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Variational model of martensitic thin films and its numerical treatment

M. Kružı́k, G. Pathó

Following the derivation of the energy functional of martensitic thin films by Bhattacharya and James (1999) we
propose a numerical approach to the relaxation theory of thin films. It is based on the approximation of the corre-
sponding relaxed problem by a first-order laminate. Finally, computational experiments are shown.

1 Introduction

Variational models for microstructures assume that the formed structure has some optimality property. The reason
for the formation of microstructures is that no exact optimum can be achieved and optimizing sequences have
to develop finer and finer oscillations. A typical example is a microstructure in shape memory alloys which is
closely related to the so-called shape memory effect, i.e. the ability of some materials to recover, on heating, their
original shape. Such materials have a high-temperature phase called austenite and a low-temperature phase called
martensite. The austenitic phase has only one variant but the martensitic phase exists in many symmetry related
variants and can form a microstructure by mixing those variants (possibly also with the austenitic variant) on a fine
scale. Such shape memory alloys, as e.g. Ni-Ti, Cu-Al-Ni or In-Th, have various technological applications.

Confining ourselves to the cases with negligible hysteresis behavior modeling of microstructures in shape memory
alloys leads to a multidimensional vectorial variational problem, whose relaxation (i.e. suitable extension) is not
yet satisfactorily understood. We study microstructures on mesoscopical level. This means we do not take care
only about some macroscopic effective response of the material but our approach also provides some information
about optimizing sequences. In the last decade similar mesoscopical models equipped with suitable dissipative
potentials have been developed to treat materials with significant hysteresis; cf. Kružı́k et al. (2005); Roubı́ček
(2000). A comprehensive survey of mathematical problems related to martensitic crystals can be found in Müller
(1998).

In what follows we use the standard notation Lp for a Lebegue space of measurable maps which are integrable with
the p-th power if 1 ≤ p < +∞ or are measurable and essentially bounded if p = +∞. Further, we use Sobolev
spaces W k,p of maps which together with their derivatives up to the k-th order belong to Lp.

2 Model of the bulk material

The elastic energy of a body at a fixed temperature θ is usually modeled through
∫

Ω

W (∇y(x)) dx ,

where Ω ⊂ IR3 is the body, y : Ω → IR3 denotes the deformation mapping, W : IR3×3 → IR is the energy density
and IR3×3 denotes the space of real matrices 3 × 3. To avoid locally the penetration of the body by itself we
suppose that det ∇y > 0 almost everywhere in Ω. The energy density is a continuous function which is invariant
under rotations in the sense that for any R ∈ SO(3) = {R ∈ IR3×3; det R = 1, RRt = RtR = Id}, Id the
identity matrix 3× 3, and any F ∈ IR3×3,

W (RF ) = W (F ) .

We assume that the energy density is normalized, so that minF∈IR3×3 W (F ) = 0.

Our goal is to model presence of different phases, which leads to the so-called well structure of W . If the temper-
ature θ is below the transformation temperature θt then W is minimized on wells defined by M positive definite
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and symmetric matrices F1, . . . , FM , det Fi > 0 with the property RFi 6= Fj for any R ∈ SO(3) and i 6= j.
At the transformation temperature W is minimized on Fi, 1 ≤ i ≤ M and on a symmetric and positive definite
F0 ∈ IR3×3 defining the austenite phase. Above the transformation temperature W is minimized only on the well
given by F0. Clearly, if F is a minimizer for W then the whole well {RF ; R ∈ SO(3)} is a minimizer, too.

Concretely, we assume that θ < θt, i.e.

W ≥ 0 and W (F ) = 0 if and only if F ∈
M⋃

i=1

SO(3)Fi .

If there are Rij ∈ SO(3), 1 ≤ i < j ≤ M , such that rank(Fi−RijFj) = 1 we say that W has rank-one connected
wells. This condition is very important. Namely, two variants Fi and Fj (i 6= j) can form a laminated structure
with a planar interface if and only if

rank(Fi −RijFj) = 1 (1)

for some rotation Rij ; cf. Ball and James (1988).

If a loading force with the density f : Ω → IR3 acts on the body, the mechanical work done by this force equals to

−
∫

Ω

f(x) · y(x) dx .

Altogether, the energy of the martensitic material under a deformation y is given by

I(y) =
∫

Ω

(W (∇y(x))− f(x) · y(x)) dx

and for the sake of simplicity we abbreviate

Φ(y(x),∇y(x)) = W (∇y(x))− f(x) · y(x) .

We denote
Ay0 =

{
y ∈ W 1,p(Ω; IR3); y = y0 on Γ , det ∇y > 0

}

for Ω ⊂ IR3, a bounded domain, Γ ⊂ ∂Ω, y0 ∈ W 1,p(Ω; IR3) a given mapping and p > 3. We suppose that
Ay0 6= ∅.

We assume that stable states of the material are characterized by a minimum of the energy, which makes us
formulate the following problem

min {I(y); y ∈ Ay0} . (2)

Early computations dealing with microstructures for a rotationally invariant stored energy density appeared in
Collins and Luskin (1989). They used element-wise affine approximations of deformations, i.e., a direct finite
element discretization of (2). We shall denote the infimum described by (2) as infv∈Ay0

I(v) = inf(2). We also
assume that I is coercive on W 1,p(Ω; IR3), that is, lim‖y‖W1,p(Ω;IR3)→∞ I(y) = +∞. Generally, no solution to (2)
exists, i.e., I has no minimizer. In order to obtain a certain macroscopic deformation it is energetically convenient
to develop spatial oscillations among various variants of martensite. Therefore we face the question what is the
property of W which prevents such behavior, i.e., when a uniform deformation is always a minimizer with respect
to its own boundary conditions. This condition is known as quasiconvexity.

Let us recall that a function f̃ : IRm×n → IR is quasiconvex if for any matrix A ∈ IRm×n and for any smooth
function ϕ : Ω̃ ⊂ IRn → IRm, ϕ(x) = Ax, for x ∈ ∂Ω̃ it holds that

∫

Ω̃

f̃(∇ϕ(x))dx ≥ f̃(A) meas (Ω̃) .

In fact, this definition is independent of the choice of a regular open domain Ω̃ ⊂ IRn such that meas(∂Ω̃) = 0.
It can be shown that for scalar or one-dimensional problems (m = 1 or n = 1) quasiconvexity reduces to usual
convexity.
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It is easy to see that we deal with W ’s which are not quasiconvex. This is the main reason why our problem
does not have to have any solution. One naturally looks for a suitable extension (relaxation) of the problem which
would ensure solvability. Dacorogna, in Dacorogna (1989), showed that we can formulate another minimization
problem (relaxed problem), a solution of which is attained and whose minimum is equal to the infimum of (2).
This minimization problem is called a relaxed problem

min
{

IQ(y) =
∫

Ω

QΦ(y(x),∇y(x)) dx; , y ∈ Ay0

}
, (3)

where QΦ(y, ·) is the quasiconvex envelope of Φ(y, ·) defined by

QΦ(y, ·) = sup{f̃ ≤ Φ(y, ·); f̃ quasiconvex} .

In this case, IQ is sequentially weakly lower semicontinuous and the problem (3) has a solution, that is, there is
y ∈ Ay0 such that IQ(y) = minv∈Ay0

IQ(v) ≡ min (3).

Finally, the relaxation theorem, which is due to ((Dacorogna, 1989, Sec.1)), says that under some growth condi-
tions:
(i) inf (2)= min (3),
(ii) if y ∈ Ay0 is a solution to (3) then there is a minimizing sequence {yk}k∈IN ⊂ Ay0 converging weakly to y in
W 1,p(Ω; IR3) and limk→∞ I(yk) = IQ(y) and
(iii) any minimizing sequence of (2) converges weakly to a minimizer of (3).

Quasiconvexity as a non-local property is generally very difficult to be verified except in some special situations
and not many nontrivial quasiconvex functions are known. It follows that we almost never can find an analytical
expression of the quasiconvex envelope of a particular function. This makes the problem of minimizing IQ rather
difficult to solve.

For this reason, it is useful to define a weaker (Šverák (1992)) kind of convexity than quasiconvexity, that is,
rank-one convexity. A function f̃ : IR3×3 → R is rank-one convex if

f̃(λA + (1− λ)B) ≤ λf̃(A) + (1− λ)f̃(B) whenever rank(A−B) ≤ 1 and 0 ≤ λ ≤ 1 .

We can also define the rank-one convex envelope RΦ of Φ. Let us recall that (see (Dacorogna, 1989, Sec.1))

RΦ(y, ·) = sup{f̃ ≤ Φ(y, ·); f̃ rank-one convex} ,

and that
QΦ ≤ RΦ ≤ Φ .

Using this envelope, we can state the following problem

inf
{

IR(y) =
∫

Ω

RΦ(y(x),∇y(x)) dx; y ∈ Ay0

}
. (4)

The rank-one convex envelope is characterized by the following proposition.

Proposition 2.1. (see (Kohn and Strang, 1986, II), also (Dacorogna, 1989, sec. 5.1)) Let f̃ : IR3×3 → IR be
bounded from below. Then for every A ∈ IR3×3,

Rf̃(A) = lim
k→∞

Rkf̃(A) (5)

where R0f̃ = f̃ and

Rk+1f̃(A) = inf
{

λRkf̃(A0) + (1− λ)Rkf̃(A1); 0 ≤ λ ≤ 1,

A = λA0 + (1− λ)A1 , rank(A1 −A0) ≤ 1
}

, k ∈ IN ∪ {0} .
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Hence, utilizing this characterization of the rank-one convex envelope we can state for any k ∈ IN

inf
{

Ik(y) =
∫

Ω

RkΦ(y(x),∇y(x)) dx; y ∈ Ay0

}
, (6)

where RkΦ is an approximation (given in Proposition 1) of the rank-one convex envelope of Φ with respect to the
second variable. Due to the relaxation theorem inf (2)=min (3)=inf (6). Of course, the minimum of Ik and IR does
not have to exist because RkΦ and RΦ are not necessarily quasiconvex in the last variable. On the other hand,
we will see that finite element discrete solutions to (6) always exist and already provide some information about
minimizing sequences of the original problem (2).

Our results below show examples of Φ for which we obtain solutions to (6) for some k ∈ IN. This gives us an
upper estimate of a solution to (4) and thus also to (2).

Let us figure out the form of R1Φ(·,∇y). To this end, we start with a convex combination

∇y = λA0 + (1− λ)A1 .

According to Proposition 2.1 it is necessary that rank(A1 − A0) ≤ 1 or, equivalently, A1 − A0 = q ⊗ r, where
q, r : Ω → IR3 are such that q ⊗ r ∈ Lp(Ω; IR3×3), that is, A0 = ∇y − (1 − λ)q ⊗ r and A1 = ∇y + λq ⊗ r.
Denote

z(λ(x), y(x), q(x), r(x)) = λ(x)Φ(y(x),∇y(x)− (1− λ(x))q(x)⊗ r(x))
+(1− λ(x))Φ(y(x),∇y(x) + λ(x)q(x)⊗ r(x)) . (7)

Then the problem (6) for k = 1 reads
{

Minimize
∫
Ω

z(λ(x), y(x), q(x), r(x)) dx
subject to y ∈ Ay0 , λ ∈ L∞(Ω) , 0 ≤ λ ≤ 1 , q, r ∈ Lp(Ω; IR3) .

(8)

3 Model of a thin film

Bhattacharya and James (1999) considered a problem of dimensional reduction of a bulk specimen. Let us have a
domain Ωh := S × (−h

2 , h
2 ) where S ⊂ IR2 is a smooth bounded plane. If {e1, e2, e3} is an orthonormal basis in

IR3 we suppose that e3 is perpendicular to the plane of the film whereas e1, e2 lie in the film plane.

We define the plane gradient ∇p by the following

∇py = y,1 ⊗ e1 + y,2 ⊗ e2 ,

where y,i denotes the vector of derivatives of y with respect to xi, i = 1, 2. Moreover, having a matrix A ∈ IR3×3

we write A := (a1|a2|a3) if A = a1 ⊗ e1 + a2 ⊗ e2 + a3 ⊗ e3, where ai ∈ IR3 for i = 1, 2, 3. They dealt with the
following problem (κ > 0 is a “surface-energy” constant)

minimize Jκ
h (y) =

1
h

∫

Ωh

κ|∇2y(x)|2 + W (∇y(x)) dx (9)

where
y ∈ {u ∈ W 2,2(Ωh; IR3); u(x) = Ax if x ∈ ∂S × (−h/2, h/2)}

where A ∈ IR3×3 is fixed. Bhattacharya and James (1999) proved that (up to a subsequence) minimizers of Jκ
h ,

yh, satisfy the following convergences as h → 0: ∇2
py

h → ∇2
pȳ in L2(Ω1), h−1∇yh

,3 → ∇pb̄ in L2(Ω1) and
h−2yh

,33 → 0 in L2(Ω1). Moreover, (ȳ, b̄) ∈ W 2,2(S; IR3)×W 1,2(S; IR3) minimize the following energy

Jκ
0 (y, b) =

∫

S
κ(|∇2

py(x)|2 + |∇pb|2) + W (y,1(x)|y,2(x)|b(x)) dS (10)

subject to the boundary conditions y(x1, x2) = a1x1 + a2x2 and b(x1, x2) = a3 if (x1, x2) ∈ ∂S . Physically,
y : S → IR3 describes the the average deformation of the film while b : S → IR3 describes the shear of the
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cross-section of the film. If κ is small we may consider the model without the surface energy, i.e., the elastic
energy stored in the film is now

J0(y, b) =
∫

S
W (y,1(x)|y,2(x)|b(x)) dS . (11)

If, moreover, some external forces f : S → IR3 act on the film the total energy of the system is

J(y, b) =
∫

S
W (y,1(x)|y,2(x)|b(x))− f(x) · y(x) dS (12)

The functional J is nonconvex and its minimizer does not have to exists in the set W 1,2(S; IR3) × L2(S; IR3)
equiped with suitable (e.g. affine) boundary conditions on y. Nevertheless, the situation is different compared to
the bulk material. Consider the situation that S = S1 ∪ S2 ∪ L, where S1, S2 are disjoint subsets of S and L is a
line interface between them and that

(y,1|y,2|b) =

{
RiFi in S1

RjFj in S2 ,

where Ri, Rj ∈ SO(3) and Fi, Fj are zero energy deformation gradients. We further require that y is continuous
in S while y,1, y,2 as well as b may suffer jumps over the interface L. It is shown in Bhattacharya and James (1999)
that in order to satisfy these requirements the following thin-film twinning equation must be satisfied

RiFi −RjFj = a⊗ n + c⊗ e3 , (13)

where a, n ∈ IR3, n · e3 = 0 and c ∈ IR3 denotes the jump of b across the interface. The vector n is normal to
the line interface. Thus, we say that martensitic variants i and j can form a linear thin-film interface if there are
rotations Ri, Rj and vectors a, n, c as above that (13) holds. Notice, that this condition is much weaker compared
to the bulk situation where we require that rank(RiFi−RjFj) = 1. As a consequence, there are interfaces between
martensitic variants in the thin film which cannot exist in the bulk material.

The equation (13) motivates our algorithm for minimization of the nonconvex J0. Due to this nonconvexity min-
imizing sequences typically develop finer and finer oscillations in the gradient variable which generically leads to
the nonexistence of a minimum. Having (y,1|y,2|b) we look for two matrices A0, A1 ∈ IR3×3 and 0 ≤ λ ≤ 1 such
that

(y,1|y,2|b) = λA0 + (1− λ)A1 ,

and
A1 −A0 = a⊗ n + c⊗ e3

for some a, n, c ∈ IR3, n · e3 = 0. Thus, we can write

A0 = (y,1|y,2|b)− (1− λ)(a⊗ n + c⊗ e3)

and
A1 = (y,1|y,2|b) + λ(a⊗ n + c⊗ e3) .

Taking x ∈ S we define the effective (partly relaxed) energy Ŵ at (y,1(x)|y,2(x)|b(x)) as

Ŵ (y,1(x)|y,2(x)|b(x)) := min
λ,a,n,c

λW (y,1(x)|y,2(x)|b(x))− (1− λ)(a⊗ n + c⊗ e3))

+(1− λ)W (y,1(x)|y,2(x)|b(x)) + λ(a⊗ n + c⊗ e3)) , (14)

where n · e3 = 0 and 0 ≤ λ ≤ 1.

Remark 3.1. One can also define Ŵ (a1|a2) = minb∈IR3 W (a1|a2|b) and instead of (14) calculate the first order
laminate with Ŵ on IR3×2. However, the formulation (14) is suitable in situations where Ŵ is difficult to be
calculated explicitly.
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4 Numerical simulations

As the computational domain Ω = (0, 8)× (0, 1) was taken and the zero Dirichlet boundary conditions on the two
”sides” of the film Γ1 = {0} × (0, 1) and Γ2 = {8} × (0, 1) were considered. We used uniform triangular meshes
Td for a discretization parameter d > 0.

Analogously to (8) the first laminate is described by the energy functional

J̄1(y, b, a, n, c, λ) =
∫

S
[λW (y,1(x)|y,2(x)|b(x))− (1− λ)(a⊗ n + c⊗ e3))

+(1− λ)W (y,1(x)|y,2(x)|b(x)) + λ(a⊗ n + c⊗ e3))− f(x) · y(x)] dS (15)

For the spatial discretization piecewise linear P1, resp. piecewise constant P0 elements for y, resp. for the other
variables were used. Hence (d is the aforementioned discretization parameter),

Ud ≡ {v ∈ C(Ω̄; IR3) : v|K ∈ P1 for each K ∈ Td, v = id on Γ1 ∪ Γ2},
Vd ≡ {v : Ω → IR3 : v|K ∈ P0 for each K ∈ Td},
Ld ≡ {v : Ω → 〈0, 1〉 : v|K ∈ P0 for each K ∈ Td},

the discrete minimization problem takes the form

(Pd)
{

Minimize J̄1(y, b, a, n, c, λ)
subject to y ∈ Ud, b, a, c, n ∈ Vd, λ ∈ Ld, n · e3 = 0 , 0 ≤ λ ≤ 1

In order to perform a numerical experiment, we consider the following energy density

W (F ) = min





∣∣∣∣∣∣
C −




1 ε 0
ε 1 + ε2 0
0 0 1




∣∣∣∣∣∣

2

,

∣∣∣∣∣∣
C −




1 −ε 0
−ε 1 + ε2 0

0 0 1




∣∣∣∣∣∣

2




for a parameter ε > 0, and C = F tF the right Cauchy–Green tensor. The wells of this stored energy density
function are given by

F1 =




1 ε 0
0 1 0
0 0 1


 , F2 =




1 −ε 0
0 1 0
0 0 1


 .

First of all, note that F1 and F2 are rank-one connected for all ε > 0, i.e., rank(F1 − F2) = 1. On the other
hand, let us notice that for no loading force (i.e. f = 0) and the given boundary conditions there is a unique
solution y(x) = x for all x ∈ Ω, furthermore Id = 1

2F1 + 1
2F2. That is why we chose as the initial point for the

minimization y = id, b = (0, 0, 1)t, λ = 0.5, a = (2ε, 0, 0)t, n = (0, 1, 0)t, c = (0, 0, 0)t (it means that A0 = F2

and A1 = F1).

The minimization procedure was done with the aid of the L-BFGS-B optimization routine described in Byrd
et al. (1995). Afterwards we visualize the fraction of the different martensitic phases by evaluating the following
function on each element K ∈ Td

γ(K) =
2∑

l=1

λl
|(AK

l )tAK
l − F t

1F1|2
|(AK

l )tAK
l − F t

1F1|2 + |(AK
l )tAK

l − F t
2F2|2

,

where λ1 ≡ λ and λ2 ≡ 1− λ. Then γ is interpolated between zero and one on the white-black color scale.
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Figure 1: A thin film loaded in the y-direction. The gray color reflects the volume fraction of F1

Figure 2: A thin film loaded in the y and z directions. The gray color reflects the volume fraction of F1

5 Discussion

This paper suggests a relaxation (i.e. an extension of the notion of a solution) to a variational model of thin films
where the lack of convexity typically leads to non-existence of a solution. This might be overcome by replacing
the stored energy density of the material by its qusiconvexification which is, however, very rarely known. Then,
typically, a partial relaxation by first or higher-order laminates is used in the numerics to capture the observed
features in the bulk material. To our best knowledge, this is the first paper which specializes this technique to
numerical relaxation in martensitic thin films. Numerical studies and analysis related to the minimization of the
model with surface energy (10) were performed e.g. in Bělı́k and Luskin (2007); Bělı́k and Luskin (2004, 2003).
This leads, however, to the situation where the existence of a solution is guaranteed by the convex higher-order
term. Therefore, no relaxation is needed. On the other hand, it is not clear if laminates are the right tool for
the relaxation in the thin-film model because, in general, the lamination hull differs from the quasiconvex one;
cf. Šverák (1992). We exploited the thin-film twinning equation (13) derived in Bhattacharya and James (1999) in
the algorithm. We see two ways how to extend the model. The first one is to design an algorithm which calculates
with higher-order laminates which are also observed in real materials. The second way is to enrich the model by
evolution and hysteresis properties. This is now standard in bulk materials, see e.g. Kružı́k et al. (2005). It was
observed in Zhang (2007) that rank-one connection between the austenite and a variant of martensite in the bulk
material, i.e. the validity of the bulk twinning equation (1), leads to low hysteresis in the stress/strain diagram. As
the thin-film twinning equation is much less restrictive than the bulk one, it would be interesting to know if there
are martensitic materials with large hysteresis in the bulk but negligible one in the thin film.

Acknowledgment: The work of MK was supported by the grants VZ6840770021 (MŠMT ČR) and IAA100750802
(GAAV).
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