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Regularized strategies for material parameter identification in the context
of finite strain plasticity

A. V. Shutov, R. Kreißig

We analyze the problem of material parameter identification for a certain model of finite strain plasticity/viscoplasti-
city. The material model takes into account both nonlinear isotropic and kinematic hardening. The nonlinear
kinematic hardening of Armstrong-Frederick type is modeled on the grounds of the double multiplicative split of
the deformation gradient, which was proposed by Lion.

From the mathematical viewpoint, the parameter identification problem is, in general, ill-conditioned, since the
solution does not depend continuously on the input data. Numerical difficulties arise especially when the problem
exhibits a strong correlation among the parameters. Thus, a challenge lies in developing regularized identification
strategies which reduce the correlation between the parameters and the probability of getting trapped in a local
minimum of the objective function. Moreover, a reliable parameter identification strategy should be robust with
respect to small measurement errors.

We discuss a regularization technique which involves including additional equality constraints imposed on the
material parameters. These constraints are based on mechanical considerations and may contain some additional
information about the mechanical response of the material. The mechanical considerations allow to reduce the
number of independent parameters and in some cases to reduce the correlation among them. One general guide-
line for constructing such relations is discussed in the paper: First, some analytical relations are derived in the
simplified case of small strains. Next, basing on these simplified results, the relations are generalized to the finite
strains.

The efficiency of the regularized approach for the estimation of hardening parameters using the experimental data
for EN AW-7075 aluminium alloy processed by equal channel angular extrusion was demonstrated. Although
the straight-forward approach results in a good correspondence between the experimental data and the model
predictions, the problem of the material parameter identification is not a trivial one. In particular, the error
functional exhibits numerous stationary points. It is shown that the use of the regularized strategies allows to
reduce the number of parameters being identified, and in some cases to avoid the problem of multiple stationary
points.

1 Introduction

The most important requirements that are placed upon the phenomenological material models are as follows:

• accuracy of description of the real material response,

• stability and robustness of the corresponding numerical algorithms,

• possibility of reliable identification of material parameters.

These three requirements are not mutually exclusive but rather complementary to each other. In this paper we
analyze the material model of finite strain viscoplasticity (Shutov and Kreißig, 2008b). This model takes both non-
linear isotropic and kinematic hardening into account in a thermodynamically consistent way. Moreover, as it was
shown in Shutov et al. (2009), the case of isotropic softening can be covered as well. The accuracy and robustness
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of the local time integration algorithms were numerically tested in Shutov and Kreißig (2008b). Some theoretical
results concerning the accuracy, stability, and the error accumulation are presented in Shutov and Kreißig (2010)
for a simplified version of the material model.

In the current paper we deal with some aspects of the material parameter identification. The main difficulties
associated to the parameter identification on the ground of minimization of a certain least-square functional are as
follows:

• the majority of optimization procedures can not distinct between global and local minima,

• correlation among the parameters,

• several parameters must be identified simultaneously due to the coupling effects,1

• in general, there is no continuous dependence of the resulting solution on the input data (ill-posed problem).

The main aim of the current study is to reduce the number of material parameters being identified. As this takes
place, the correlation among the remaining parameters must stay within the admissible range.2

Following the conventional approach, the parameter identification problem is reduced to the minimization of some
least-squares functional (error functional) −→p =arg min

−→p ∈P

Φ(−→p ), (1)

where −→p = (p1, ..., pn) stands for the vector of material parameters, the set P ⊆ Rn represents the set of admissi-
ble parameters. The error functional represents the discrepancy between the measurements data and corresponding
model predictions (Mahnken and Stein, 1996; Kreißig et al., 2007)

Φ(−→p ) =
∑

i

(
Model predictioni(

−→p )−Measured datai

)2
. (2)

In order to reduce the number of material parameters, m additional equality constraints can be introduced (m ≤ n)

−→g (−→p ) = (g1, ..., gm)(−→p ) = 0. (3)

We suppose that the set M := {−→p ∈ P : −→g (−→p ) = 0} is a smooth (n − m)-dimensional manifold and there
exists a smooth mapping −→p = −→p (

−→
P ), where

−→
P ∈ Rn−m is an (n−m)-dimensional vector. More precisely, we

suppose that the overall manifold M can be covered by a single smooth homeomorphism3

−→p :
−→
P ∈ P 7→ −→p (

−→
P ) ∈ M, (4)

where P is an open subset of Rn−m (cf. Figure 1.).

Figure 1. The mapping −→p :
−→
P ∈ P 7→ −→p (

−→
P ) ∈ M.

1In particular, since the isotropic and kinematic hardening effects are strongly coupled, the corresponding material parameters should be
identified simultaneously.

2In this paper the correlation is estimated using the correlation matrix which contains the information about the first derivatives of the
residuals with respect to the parameters (Beck and Arnold, 1977).

3A smooth function f is called a smooth homeomorphism if its inverse f−1 exists and is smooth.
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Along with the standard minimization problem (1) we consider a restricted one

−→p = arg min
−→p ∈P, s.t.−→g (−→p )=0

Φ(−→p ) =arg min
−→p ∈M,

Φ(−→p ). (5)

Obviously, if we take the mapping −→p = −→p (
−→
P ) into account, the minimization problem (5) is equivalent to

−→
P =arg min

−→
P ∈P

Φ(−→p (
−→
P )). (6)

Instead of identifying n parameters in (5), only n − m parameters must be determined in (6). In that sense, the
number of the parameters is reduced.

We note that constraints (3), independently of the error functional Φ, may contain a certain additional information
concerning the mechanical response. For instance, that can be constraints on the saturation stresses, evolution
of the size of the elastic domain, or the magnitude of the critical elongation (defined by the onset of the stress
softening and localization of deformation). As it will be shown in the following, the introduction of additional
constraints can essentially enhance the feasibility of the resulting set of material parameters. On the other hand,
the constraints (3) must admit a smooth homeomorphism −→p = −→p (

−→
P ) in order to allow for the reduction of the

material parameters number. Moreover, in order to solve practical problems, some robust and efficient procedures
for computing −→p (

−→
P ) are required.

Apparently, any identification procedure with fixing some of the parameters can be considered as a trivial ex-
ample of such approach.4 Some experimentally motivated constraints were introduced in Lion et al. (2008) in
order to simplify the parameter identification for a material model of viscoelasticity. Particularly, 2N+1 constants
describing a relaxation spectrum were calculated using three parameters only.

We note that the introduction of some additional equality constraints may have a regularizing effect even with-
out computing the function −→p (

−→
P ). Such constrained problem can be solved, for instance, using the method of

Lagrange multipliers or its generalizations like the method of sequential quadratic programming (Stoer, 1985).
However, in this paper we consider the equality constraints (3) in the context of simplifying the problem by reduc-
ing the number of parameters.

In order to avoid a possible ambiguity concerning the use of the terminology, we must remark that different ap-
proaches to the ”regularization” of an inverse problem exist. In Tikhonov and Arsenin (1977), for instance, a
powerful regularization technique for ill-posed inverse problems was considered. This technique is based on the
introduction of the so-called regularized operator such that the solution of the regularized problem becomes stable
with respect to small changes of the input data (measurements).

In this work a relatively simple problem was analyzed. Thus, only four hardening parameters were identified
using experiments with homogeneous deformations. Nevertheless, the discussed methodology can be applied
to the parameter identification basing on a series of experiments of different types, including experiments with
inhomogeneous loadings (Mahnken and Stein, 1996).

2 Experimental data

Let us analyze the mechanical behavior of the EN AW-7075 aluminium alloy processed by equal channel angular
pressing (ECAP) (a general overview concerning the ECAP is presented by Segal (1999)). The experimental
setup and the measurements data for the material after four ECAP extrusions (route E) were reported previously
in the paper Shutov et al. (2009). In this section we briefly discuss the experimental results which are used for
the phenomenological description of the material behavior. The reader, who is interested in details concerning the
micromechanical characterization of the material is refered to Shutov et al. (2009).

All experiments were conducted at room temperature. Firstly, a series of strain-controlled tension tests was per-
formed with strain rate ranging from 10−4s−1 to 102s−1. No clear rate-dependence of the material response could
be identified in that range. Moreover, only quasi-static loadings are considered in the following.

4For instance, the initial yield stress can be determined directly by evaluating the flow curve (graphical method).
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We note that during ECAP a strong plastic anisotropy can be introduced. In order to analyze the initial anisotropy
effects, a series of compression specimens was extracted from the ECAP-processed billet in three mutually orthog-
onal directions: the extrusion direction, the normal direction, and the transverse direction. No significant discrep-
ancy was observed between the results of uniaxial compression tests for these three kinds of samples (Shutov et al.,
2009).

2.1 Monotonic tension and compression tests

In Figure 2, the stress-strain curves corresponding to uniaxial monotonic tension and compression are presented
(the specimens were extracted in the extrusion direction from the ECAP-processed billet).

Figure 2. Experimental results: Monotonic tension and compression tests.

We note that the flow stress under tension is approximately the same as under compression (cf. Figure 2). In other
words, no significant strength difference effect is observed. Next, the technical stress reaches a maximum at some
critical strain level εcr ≈ 0.052. Since the stress response beyond that level is unstable, the homogeneous defor-
mation of the sample can not be guaranteed due to the eventual strain localization in a necked region. Therefore,
we use the measurements data only up to that critical stain level.

Although the technical strains do not exceed 10 percent in this experiment, the difference between the stress
response in tension and compression can be interpreted as a geometrically nonlinear effect.

2.2 Cyclic tension-compression tests

The quasistatic stress-strain response under uniaxial cyclic strain-controlled loading is presented in Figure 3 for
two different experiments.
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Figure 3. Experimental results: Tension-compression tests.

Note that during the tension phase the tensile yield strength increases, while the yield strength of the material under
compression grows smaller (Bauschinger effect). Moreover, the size of the elastic domain is substantially reduced
(isotropic softening). Taking into account that the hardening behavior of the material is nonlinear, we conclude
that the phenomenological description of the material response should be based on a material model of plasticity
which takes a nonlinear kinematic hardening as well as a nonlinear isotropic softening into account.

3 Material model of finite strain viskoplasticity

3.1 Constitutive equations

In this subsection we discuss a material model of finite strain visoplasticity (see Shutov and Kreißig (2008b))5.
The rheological motivation of the model is presented in Figure 4a. This rheological interpretation motivates the
double multiplicative decomposition (cf. the diagram in Figure 4b)6

F = F̂eFi, Fi = F̌ieFii. (7)

Figure 4. Modeling of kinematic hardening: (a): Rheological model, (b) Commutative diagram showing
corresponding configurations with transformations of material line elements.

Firstly, the deformation gradient F is decomposed into the elastic and the inelastic parts. This decomposition is
motivated by the idea of a local elastic unloading.7 The second split was proposed by Lion (see Lion (2000),

5A similar model of finite strain plasticity was proposed in Vladimirov et al. (2008).
6As it was formulated by Rabotnov (1980): The use of rheological models as a guideline in constructing constitutive equations allows for

ensuring the thermodynamic consistency in a natural way.
7On the other hand, decomposition (7)1 can be derived from the concept of material isomorphism (see Bertram (2005)).
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Helm (2001)) in order to represent the nonlinear kinematic hardening of Armstrong-Frederick type. The tensor
F̌ie is related to local elastic deformations induced by strong inhomogeneities of dislocations. Along with the
well-known right Cauchy-Green tensor C = FTF, we introduce two tensor-valued internal variables

Ci = FT
i Fi, Cii = FT

iiFii. (8)

These variables are interpreted respectively as inelastic right Cauchy-Green tensor and inelastic right Cauchy-
Green tensor of microstructure. The material (or Lagrangian) description is used in this paper to formulate the
material model.8

For a given deformation history C(t), the material response in the time interval t ∈ [0, T ] is governed by the
following system of ordinary differential and algebraic equations with respect to Ci(t), Cii(t), s(t), sd(t), λi(t)

Ċi = 2
λi

F

(
CT̃−CiX̃

)D
Ci, Ci|t=0 = C0

i , detC0
i = 1, C0

i ∈ Sym, (9)

Ċii = 2λiκ(CiX̃
)D

Cii, Cii|t=0 = C0
ii, detC0

ii = 1, C0
ii ∈ Sym, (10)

ṡ =

√
2
3
λi, ṡd =

β

γ
ṡR, s|t=0 = s0, sd|t=0 = s0

d , (11)

T̃ = 2ρR

∂ψel(CCi
−1)

∂C

∣∣
Ci=const, X̃ = 2ρR

∂ψkin(CiCii
−1)

∂Ci

∣∣
Cii=const, (12)

R = γse, se = s− sd, (13)

λi =
1
η

〈 1
k0

f
〉m

, f = F−
√

2
3
[
K + R

]
, F =

√
tr
[(

CT̃−CiX̃
)D]2

. (14)

Here, (·)D stands for a deviatoric part of a second-rank tensor. The material parameters ρR > 0, κ ≥ 0, β ≥ 0,
γ ∈ R, η ≥ 0, m ≥ 1, K > 0, and the isotropic real-valued functions ψel, ψkin are assumed to be known. The
constant k0 = 1 MPa is used to get a dimensionless term in the bracket (not a material parameter).

The functions s(t), sd(t), λi(t) are interpreted respectively as inelastic arc length, dissipative part of inelastic arc
length, and inelastic multiplier. The quantities C, Ci, Cii, s, and sd uniquely define the 2nd Piola-Kirchhoff tensor
T̃(t), the backstress tensor X̃(t), the isotropic hardening R(t), the overstress f(t), and the norm of the driving
force F(t).

The above definitions imply that C and Ci are symmetric. Since functions ψel and ψkin are isotropic, it makes no
difference whether the derivatives in (12) are interpreted as general derivatives or as derivatives with respect to a
symmetric tensor (see, for instance, the discussion in Shutov and Kreißig (2008a)).

In the following we will use a concrete ansatz for ψel, ψkin (Helm, 2001)

ρRψel(CC−1
i ) =

k

2
(
ln

√
detCC−1

i

)2 +
µ

2
(
trCC−1

i − 3
)
, ρRψkin(CiC−1

ii ) =
c

4
(
trCiC−1

ii − 3
)
, (15)

where k > 0, µ > 0, c > 0 are material constants. The overline (·) denotes the unimodular part of a tensor

A = (detA)−1/3A . (16)

Taking the inelastic incompressibility into account (det(Ci) = det(Cii) = 1), we get for stresses and backstresses

T̃ = k ln
√

det(C) C−1 + µ C−1(CC−1
i )D, X̃ =

c

2
C−1

i (CiC−1
ii )D. (17)

As it was proved in Shutov and Kreißig (2008b), the material model is thermodynamically consistent for γ ≥ 0
(isotropic hardening). The case γ < 0 (isotropic softening) was covered in Shutov et al. (2009) as well. The
reader, who is interested in details concerning the numerical implementation of the material model is reffered to
Shutov and Kreißig (2008a). The time discretization of the evolution equations is based on so-called geometrical
integrators. It was tested numerically in Shutov and Kreißig (2008b) for strain-controlled processes that the use of
the geometrical integrators allows to avoid the error accumulation. A mathematical explanation of this fact can be
found in Shutov and Kreißig (2010).

8In Shutov and Kreißig (2008b), the material model was originally formulated in intermediate configurations. Next, in order to simplify the
numerical treatment of the evolution equations, the constitutive relations were transformed to the reference configuration.
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3.2 Case of small strains

In this subsection we consider a simplified version of the constitutive equations under the assumption of small
strains (rotations and displacements may remain finite). The consideration of the simplified case will provide clear
insights into the construction of the regularized strategies for parameter identification. Firstly, we suppose

C → 1, Ci → 1, Cii → 1. (18)

Moreover, we assume in this subsection that there exists a constant K0 > 0 such that for any time instance t we
have the following estimation of the flow stress

K + R(t) ≥ K0 > 0. (19)

For E := 1/2(C− 1), Ei := 1/2(Ci − 1), Eii := 1/2(Cii − 1), and ∆ := max(‖C− 1‖, ‖Ci − 1‖, ‖Cii − 1‖)
we obtain from (18)

det(C) = 1 + 2tr(E) + O(∆2), ln(
√

det(C)) = tr(E) + O(∆2), (20)

C = 1 + 2ED + O(∆2), C−1 = 1− 2E + O(∆2). (21)

Here, O stands for ”lage-O” Landau symbol. Equation (21)2 follows immediately from the well-known Neumann
series expansion. Moreover, we get

C−1
i = 1− 2Ei + O(∆2), C−1

ii = 1− 2Eii + O(∆2), (22)

(CC−1
i )D = 2(E−Ei)D + O(∆2), (CiC−1

ii )D = 2(Ei −Eii)D + O(∆2), (23)

T̃ = ktr(E)1 + 2µ(E−Ei)D + O(∆2), X̃ = c(Ei −Eii)D + O(∆2). (24)

Combining these results with the definition of the driving force F (cf. equation (14)3), we get

F =
√
‖(T̃− X̃)D‖2 + O(∆3). (25)

Next, it follows from (14) and (19) that λi = 0 for F <
√

2
3K0. On the other hand, it follows from (25) that

F ≈ ‖(T̃− X̃)D‖ for F ≥
√

2/3K0, where ”≈” stands for asymptotic equivalence as ∆ → 0. Thus, we get

λi

F
≈ 1

η

〈
‖(T̃− X̃)D‖ −

√
2/3

[
K + R

]

k0

〉m
1

‖(T̃− X̃)D‖ . (26)

Furthermore, we rewrite the evolution equations (9), (10) and put corresponding initial conditions

Ėi =
λi

F

((
T̃− X̃

)D + O(∆2)
)
, Ei|t=0 = E0

i , tr(E0
i ) = O(∆2), E0

i ∈ Sym, (27)

Ėii = λiκ
(
X̃D + O(∆2)

)
, Eii|t=0 = E0

ii, tr(E0
ii) = O(∆2), E0

ii ∈ Sym. (28)

To be definite, we put in the following E0
i = E0

ii = 0. Finally, the small-strain counterpart of the material model
is obtained by neglecting the terms which are O(∆2) in (24), (27), and (28), and by using the approximation (26)
for λi/F. Note that this simplified model corresponds to the well-known classical material model of small strain
viscoplasticity (Chaboche and Rousselier (1983a,b)), where the linearized strain tensor ε and the Cauchy stress
tensor σ are formally replaced by the Green strain tensor E and the 2nd Piola-Kirchhoff tensor T̃, respectively. 9

9In general, such formal substitution can be justified as follows (Korobeinikov, 2000): Any system of constitutive equations, which is
valid under the geometrically linear conditions, can be generalized to small strains (finite rotations and displacements are allowed) by formally

replacing (ε, σ, ε̇, σ̇) by (E, T̃, Ė, ˙̃T).
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3.3 Some analytical solutions

In this subsection we analyze some properties of the material model. As it will be clear from the discussion in fol-
lowing sections, the knowledge of these properties enables the development of regularized strategies of parameter
identification.

Firstly, assuming the zero initial conditions for the isotropic hardening R, the accumulated inelastic arclength s and
the dissipative part sd (s|t=0 = 0, sd|t=0 = 0) and integrating the evolution equation (11)2 for sd, the well-known
Voce hardening rule is restored

R = R(s) =
γ

β
(1− e−βs). (29)

Note that this result is valid both for finite and for small strains.

Next, let us consider a Cartesian coordinate system {e1, e2, e3} and assume a monotonic strain-controlled uniaxial
loading along e1. Thus, in terms of the linearized strain tensor ε and the Cauchy stress tensor σ we have

ε = εe1 ⊗ e1 − ε̂(e2 ⊗ e2 + e3 ⊗ e3), σ = σe1 ⊗ e1, (30)

where ε = ε(t) is a given monotonic function; ε̂ and σ are unknown. In this subsection we use notation X for the
backstress tensor of the geometrically linear theory (Subsection 3.2). Substituting this relations into the evolution
equations from Subsection 3.2, we get for the backstress X

X = x(s)
(
e1 ⊗ e1 − 1/2 e2 ⊗ e2 − 1/2 e3 ⊗ e3

)
, x(s) =

√
2
3

1
κ

(1− e−
√

3/2cκs). (31)

Moreover, for quasistatic processes we put (by ommiting the elastic deformation phase)

‖(σ −X)D‖ =
√

2/3
[
K + R

]
. (32)

Combining this with (29), (30)2, and (31) we get the axial component σ of the stress tensor under small strain
condition:

σ(s) = K +
γ

β
(1− e−βs) +

√
3
2

1
κ

(1− e−
√

3/2cκs). (33)

4 Constraints on the material parameters

Suppose that parameters k, µ, K, η, and m are now known (cf. Section 5). We discuss some constraints which can
be imposed on the hardening parameters γ, β, κ, c in order to simplify the parameter identification.10

First, we consider the case of small strains. If the saturation stress σsat under monotonic uniaxial tension is known,
it may be reasonable to consider the constraint as follows

g̃1(γ, β, κ, c) = 0, g̃1(γ, β, κ, c) := lim
s→∞

σ(s)− σsat, (34)

where σ(s) is the axial component of the Cauchy stress tensor given by the geometrically linear counterpart of the
material model (we drop the dependence of σ(s) on parameters to simplify the notation). Substituting the explicit
expression (33) into (34), we get

K +
γ

β
+

√
3
2

1
κ
− σsat = 0. (35)

This relation is equivalent to

κ =

√
3
2

1
σsat −K − γ/β

. (36)

Thus, the hardening parameter κ is represented as a function of the remaining hardening parameters γ, β, c. In
general, in the case of finite strains, this relation is not applicable, since it is based on the assumption of small
strains. But it can be seen as a simplified approximation for κ as long as the geometrically linear approach yields
proper results (Shutov et al., 2009).

10Obviously, along with the simplifying effect, the consideration of constraints allows for taking additional information on the material
behavior into account.
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Now let us discuss a generalization of this approach to the finite strain range. Suppose that a technical stress σtech
∗

is known at some point ε = ε∗, where ε stands for the technical strain.11 Consider the constraint as follows

g1(γ, β, κ, c) = 0, g1(γ, β, κ, c) := σtech|ε=ε∗ − σtech
∗ , (37)

where σtech|ε=ε∗ stands for the model prediction of the technical stress. The solution of equation (37)1 with respect
to κ is denoted by

κ = κ1(γ, β, c). (38)

The dependence of κ1(γ, β, c) on σtech
∗ is omitted in order to simplify the notation. In this work the function

κ1(γ, β, c) is evaluated numerically using the Newton method.12

The next type of equality constraints is based on the knowledge of the critical strain εcr at which the maximal stress
is reached (Cauchy stress and technical stress in geometrically linear and nonlinear cases, respectively). Thus, for
small strains, we get

g̃2(γ, β, κ, c) = 0, g̃2(γ, β, κ, c) :=
dσ(ε)

dε
|ε=εcr

, (39)

where σ(ε) is a model prediction. Note that such condition under small strain range can be reasonable only if
γ < 0 (isotropic softening). If γ > 0 (isotropic hardening) then no peak stresses are predicted, and (39) makes no
sense. By neglecting elastic strains, a somewhat more simple relation can be obtained

ǧ2(γ, β, κ, c) = 0, ǧ2(γ, β, κ, c) :=
dσ(s)

ds
|s=εcr . (40)

Substituting the explicit expression (33) into (40), and putting s = εcr, we get

γe−βεcr +
3
2
ce−

√
3/2cκεcr = 0. (41)

Thus,

κ =

√
2
3

1
cεcr

ln
(
− 3c

2γ
eβεcr

)
. (42)

Next, we generalize this approach to finite strains. Towards that end we replace the axial component of the Cauchy
stress by the technical stress,

g2(γ, β, κ, c) = 0, g2(γ, β, κ, c) :=
dσtech(ε)

dε
|ε=εcr . (43)

Denote the solution of this equation with respect to κ by κ2

κ = κ2(γ, β, c). (44)

The dependence of κ2(γ, β, c) on εcr is omitted to simplify the notation. In the following, the function κ2 is
evaluated numerically.

Finally, let us discuss the third type of constraints. Suppose that at some point which is characterized by accu-
mulated plastic strain s = s∗, the size of the elastic domain is known (cf. experimental data in Subsection 2.2):
S∗ := σtension − σcompression > 0. In the case of small strains we can consider

g3(γ, β) = 0, g3(γ, β) := (K + R(s∗))− 1/2S∗. (45)

Substituting (29) for R(s) we obtain

γ = γ1(β), γ1(β) :=
β

1− e−βs∗
(1/2S∗ −K). (46)

Note that γ < 0 for S∗ < 2K (isotropic softening). This approach can be easily generalized to cover finite strains
as well. However, in this paper we apply such relation for deformed states under relatively small strains only (cf.
Section 5). Thus, the estimation (46) is supposed to yield good results in that case.

11In the following we put ε∗ := εcr , where εcr stands for the critical deformation (cf. Section 2.1).
12For certain finite-strain models it might be possible to obtain an explicit analytical expression for κ, similar to the expression (36). In this

paper, however, we use a more general numerical approach.
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5 Parameter identification

The elasticity parameters can be identified using the measurements data in elastic range: µ = 26300 MPa, k =
68600 MPa. The parameters of the Perzyna-law, for instance, can be obtained basing on the measurements of
the overstress f for a series of loading rates. In this paper we neglect the viscous effects by putting η = 0 s,
m = 1. Furthermore, the initial flow stress is identified by the qualitative analysis of the flow curve (graphical
method): K = 485 MPa. In the following we discuss some identification procedures for determining the hardening
parameters.

5.1 Straight-forward approach

Four uniaxial experiments are considered in this section: one monotonic tension (cf. Section 2.1) for ε ≤ εcr =
0.052 (n1 = 35 data points), one monotonic compression (cf. Section 2.1, n2 = 43 data points), and two tension-
compression experiments (cf. Section 2.2, n3 = 137, n4 = 152 data points). Let us denote the experimentally
measured technical stresses by σ̂tech

k,i , where k ∈ {1, 2, 3, 4} stands for the number of the experiment and i ∈
{1, 2, ..., nk} for the corresponding measurement point.

Basing on these data, we consider an error functional as follows

Φ(γ, β, κ, c) :=
4∑

k=1

nk∑

i=1

(σ̂tech
k,i − σtech

k,i (γ, β, κ, c))2, (47)

where σtech
k,i (γ, β, κ, c) stands for the corresponding simulation results.

The error functional Φ is minimized using the Levenberg-Marquardt method (Newton method with damping). Two
stationary points −→p 1 and −→p 2 were identified numerically. The corresponding parameter sets are summarized in
Table 6. Note that −→p 1 and −→p 2 are adjacent to each other. This illustrates the fact that even having a ”very good”
initial guess for the solution, the convergence to the global minimum can not be guaranteed.

Since Φ(−→p 2) is smaller than Φ(−→p 1) (see Table 6), we consider the set−→p 2 to be the solution of the problem within
the straight-forward approach. The corresponding simulation results are plotted in Figure 5. The correlation matrix
for −→p 2 is presented in Table 1.
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Figure 5. Simulation results for −→p 2 (straight-forward approach).

We see that the parameters β, γ and c are correlated. Nevertheless, the correlation remains in the admissible range.
Thus, the parameter identification is possible. On the other hand, since the target function Φ possesses numerous
stationary points (at least two), a series of optimization computations is required to get the global minimum of Φ.
This circumstance makes the reliable parameter identification especially time consuming, if numerous parameters
are to be identified simultaneously.

One important feature of the parameter sets −→p 1 and −→p 2, which has to be taken into account, is that smaller
stresses are predicted by the model under tension and compression near the termination points. The second feature
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Table 1: Correlation matrix: straight-forward approach
β c γ κ

β 1.0 0.58 -0.90 -0.16
c 0.58 1.0 -0.82 -0.27
γ -0.90 -0.82 1.0 0.37
κ -0.16 -0.27 0.37 1.0

is that the technical stresses reach their maximum under tension at much smaller strains than in the experiment. In
particular, this implies that the onset of unstable deformation (strain localization) occurs at smaller strains.13

5.2 Regularized strategies basing on g1 and g3

Now let us consider a constrained optimization problem basing on the equality constraint (37). We put in (37)
ε∗ := εcr = 0.052. Thus, we minimize Φg1(γ, β, c) := Φ(γ, β, κ1(γ, β, c), c). The functional was minimized
with respect to γ, β, and c using a series of different initial approximations. The same parameter set−→p 3 is obtained
in all cases (no numerous stationary points identified). The correlation matrix is presented in Table 2. Note that
the correlation between the parameters remains in the admissible range.

Table 2: Correlation matrix: use of g1

β c γ
β 1.0 0.80 -0.94
c 0.80 1.0 -0.92
γ -0.94 -0.92 1.0

Although the identified minimum of the error functional Φ(−→p 3) is somewhat larger than Φ(−→p 2) (see Table 6), the
stress response is better predicted near the termination points for tension and compression loadings (see Figure 6).
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Figure 6. Simulation results for −→p 3 (optimization under use of g1).

The next strategy is based on the combination of equality constraints (37) and (45). Thus, we minimize now
Φg1,g3(β, c) := Φg1(γ1(β), β, c) = Φ(γ1(β), β, κ1(γ1(β), β, c), c) with respect to β and c. In order to make use
of (45), we put in this paper S∗ := 775 MPa, s∗ := 0.019. Similarly to the minimization of Φg1(γ, β, c), only one
stationary point −→p 4 is identified. The correlation matrix is presented in Table 3. The simulation results basing on
the set −→p 4 are close to that of −→p 3 (see Figure 7).

13One possible way of dealing with these problems is to introduce additional terms like α1(g1)2 or α2(g2)2 into the formulation of the
error functional (47), where coefficients αi should be large enough in order to influence the optimization positively. On the other hand, the
problem becomes ill-conditioned for large values of αi. Thus, the optimal choice of the coefficients αi is not a trivial task.
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Table 3: Correlation matrix: use of g1 and g3

β c
β 1.0 0.78
c 0.78 1.0
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Figure 7. Simulation results for −→p 4 (optimization under use of g1 and g3).

Similar to the previous subsection, the common feature of the parameter sets −→p 3 and −→p 4 is that the predicted
critical strain is essentially smaller than the experimentally measured one.

5.3 Regularized strategies basing on g2 and g3

On the grounds of the constraint (43) we consider now Φg2(γ, β, c) := Φ(γ, β, κ2(γ, β, c), c). The minimization
of Φg2 yields the parameter vector −→p 5. Note that Φ(−→p 5) is larger than Φ(−→p 2), Φ(−→p 3), or Φ(−→p 4). The corre-
sponding simulation result is presented in Figure 8. Apparently, the constraint (43) is much more restrictive than
the constraints (37) and (45). The use of the constraint (43) can be justified if the correct prediction of the critical
strain has a primary importance.14 Note that the correlation between the parameters remains in the admissible
range (Table 4).
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Figure 8. Simulation results for −→p 5 (optimization under use of g2).

14Obviously, we are dealing with two conflicting requirements in this case : 1st: minimize Φ(−→p ), 2nd: minimize (g2(−→p ))2. In general,
such problems should be solved in the context of multi-criteria optimization. However, in this paper the constraints are used at the first place in
order to simplify the problem. Therefore, the multi-criteria optimization is not addressed in this study.
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Table 4: Correlation matrix: use of g2

β c γ
β 1.0 0.77 -0.94
c 0.77 1.0 -0.90
γ -0.94 -0.90 1.0

Finally, if we impose the constraints (43) and (45) on the hardening parameters, we need to minimize Φg2,g3(β, c) :=
Φg2(γ1(β), β, c) = Φ(γ1(β), β, κ2(γ1(β), β, c), c). We denote the resulting parameter set by −→p 6. As it follows
from Table 5, the correlation between β and c remains within the admissible range. The corresponding simula-
tion result is depicted in Figure 9. Note that the use of Φg2,g3 yields similar results as the ones obtained by the
minimization of Φg2 .

Table 5: Correlation matrix: use of g2 and g3

β c
β 1.0 0.88
c 0.88 1.0
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Figure 9. Simulation results for −→p 6 (optimization under use of g2 and g3).

Finally, the results of the parameter identification for different identification strategies are summarized in Table 6.

Table 6: Results of parameter identification
constraints γ [MPa] β [-] κ[MPa−1] c [MPa] Φ(−→p i)[MPa2]−→p 1 -12805 112.2 0.006377 16370 66421−→p 2 -14126 121.2 0.006317 17290 66012−→p 3 g1 = 0 -12977 121.6 0.006226 15560 68527−→p 4 g1 = g3 = 0 -13111 122.4 0.006214 15660 68542−→p 5 g2 = 0 -8921 103.7 0.005658 10890 98859−→p 6 g2 = g3 = 0 -12034 108.7 0.005080 12660 118280

6 Conclusion and discussion

One approach to the parameter identification was numerically tested in this paper. The approach is based on
the introduction of additional equality constraints during the formulation of minimization problem. The basic
principles for choosing these constraints are as follows:

• The constraints should admit a plausible mechanical interpretation.
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• The mechanical quantities15 used to formulate these constraints should be stable with respect to the mea-
surement errors.

• The constraints should depend continuously on the input data.

• The constraints should admit the construction of a smooth homeomorphism −→p = −→p (
−→
P ) (cf. (4)).

In this paper we do not analyze mathematically the existence and smoothness of functions κ1(γ, β, c) (cf. (37))
and κ2(γ, β, c) (cf. (43)). Instead, we present, basing on a geometrically linear simplification of the model,
some explicit analytical solutions (cf. equations (36) and (42)). These analytical solutions can be seen as an
approximation for the case of moderate stains. Moreover, the numerical tests indicate that the Newton method
allows to solve nonlinear equations (37) and (43) numerically, using results (36) and (42) as initial approximations.
In particular, no computational difficulties were encountered in evaluating the functions κ1 and κ2. We note that
the consideration of the geometrically linear simplification may serve as a guideline in formulating the constraints
(and corresponding initial approximations) in the general case of finite strains. Obviously, the construction of
reasonable constraints should be based both on the reliable information about the real mechanical behavior and the
understanding of the material model.

As it was shown in the paper, the straight forward approach has three disadvantages: the presence of multiple
stationary points, the incorrect prediction of the critical strain εcr, and underestimated stresses near the termination
points under tension and compression (see Figure 5). The introduction of additional constrains allows to reduce the
number of material parameters and to achieve a better prediction of the stress response near the termination points.
The introduction of additional constraints does not lead to a bad correlation between the material parameters.
Since the number of parameter is reduced, the eventual problem of multiple local minima can be dealt in a much
simpler way. Moreover, for the example considered in this study, no numerous stationary points were observed for
constrained minimization problems.

The requirement of correct prediction of the critical strain εcr appears to be restrictive for this current example
such that Φ(~p6) is almost two times larger than Φ(~p2). On the other hand, the solution ~p6 is optimal in its class.

Figure 10. The set of admissible parameters in the context of the toleration condition (48).

In general, the problem of minimizing the error functional is ill-posed, since small changes of input data (exper-
imental results) can lead to finite changes of the solution −→p (resulting parameter vector). In other words, the
minimizing vector −→p is not a continuous function of the input data. On the other hand, the experimental data
contain some measurement errors. Moreover, some small discrepancy between the real material behavior and the
model prediction can be tolerated. Thus, there exists a toleration parameter ∆Φtol, such that all parameters −→p ∗
satisfying

Φ(−→p ∗) ≤ min(Φ) + ∆Φtol, (48)

should be considered as admissible ones (see Figure 10). A major challenge lies in developing identification
strategies which fulfil two requirements as follows: (i) the parameters −→p ∗ must be admissible in the sense of (48),
(ii) −→p ∗ must depend continuously on the input data.

We may put, for instance, ∆Φtol := min(Φ). In that case, the results −→p 4 and −→p 6 can be seen as admissible
ones (cf. Table 6). Moreover, the corresponding minimization problems (minimization of Φg1,g3 and Φg2,g3) are

15Like the peak stress σ∗ or the critical strain εcr .
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advantageous to the straight-forward approach (minimization of Φ) since only one stationary point is observed.
Furthermore, relations (36), (42) and (46) depend smoothly on the input data σsat, εcr, and S∗, and it was tested
numerically that κ1(γ, β, c) and κ2(γ, β, c) depend continuously on σtech

∗ and εcr, respectively. Thus, we conclude
that the minimization of Φg1,g3 and Φg2,g3 is a step towards meeting the major challenge mentioned above.
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