curves (average on three samples) at crosshead
speed of 0.1 mm/min (dashed line), of 5 mm/min (solid line) and of 100 mm/min (dash-dotted line). (b) Cyclic
behavior. Cyclic compression test with a crosshead speed of5 mm/min. Force -elongation curves average on three
samples.
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Figure 3: Force-elongation curves in a compression test consisting of four cycles on a virgin sample (a), repeated
after three resting periods of 16 hours (b), 52 hours (c) and 33 days (d). Crosshead speed of 5 mm/min.
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The first figure shows an overall lifting of the response curves with increasing velocity. The second figure shows
the phenomenon of stress softening, which consists of a lowering of the loading curves as the number of cycles
increases. The unloading curves remain almost the same for all cycles. Notice that the stress softening is larger
between the first and the second cycle, and much less in the subsequent cycles.

Fig. 3 shows the results of an experiment in which a virgin sample was subjected to four cycles of the type
described above. The same test was repeated three more times, with resting periods of increasing duration: 16
hours, 52 hours, 33 days. During the resting periods the sample was kept in a box, free of any load and constraint.
The four series of response curves are shown in Fig. 3. The first loading curve in the second group is higher than
the last loading curve in the first group; in fact, it almost coincides with the second loading curve in the first group.
Thus, a significant part of the stress reduction observed at the end of the first group has been recovered after a
resting period of 16 hours. In the third test performed aftera rest of 52 hours there are no significant changes in the
response curves. On the contrary, in the fourth test, after arest of 33 days, the first loading curve raises of about
10% with respect to the first curve of the preceding test. This stress recovery in time induces us to exclude that the
observed stress softening be due to permanent damage.

2.3 Loading-unloading cycles in the plateau regime

To investigate the response in the plateau regime we made some cyclic compression tests with small-amplitude
loading-unloading cycles. Starting from three different points, located either on the upper or on the lower plateau,
we made three cycles of amplitude sufficiently small to avoidphase changes. The force-elongation curves in Fig.
4a and 4b show small hysteresis loops. In a further experiment the loading-unloading cycle was interrupted several
times, each time keeping the specimen under constant elongation for a duration of 45 minutes. As shown in Fig.
4c, stress relaxation was observed. This gave us evidence ofthe presence of viscous effects.
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Figure 4: Force-elongation curves for loading-unloading tests inside the hysteresis loop starting from the upper (a)
and the lower (b) plateau, and with intermediate rests of 45 min (c). Crosshead speed of 1 mm/min. Relaxation
test (d): the experimental curve (full line), and the analytical curve obtained with fractional dashpots (dotted line).
The initial part of the experimental curve corresponding tothe loading ramp has been omitted. The initial value of
the stress is 7.9 kPa.

77



Figure 5: Subdivision of the body into cell layers (a), and representation of each layer as a non linear elastic spring
(b) with non convex energy (c), and non-monotonic force-elongation curve (d).

2.4 Relaxation tests

To determine the relaxation function of the material, a 10-days relaxation test is performed. A sample is com-
pressed at a crosshead speed of 5 mm/min, till the crosshead displacement reached 35 mm. Then, the upper
crosshead is locked and held in position for 10 days. The force is measured at intervals of one second for the
first four hours, and then at intervals of 1000 seconds. The stress-time curve is given in Fig. 4d. It shows a very
fast initial decay, followed by a long period of slow relaxation. The test was interrupted before the relaxation was
complete. Therefore, a full characterization of the relaxation function would need a longer period of observation.

3 The elastic model

In the elastic model proposed in [Pampolini and Del Piero (2008)] the foam is modelled as a chain of non-linear
elastic springs, in which each spring represents a layer of cells, see Fig. 5. We assume that the energy of a spring
only depends on the elongationε of the spring, and that all springs have the same energy function w. The non-
convex form taken forw is shown in Fig. 5c. The corresponding stress-strain curve is shown in Fig. 5d. In it, the
two ascending branches form the phases A and B of the material, respectively.

The equilibrium configurations of the chain are identified with the stationary points of the total energy

E(ε1, ε2, · · · , εN ) =

N
∑

i=1

w(εi) , (1)

subjected to the hard device condition,
N

∑

i=1

εi = Nε0 , (2)

whereNε0 is the given displacement of the upper basis, the displacement at the lower basis being zero.

The stationarity condition requires that the forcesw′(εi) transmitted across the springs all have the same value
σ. Moreover, for sufficiently largeN , a necessary condition for a local energy minimum is that allelongations
εi lie on one of the two ascending branches of the stress-straincurve, see [Pampolini and Del Piero (2008)].
Local energy minima correspond to metastable equilibrium configurations. Therefore, a metastable equilibrium
configuration may haveM springs in phase A andN − M springs in phase B, withM any integer between0 and
N .

In Fig. 6a the force-elongation pairs(σ, ε0) corresponding to metastable equilibrium configurations are shown for
a chain made of four springs. We see that they form five ascending curves, themetastable equilibrium branches,
each corresponding to a value ofM between 0 and 4. The stress-free configuration(σ, ε0) = (0, 0) lies on the
equilibrium branchM = 4, in which all springs are in phase A. When loaded starting fromthis configuration, the
system follows this branch. The branch ends whenσ reaches the valueσmax.
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Figure 6: Response curves for a system of 4 springs (a) and fora system of 20 springs (b).

If at this value ofσ a further elongation is applied, it is reasonable to assume that the system jumps to the metastable
branchM = 3 with three springs in phase A and one spring in phase B. When this branch ends, the system jumps
to the branchM = 2, and then toM = 1. Finally, it reaches the branchM = 0, which corresponds to the
single-phase configurations with all springs in phase B.

As shown in Fig. 6b, the amplitudes of the jumps at the end of a branch decreases with increasingN . For largeN ,
the loading curve becomes a wavy, approximately horizontalline, close to horizontal lineσ = σmax. Similarly,
the unloading curve becomes close to the lineσ = σmin.

This type of response captures some basic aspects of the stress-strain behavior of the material, such as strain
localization and hysteresis. Clearly, this purely elasticmodel cannot capture the inelastic effects. In the next
section we take these effects into account, by introducing avisco-elastic dissipative element.

4 The visco-elastic model

4.1 Discretization in time

Consider a model in which each spring is connected in parallel with a dissipative element, see Fig. 7. This element
obeys the linear viscoelastic Boltzmann-Volterra constitutive law

σd

i (t) =

∫ t

0

G(t − s) ε̇i(s) ds , (3)

whereεi is the elongation of thei-th element of the chain, and the relaxation functionG is positive and monotoni-
cally decreasing. The chain is still subjected to the hard device condition (2), and the forceσi is still the same for
all elements. But the force is now the sum of two contributions: an elastic term due to the spring, depending of the
current valueεi(t), and the visco-elastic term (3), which depends on the whole past history ofεi:

σi(t) = w′(εi(t)) +
∫ t

0
G(t − s) ε̇i(s) ds i = 1, 2, . . . N . (4)

For a given loading processt 7→ ε(t), we have to solve the problem of finding the forceσ(t) and the elongations
εi(t) which satisfy equations (2) and (4) for allt, under given initial conditionsεi(0) = εi0. The problem admits
the homogeneous solutionεi(t) = ε(t). This solution is unique ifG is positive and monotonically decreasing and
w is convex, see [Del Piero and Pampolini (2009)]. Ifw is non-convex, non-homogeneous solutions may exist.
They can be approximately determined via time discretization. Using the incremental approach described in [Del
Piero and Pampolini (2009)], the incremental version of equations (4)

σ̇ − Qi(t)ε̇i = Ai(t) , (5)

is obtained, where
Qi(t)

.
= w′′(εi(t)) + G(0) , Ai(t)

.
=

∫ t

0
Ġ(t−s) ε̇i(s) ds . (6)
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Figure 7: The visco-elastic model.

These equations, together with the incremental version of (2)

N
∑

i=1

ε̇i(t) = Nε̇(t) , (7)

provide, for eacht, a system ofN + 1 linear algebraic equations for the unknownsσ̇(t), ε̇i(t).

The system has a unique solution if all coefficientsQi are different from zero. If only one coefficient vanishes,
QN = 0, in analogy with what is made for the elastic model, we assumethat theN -th element undergoes a phase
change. If more than one coefficients vanish, the system admits a multiplicity of solutions. In this case, uniqueness
is recovered assuming that only one element undergoes a phase change [Del Piero and Pampolini (2009)].

In the present dissipative context, the concept ofphaseneeds to be suitably re-defined. Assume that the function
w′′ is concave. Then the set of allε for which w′′(ε) + G(0) < 0 is an interval(εA, εB). We say that thei-th
element is in phase A at timet if εi(t) ≤ εA, and that it is in phase B ifεi(t) ≥ εB. Notice that, becauseG(0) > 0,
the interval(εA, εB) is strictly contained in the interval which separates the two phases in the absence of viscous
dissipation.

A change of phase still consists in the jump of one of the elastic springs from one phase to the other. At a fixed
time t, suppose that the firstM elements are in phase A and the remainingN−M are in phase B. Also assume that
QM (t) = 0 and that, under a given incrementδε of the total elongation, theM -th element undergoes the transition
from phase A to phase B.

The incrementsδi, δσ, of εi, σ, occurring during the phase change are determined by theN+1 algebraic equations
∑N

i=1
δi = δε ,

w′

A
(εi(t) + δi) + Bi(t) + Gτ δi = δσ ∀i ∈ {1, . . . M − 1} ,

w′

B
(εM (t)+ δM ) + BM (t) + Gτ δM = δσ ,

w′

B
(εi(t) + δi) + Bi(t) + Gτ δi = δσ ∀i ∈ {M + 1, . . . N} ,

(8)

where
Bi(t)

.
= −w′

A
(εi(t)) +

∫ t

0

(

G(t+ τ− s) − G(t− s)
)

ε̇i(s) ds , (9)

andwA andwB are the restrictions ofw to (0, εA) and to(εB,+∞), respectively.

4.2 Characterization of the material parameters

For the spring we take the non-convex double-well strain energy [Pampolini and Del Piero (2008)]

w(εi) =
1

2
γ (1 + εi)

2+ c (1 + εi)
m

( 1

m + 2
(1 + εi)

2 − 1

m

)

−µ log(1 + εi) +
β
√

π

2
√

k
erf

(
√

k(εi − ζ)
)

+ δ ,

(10)

whereerf (·) is the error function

erf(x) =
2√
π

∫ x

0

exp(−t2) dt , (11)

80



Table 1: The values of the material constants used in the numerical simulations.

c m µ ζ β k

70 kPa 12 1 kPa 0.8 0.5 kPa 160

K1 r1 η1 K2 r2 η2

4.5 kPa 0.32 s 4.5 104 kPa s 12.72 kPa 0.89 763.2 kPa s

c,m, µ, β, k, ζ are positive constants, andγ, δ are constants whose values

γ = µ − β exp(−kζ2),

δ = −1

2
(µ − β exp(−kζ2)) +

2c

m(m + 2)
− β

√
π

2
√

k
erf(

√
k ζ) ,

(12)

are such that both the force and the strain energy are zero at the reference configurationεi = 0. The values taken
for the remaining elastic constants are given in Table 1. Theforce in the spring

σe
i
(εi) = (1 + εi)

(

µ − β exp(−k ζ2)
)

+ c (1 + εi)
m−1((1 + εi)

2 − 1)

−µ (1 + εi)
−1 + β exp(−k(εi − ζ)2)

(13)

is obtained by differentiation of the energy.

As shown in Fig. 4d, the relaxation function is characterized by two well distinct regimes: a fast stress decay of the
duration of a few seconds, followed by a regime of slow decay whose duration exceeds the ten days of the duration
of the test. The same figure shows that the relaxation curve isconveniently approximated by the two fractional
Maxwell elements connected in parallel represented in Fig.7. Each element is formed by a linear elastic spring of
stiffnessKiα and by a dashpot obeying the laws

σiα(t) = Kiαεe

iα(t) , σiα(t) = ηα

drα

dtrα

εd

iα(t) , i = 1, . . . N, α = 1, 2, (14)

respectively, whereεe
iα

, εd
iα

, are the elongations of theα-th spring and dashpot, respectively, of thei-th element,
ηα are positive constants, andrα are numbers between 0 and 1. Forrα = 1 the fractional derivative reduces to the
ordinary derivative, see [Koeller (1984); Gorenflo and Mainardi (1997)] for details. The forceσd

i
acting on the

whole element is the sum of the forcesσiα acting in the dashpots

σd

i (t) =
2

∑

α=1

ηα

drα

dtrα

εd

iα(t) . (15)

This equation is a special case of the Boltzmann-Volterra constitutive law (3), obtained from the relaxation function

G(t) =

2
∑

α=1

Kα Erα

(

−
(

Kα t

ηα

)rα
)

, (16)

whereErα
(·) is the Mittag-Leffler function

Erα
(x) =

∞
∑

n=0

xn

Γ(rαn + 1)
, (17)

with Γ(·) the Gamma function, see [Koeller (1984); Lion (1997)]. The parametersKα, ηα andrα were calibrated
to obtain an optimal representation of the experimental relaxation curve, see Fig. 4d. Their values are reported in
Table 1.

4.3 Numerical simulations

To find the response to a loading processt → ε(t) we take time intervals(tn, tn+1), n = 1, 2, . . ., and approx-
imating functions with time derivatives constant in each interval. If the solution at timetn is known and if all
coefficientsQi(tn) are positive, the solution at timetn+1 can be computed by solving the system of equations (5)
and (7), with the solution of the preceding step as initial condition. If at timetn one or more coefficientsQi(tn)

81



Figure 8: Numerical simulations for a chain of 30 elements ina cyclic test at 5 mm/min (a), and in a simple
loading-unloading test at two different rates (b).

Figure 9: Comparison between the experiments (right), and the prediction of the proposed model (left) for a
complex loading unloading process.

are non-positive a change of phase occurs, and the solution is calculated by solving the system (8). In our com-
putations, this has been done with an iterative method basedon the Newton-Raphson procedure. The numerical
experiments are still in progress, and only partial resultsare available at the moment. Fig. 8a shows a simulation of
the stress softening phenomenon, obtained with a chain of30 elements and assuming a loading rate of 5 mm/min.
The main general features of the simulated response are:

• the lowering of the loading curve with increasing number of cycles,

• a sharp transition from the first ascending branch to the plateau in the first cycle, and a more gradual transition
in the following cycles,

• a substantial independence of the unloading curves on the number of cycles,

• a residual deformation at the end of each cycle.

Comparing the results with the experimental curves of Fig. 2b, one may see some discrepancies:

• In the numerical simulation, the transition between the plateau regime and the second ascending branch
occurs at a deformation which does not significally change with the number of cycles. In the experiments,
one hasε = 0.6 at the first cycle andε = 0.5 at the subsequents cycles.

• In the simulation, the slope of the plateau increases with the number of cyles. In the experimental curves,
the slope of the plateau is essentially the same for all cycles.
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These discrepancies can be attributed to an insufficient numberN of elements. Indeed, in the simulation there are
jumps at the phase changes in all cycles after the first, whilethe experimental response is smooth. In the elastic
model the jump amplitudes tend to zero with increasingN , see Fig. 6. An investigation on the influence of the
number of the elements in the visco-elastic model is now in progress.

In Fig. 8b are shown the simulations of a single loading-unloading cycle at two different loading rates, 5 and 0.1
mm/min. One sees a lifting of the response curve with increasing loading rate, more evident at loading than at
unloading. This is in agreement with experiments. On the contrary, there is no experimental confirmation of the
different length of the plateau predicted by the two simulations.

A simulation of a complex loading-unloading process is shown in Fig. 9. We see that the model gives a qualitative
description of the behavior of the foam, including the smallhysteresis loop from the lower plateau and the small
vertical segmentsε = 0.35 andε = 0.22 at the end of the two unloading curves, which are due to some period of
rest before reloading.

The third loading curve in the simulation is not quite satisfactory. Instead of being smooth, it presents some evident
jumps. Moreover, it does not reach the same force level reached at first loading, as it occurs in the experimental
curve. Simulations with largerN may reduce these dicrepancies.
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