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Characterization of micro-mechanical deformation systems of magnesium
based on energy minimization

M. Homayonifar, J. Mosler

The present paper is concerned with a variationally consistent approach suitable for the modeling of rate-inde-
pendent crystal plasticity at finite strains including a Taylor-type phase transition. The method relies strongly on
the variational structure of crystal plasticity theory, i.e., an incremental minimization principle can be derived
in case of a fully associative model which allows to compute the unknown slip rates by computing the respective
stationarity conditions. More precisely, all internal variables are obtained by minimizing the stress power. For
modeling twinning, which is the second important physical process governing the deformation behavior of magne-
sium, a simple approach for phase transition based on volume averaging is proposed. In line with the modeling of
the plastic slip, the proposed method is fully variational, i.e., phase transformation occurs, if this is energetically
favorable. Comparisons of numerical results predicted by the novel model to experimental results show that the
Taylor-type phase transition is able to capture the hardening transition corresponding to the initial and the twin
phase realistically. The same can be observed for the hardening behavior of ordinary dislocation systems of mag-
nesium characterized by means of the channel die test.

1 Introduction

Light-weight materials are of great importance in many different industries. For instance, in the transportation
industry, those materials can be used to efficiently reduce fuel consumption and thus, the green house gas emissions.
One very promising lightweight material is magnesium and its alloys. Due to its high specific strength and its
relatively low cost, it challenges aluminum alloys in some applications such as those in automotive industries. The
deformation behavior of magnesium is defined by its hexagonal crystal structure. It leads to a limited number of
dislocation systems and consequently, twinning is a common structural deformation response. Investigations on
the plastic deformation systems of magnesium have been originated by early studies of dislocations and twinning
in hexagonal materials, see (Schmid, 1924; Siebel, 1939). Since then, experimental observations have revealed that
more deformation systems can be activated under different boundary conditions, see (Hauser et al., 1955; Reed-Hill
and Robertson, 1957b; Yoshinaga and Horiuchi, 1963; Tegart, 1964; Wonsiewicz and Backofen, 1967; Roberts and
Partridge, 1966; Obara et al., 1973; Ando and Tonda, 2000). Concerning the modeling approaches for magnesium
and its alloys, the majority of those models is based on polycrystal plasticity approaches, see(Lebensohn and Tom,
1993; Agnew et al., 2001; Agnew and Duygulu, 2003; Beausir and Suwas, 2008). For instance, Beaudoin et al.
proposed a hybrid formulation to combine the polycrystal plasticity theory with the finite element method, in order
to model the non-uniform deformation of crystalline solids (Beaudoin et al., 1995; Kumar and Dawson, 1998;
Myagchilov and Dawson, 1999). Recently, this method has been used to analyze the plastic effects in magnesium
alloys under more complicated boundary conditions such as those related to cup drawing, see Tang et al. (2009).
Most of the aforementioned models fall into the range of crystal plasticity theory. Although rate-independent and
rate-dependent crystal plasticity are relatively well understood from a physical point of view, cf. Asaro (1983),
many problems are still open. One example is given by the computation of the active slip systems in magnesium,
which can be an ill-conditioned problem. Possible solutions are an explicit integration scheme, see Graff et al.
(2007), or a modified algorithmic method as proposed in (Miehe and J. Schroeder, 2001; Staroselsky and Anand,
2003; McGinty and McDowell, 2006). Within the present paper, the aforementioned problem is naturally solved by
elaborating a so-called variational constitutive update, cf. (Ortiz and Repetto, 1999; Ortiz et al., 2000; Carstensen
et al., 2002; Lambrecht et al., 2003; Bartels et al., 2004; Ortiz and Repetto, 1999; Mosler and Bruhns, 2009a,b).
In contrast to conventional schemes, variational updates allow to compute the unknown slip deformations by
minimizing a certain energy. Thus, they automatically and naturally define the set of active slip planes by energy
minimization. Furthermore, they permit to analyze other important physical phenomena in crystals. For instance,
such formulations reveal that the linear dependency of dislocation slips and the latent hardening may yield a non-
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convex energy and hence, they are related to an evolving sub-grain micro-structure, see Ortiz and Repetto (1999).

In the present paper, a fully variational description of the deformation systems in magnesium is discussed. In
addition to plastic slip, it also covers deformation-induced twinning. This phase transformation is modeled fully
analogously to that observed in shape memory alloys, see Mielke (2004). More precisely, starting with a mixture
theory, a re-orientation associated with twinning occurs, if this is energetically favorable. The resulting variation-
ally consistent implementation of the incremental energy minimization concept for modeling of magnesium single
crystal is critically analyzed by comparing the numerically predicted results to experiments.

2 Fundamentals of finite strain plasticity theory

In this section, the fundamentals of finite strain plasticity theory are briefly summarized. This section serves
mainly for introducing the notations used in this paper. As usual, the deformation of a solid Ω ⊂ R3 is defined
by the deformation mapping ϕ(X) : Ω → R3. For modeling inelastic processes such as those related to plastic
slip, a multiplicative decomposition of the deformation gradient F = GRADϕ(X) into a plastic part F p, which
transforms the reference body into a stress free intermediate configuration, and an elastic part F e corresponding to
the elastic distortion is assumed (see Lee (1969)), i.e.,

F = F e · F p , with det(F e) > 0 , det(F p) > 0. (1)

In order to describe the history of plastic deformations of the solid, a finite set of strain-like internal variables
α ⊂ Rn is introduced, Lubliner (1972). Based on these variables, together with the decomposition (1), the
Helmholtz energy for an isothermal process is postulated as

Ψ = Ψ(F e, α), (2)

(Lubliner, 1972, 1997; Simo and Hughes, 1998). Since the elastic stored energy depends only on the elastic
distortion, the Helmholtz energy can be decomposed additively into Ψe for the elastic part and Ψp corresponding
to the plastic work. Combining this with the principle of material frame indifference, the total stored energy can
thus be written as

Ψ = Ψe(Ce) + Ψp(α) , Ce := F eT · F e (3)

where Ce is the right Cauchy-Green tensor. Irreversible processes, in particular plastic deformations, are entropy
productive processes and consequently, they have to fulfill the second law of the thermodynamics. For that purpose,
the evolution equations for the irreversible plastic process are obtained by using the Clausius-Planck dissipation
inequality (see Coleman (1964)), i.e.,

D = P : Ḟ − Ψ̇ = S :
1
2
Ċ − Ψ̇ ≥ 0. (4)

Here, P is the first Piola-Kirchhoff stress tensor, S is the second Piola-Kirchhoff stress tensor and the superim-
posed dot represents the material time derivative. Applying the Coleman & Noll procedure for an elastic unloading
step yields the classical elastic response

S = 2
∂Ψ
∂C

= 2(F p)−1 · ∂Ψ
∂Ce · (F p)−T (5)

Inserting this equation into the dissipation inequality, together with the definition of the stress-like internal variable

Q = −∂Ψ
∂α

(6)

being thermodynamically conjugate to the strain-like internal variable α, the reduced dissipation inequality

D = Σ : Lp + Q · α̇ ≥ 0 (7)

can be derived. Here, the Mandel stresses Σ = 2Ce · ∂CeΨ (see Mandel (1972)) and the plastic velocity gradient
Lp = Ḟ

p · (F p)−1 have been used.
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For differentiating between elastic unloading and plastic loading, an admissible stress space Eσ of the type

Eσ =
{
(Σ, Q) ∈ R9+n

∣∣ φ(Σ, Q) ≤ 0
}

(8)

is introduced, see Lubliner (1972). Here, φ is a convex yield function. The material is postulated to be in a
purely elastic state, if (Σ,Q) ∈ int Eσ , while for (Σ,Q) ∈ ∂Eσ plastic deformation are possible (only necessary
condition). In what follows, yield functions of the type

φ(Σ,Q) = Σeq(Σ, Q)− Σini
eq (9)

are considered. Here, Σeq is an equivalent stress measure defining the shape of the elastic domain and Σini
eq > 0

specifies its initial diameter.

Evolution equations can be naturally obtained from the postulate of maximum dissipation. More precisely, in this
case, they are given by

Lp = λ̇
∂φ

∂Σ
, α̇ = λ̇

∂φ

∂Q
, (10)

together with the Karush-Kuhn-Tucker optimality conditions (see Luenberger (1984))

λ̇ ≥ 0 , λ̇ φ̇ ≥ 0. (11)

In those equations, λ̇ is the plastic multiplier which can be obtained from the consistency condition φ̇ = 0.
Eq. (10) shows that the rate of internal variables and the velocity gradient are proportional to the gradient of the
yield function which is also known as normality rule.

3 Single Crystal Plasticity

Plastic deformations in metallic materials can be modeled by the plastic slip caused by dislocations. The resultant
shear strain of the dislocation movement can be characterized by two orthogonal unit vectors m and s which
correspond to the normal of the plane and the direction of the plastic shear, respectively. Classical crystal plasticity
is usually based on an associative flow rule resulting from Schmid’s law. This law is defined by a yield function of
the type

φa(Σ, λa) = Σa
eq(Σ, Q)− Σa

ini = |Σ : Na| −Qa(λa)− Σa
ini (12)

where λa is the accumulated plastic shear strain, Qa represents an internal stress-like variable associated with
isotropic hardening and Σa

ini corresponds to the critical resolved shear stress of the ath dislocation system. The
driving force for the dislocation glide, the so-called Schmid stress, is obtained by the projection of the applied
stress Σ using the Schmid tensor Na = (sa ⊗ ma). The admissible stress space Ẽσ for the single crystal is
defined by the intersection of all single surfaces, i.e.,

Ẽσ =
{
(Σ, Q) ∈ R9+n

∣∣ φa(Σ, Qa) ≤ 0, a = 1, ..., n
}

. (13)

Following Eq. (10), evolution equations of the internal variables related to dislocation slip are derived from the
principle of maximum dissipation yielding

Lp =
n∑

a=1

γ̇aNa , γ̇a = λ̇ · sign[Σ : Na], λ̇a ≥ 0 (14)

By inserting Eq. (14) into the dissipation inequality Eq. (7) and considering that the equivalent stresses are posi-
tively homogeneous of degree one, i.e.,

Σa
eq(cΣ, cQa) = c Σa

eq(Σ, Qa) , ∀c ∈ R+ (15)

the dissipation with respect to a single dislocation slip reduces to

Da = λ̇a · sign[Σ : Na](Σ : Na)− λ̇a(Qa
se + Qab

le )
φa=0
= λ̇a · Σa

ini ≥ 0. (16)
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Since both terms are positive, the second law of thermodynamics is indeed fulfilled. The total plastic dissipation
with respect to the n dislocation is given by

D =
n∑

a=1

Da ≥ 0. (17)

4 The variational structure of single crystal plasticity theory

In this section, the crystal plasticity model briefly discussed in the previous section is recast into a variational
framework. Within this framework, every physical aspect is consistently driven by energy minimization. For the
sake of simplicity, the underlying idea is explained by considering only one active slip plane (one yield function).
However, the method can be extended to multiple dislocations systems in a straightforward manner. Following
(Ortiz, 1999; Mosler and Bruhns, 2009b), the functional

Ẽ(ϕ̇, Ḟ
p
, λ̇,Σ, Q) = Ψ̇(ϕ̇, Ḟ

p
, λ̇) +D(Ḟ

p
, λ̇,Σ, Q) + J(Σ, Q) (18)

is introduced, where J(Σ,Q) is the characteristic function of the admissible stress state, i.e.,

J :=
{

0 ∀(Σ, Q) ∈ Eσ

∞ otherwise. (19)

Accordingly, J penalizes the functional (18) for inadmissible stress states. For admissible stress states, i.e.
(Σ, Q) ∈ Eσ , the functional reduces to the sum of the rate of the Helmholtz energy and the dissipation. Con-
sequently, the functional Ẽ equals the stress power P , i.e.,

Ẽ(ϕ̇, Ḟ
p
, λ̇,Σ, Q) = P : Ḟ =: P, ∀(Σ, Q) ∈ Eσ. (20)

It can be shown that the stationarity condition of functional (18) is equivalent to the crystal plasticity model dis-
cussed in the previous section. Hence, it represents a variational re-formulation. This variational method can be
transformed into a minimization problem, if a maximization with respect to the stress-like variables is performed.
Physically speaking, this is equivalent to enforcing the principle of maximum dissipation. This leads to the reduced
functional

E(ϕ̇, Ḟ
p
, λ̇) = Ψ̇(ϕ̇, Ḟ

p
, λ̇) + J∗(Lp, λ̇) (21)

where J∗ is the Legendre transformation of the characteristic function. Physically, it corresponds to the dissipa-
tion. Without going too much into details, it can be shown that minimizing functional (21) defines the evolution
equations of all internal variables in a canonical manner. More precisely,

(Ḟ
p
, λ̇) = arg inf

Ḟ
p
,λ̇
E(ϕ̇, Ḟ

p
, λ̇). (22)

The unknown deformation mapping follows from the same minimization principle. However, since the deforma-
tion is defined in a continuous fashion, a global energy minimization is required, i.e.,

ϕ = arg inf
ϕ

I inc(ϕ) (23)

with

I inc = inf
F p

,λ

[∫

Ω

∫ tn+1

tn

E(ϕ̇, Ḟ
p
, λ̇) dt dV −

∫

Ω

ρ0B ·ϕ dV −
∫

∂Ω

T ·ϕ dA

]
(24)

Here, ρ0, B and T are the material density, body forces and prescribed tractions, respectively. Clearly, for comput-
ing the first integral in Eq. (24) a time discretization of the interval [∆t = tn+1− tn] is required. For that purpose,
an exponential-type approximation is applied to the evolution equation of F p, while a classical backward-Euler
integration is utilized for the plastic slip. Hence,

F p
n+1 = exp(∆tLp) · F p

n , λa
n+1 = λa

n + ∆t · λ̇a
n+1. (25)
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Further details are omitted. They can be found, for instance, in Mosler and Bruhns (2009a,b).

5 Multiphase variational formulation

Temperature- and deformation-induced phase transformation are common features observed in a wide range of
materials, particularly in metals. Assuming an isothermal process, we focus on the deformation-induced transfor-
mation here. For that purpose, the Helmholtz energy associated with a phase mixture is modeled as

Ψ(Ce,λ, ξ) =
m∑

r=1

ξrΨr(Ce
r,λr) + Ψmix(ξr) , Ω :=

⋃
r

Ωr (26)

see (Mielke, 2004; Bartels et al., 2004). The variable ξr ∈ [0, 1] defines the volume fraction of the rth phase within
the domain Ωr and Ψmix(ξr) accounts for an interfacial energy at ∂Ω{r1r2} := Ωr1 ∩ Ωr2 and λ represents the
set of internal variables. Considering the Hadamard compatibility condition for the deformation gradient across
∂Ω{r1r2}, the elastic strain is defined

Ce
r2

= (F p
r2

)−T · (F T
r2
· F r2) · (F p

r2
)−1

, F r2 = F r1 + (a{r1r2} ⊗ n{r1r2}) (27)

where n{r1r2} and a{r1r2} are the normal vector of interface ∂Ω{r1r2} and a vector defining the deformation jump
across the interface. Obviously, the vectors a{r1r2} cannot be chosen arbitrarily but they have to fulfill a certain
compatibility condition. More precisely,

F =
m∑

r=1

ξrF r, with
m∑

r=1

ξr = 1. (28)

Clearly, in case of twinning, only two phases can occur, i.e., m = 2. Furthermore, for the sake of simplicity, it is
assumed that either the original phase is present or a twin transforms the considered representative volume element
completely. With this assumption, a Taylor-type model characterized by

F = ξiniF ini + ξTwF Tw , {ξini, ξTw} ∈ {0, 1} (29)

is obtained. F ini and F Tw correspond to the deformation gradient in the initial and the twinning phase. In line
with the variational method discussed in the previous section, twinning is modeled in a fully variational setting.
More precisely, it is assumed that a twin (re-orientation) occurs, if this energetically favorable. For that purpose,
the stress power (the incremental energy) of each phase

E(ϕ̇r, Ḟ
p

r , λ̇r) = Ψ̇r(ϕ̇r, Ḟ
p

r , λ̇r) + J∗(Lp
r , λ̇r) (30)

is considered. Conceptually, this incremental energy is minimized for both configurations (initial orientation of
the crystal and reoriented crystal) and the lowest energy signals the physically most likely state. Thus, within this
variational method, every physical aspect is consistently driven by energy minimization: the plastic slip as well as
twinning.

It bears emphasis that the model can also simulate a continuous transition between the different configurations. For
that purpose, the incremental energy characterizing the mixture has also to be minimized with respect the volume
fraction ξr. Such a method allows to analyze the governing physics at the micro-scale in a more detailed manner.
For instance, the influence of the interface energy can be investigated. However, this will certainly increase the
numerical cost and thus, the computation time. Since we are mostly interested in the analysis of polycrystals
efficiency, is of utmost importance. For this reason, the Taylor-type approximation seems to be more reasonable.
Furthermore, as shown in the next section, even this simplified model captures the underlying physics reasonably
well.

6 Numerical Example (slip and twinning in magnesium)

The objective of this section is to characterize the deformation systems of magnesium single crystal including
twinning. It is well known that twinning is a common deformation observed in a variety of materials, particularly
in those showing a hexagonal close packed (HCP) structure. Twinning does not only induce shear strains but also
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transforms the crystalline lattice to a new configuration. Consequently, twinning somehow resets the active and
inactive slip systems within the twinned domain. As a result, the new configuration may propose new favorable
plastic deformations. For analyzing those phenomena, the novel variational method as proposed in the present
paper is applied.

We assume that twinning transforms the initial crystal lattice vectors e := {e1,e2,e3} to a twinned configuration
ẽ by an orthogonal map R with detR = 1, i.e.,

ẽ = R · e (31)

where R is defined by

R = −1 + 2(n⊗ n) (32)

Here, the normal vector n characterizes the twinning plane. Although the deformation is continuous throughout the
total domain, the deformation gradient shows a discontinuity across the twinning boundary (weak discontinuity).
More precisely, the deformation gradient within the twin domain F Tw fulfills a compatibility condition of the type

F Tw = F ini + (a⊗ n). (33)

(see previous section). The basal systems < 112̄0 > {0001} and the prismatic systems < 112̄0 > {1̄100} are
mostly responsible for plastic deformation within the HCP crystal. Experimental observations revealed that twin-
ning is the magnesium’s major deformation response to loading in the direction of the c-axis. Tensile loading of
magnesium single crystal activates twinning at the planes {1̄102}, while the deformation mode in the opposite
loading direction is not clear. Some researcher have observed compression twinning, see Wonsiewicz and Back-
ofen (1967). However, pyramidal slip at the systems < 112̄3 > {112̄2} has also been reported, see Obara et al.
(1973). Tab. 1 summarizes the reported values of the critical resolved shear stresses Σa

ini for different deforma-
tion systems in magnesium. It can be shown that the combination of easy glide (basal dislocations) and tensile
twinning with moderate to strong prismatic and pyramidal dislocation systems results in pronounced anisotropic
plastic deformations in magnesium single crystal. In order to characterize the aforementioned deformation sys-
tems, constrained loading tests were conducted by (Wonsiewicz and Backofen, 1967; Kelley and Hosford, 1968).
With help of the channel die test, they applied a plain strain loading on single crystal specimens. More detailed
information about the channel die test are omitted here. Different crystal orientations within the channel die result
in classes of limited deformation systems. Thus, this test allows to analyze different relatively simple deformation
modes separately. For instance, a c-axial compression loading of single crystals activates only a set of pyramidal
slip systems. Tab. 2 summarizes the loading and constrained directions of the channel die tests which have been
conducted by Kelley and Hosford (1968).

Table 1: Reported critical resolved shear stresses for the deformation systems of magnesium single crystal at room
temprature.

Basal Prismatic Pyramidal Twinning
[Mpa] [Mpa] [Mpa] [Mpa]

Burke and Hibbard (1952) 0.45
Kelley and Hosford (1968) 0.48

Reed-Hill and Robertson (1957a) 2
Obara et al. (1973) 30-50

Reed-Hill and Robertson (1957b) 39.3

Table 2: Definition of the orientations used within the channel die compression test on single crystals Kelley and
Hosford (1968)

Test label Loading direction Constrained direction
A < 0001 > < 101̄0 >
C < 101̄0 > < 0001 >
E < 101̄0 > < 12̄10 >
G < 0001 > at 45o < 101̄0 >
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In order to simplify the twinning problem, we decouple the shear strains and the lattice transformation induced
by twinning. More precisely the shear strains of twinning systems are minimized by pseudo-dislocation twinning
systems in the initial phase and the lattice transformation is taken into account by a phase decomposition (re-
orientation). The elastic response of magnesium is approximated by means of the neo-Hooke-type model

Ψe =
λE

2
(ln(J))2 − µ ln(J) +

λE

2
(tr(Ce)− 3) (34)

where J is the determinant of elastic deformation gradient and {λE, µ} are Lamé constants. Since the elastic
deformations in magnesium are comparatively small, the weak elastic anisotropy and the choice of the elastic
material model does not influence the results significantly. The converse is true for the plastic deformations. For
this reason, three different plastic stored energies have been implemented. They are related to self-hardening. For
the sake of simplicity, linear latent hardening is considered. The different models are summarized below.

Qa
se =

∂Ψp
se

∂λa
=





h0(λ
a)

h0(1− (τ0/τ∞)) exp(−h0λ
a/τ∞)

h0(λ
a + ( λa

λcrt
)n)

(35)

Qab
la =

∂2Ψp
la

∂λa∂λb
= lab (36)

The resulting hardening curves are shown in Fig. 1. In order to get a limited shear strain caused by pseudo-
dislocation twinning, a ramp-type functions is considered. The exponential and the linear hardening functions
characterizing the other deformation modes agree with experimental observations. The boundary value problem
describing the channel die test has been solved incrementally, see (Ortiz and Repetto, 1999; Carstensen et al., 2002;
Mosler and Bruhns, 2009b). The crystal symmetry and the constrained loading conditions, reduce the number of
potentially active slip systems in each sample. The following deformation modes have been analyzed separately:

• Pyramidal dislocations: sample A

• Prismatic slip systems: sample C

• Basal dislocations: sample G

• Pseudo-dislocation twinning: sample E
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Figure 1: Hardening functions for the different deformation systems of magnesium single crystal

The crystallographic relation between the initial phase and twinning is described by Eq. (31). Experimental x-
ray observations revealed that twinning reorients the c-axis of the initial lattice about 86 degrees. Therefore,
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pseudo-dislocation twinning is active within the initial phase, while pyramidal slip systems can be observed in the
secondary phase. According to the Taylor assumption, the response of the single crystal is solely governed by the
phase having the lowest energy (initial or twinned phase). Fig. (2) shows the minima of the incremental energies
for both phases. Furthermore, the volume fraction of twinning is included in this diagram as well. Phase transition
occurs, if the pseudo- dislocation twinning reaches a certain threshold. This threshold is defined by the respective
plastic shear strain λcrt. The second phase corresponding to the reoriented configuration exhibits a strong activity
of the pyramidal slip systems. The comparison between the experimental results reported in Kelley and Hosford
(1968) and the simulations predicted by the novel variational model in terms of the true stress and the true strain
are shown in Fig. 3. Within the computations, the material parameters according to Tab. 3 have been adopted. As
evident from Fig. 3, the agreement is excellent.

Table 3: Materials parameters used within the numerical analyses
Elastic Properties λE = 34(Gpa) µ =17 (Gpa)

Hardening parameters
τ0 (Mpa) h0 (Mpa) τ∞ (Mpa) n λcrt lab

Basal 0.48 0.1 - - - 0
Prismatic 20 8900 70 - - 20
Pyramidal 25 7000 100 - - 25

pseudo-dislocation twinning 2 20 - 100 0.129 10
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Figure 2: Incremental energy for the initial and the twinning phase as well as the twinning volume fraction for
sample E

7 Conclusion

In this paper, a variational constitutive update suitable for the numerical analysis of the deformation behavior of
magnesium single crystal was proposed. The novel approach is based on two parts. While the first of those is
related to the modeling of plastic slip due to dislocations in crystals, the second part is associated with the simula-
tion of deformation-induced twinning. Concerning plastic slip, a variational method was developed in which every
aspect is consistently driven by energy minimization. More precisely, the unknown slip rates follow conveniently
from minimizing the stress power. Though the application of variational updates to the modeling of magnesium is
new and not straightforward, a similar concept has been already advocated. The opposite is true for the simulation
of twinning. While the shear strains related to twinning were taken into account by a pseudo dislocation system, the
re-orientation was approximated as a phase transition process. For increasing the efficiency of the proposed model,
a Taylor-type theory was adopted. Comparisons between the experimentally observed deformation behavior and
the results predicted by the novel model demonstrated an excellent agreement. All physically relevant deformation
modes are captured by the model and are driven naturally by energy minimization.
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Figure 3: Comparison between experimental results reported by Kelley and Hosford (1968) and simulations for
magnesium single crystals
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