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Investigation of the grain-scale deformation in a polycrystalline aluminum
alloy

T. Marin, G. Nicoletto

A finite element based crystal plasticity implementation is employed to study an aluminum polycrystal subjected
to uniaxial loading. The emphasis is put on the effect of the representation of the microstructure on the strain
accumulation and intra-granular misorientation field. To better capture the crystal-scale behavior, each grain in
the mesh is discretized into many finite elements. It is found that irregular tessellations based on Voronoi schemes
provide similar responses whereas regular solids show some differences. An extended investigation of the role of
the grain boundaries in the development of strain heterogeneity and in the re-orientation of parts of the grains is
also provided according to an original averaging procedure.

1 Introduction

The interaction of grains and the way this influences the performance of a polycrystalline metallic material repre-
sent a fascinating stimulus for experimental and numerical research. The anisotropic nature of crystallographic slip
determines deformation incompatibilities that are accommodated by local phenomena such as plastic strain het-
erogeneity, grain reorientation and surface roughening, (Raabe et al., 2003). The distribution of strain that arises
in the microstructure is affected by macroscopic factors, such as the load condition, but also by the micro-scale be-
havior of the grains constituting the polycrystalline aggregate. The topology and the shape of the crystals, the grain
boundaries spatial distribution together with the individual lattice orientation are all contributing to the character
of the local deformation. The resulting elastic-plastic strain patterns have a scale that spans many grains, but some
relevant phenomena, such as grain subdivision and intra-granular misorientation evolution, take place at the scale
of the single crystal, (Thorning et al., 2005). In the grains of a polycrystalline material subjected to large plastic
deformations, dislocation structures develop with boundaries that might separate volumes with different lattice ori-
entations. This mechanism leads to different rotation paths and rates and to deformation induced grain boundaries
with a certain misorientation between the domains, (Hughes and Hansen, 1997; Kuhlmann-Wilsdorf and Hansen,
1991). At least three factors promote this behavior: plastic anisotropy, the highly non linear relation between stress
and shear strain rate that controls crystallographic slip, and the constraining effect due to the neighboring grains.
The deformation induced is heterogeneous and often characterized by localized regions of highly strained material
surrounding portions that have undergone less deformation, or by the splitting of the grain in two or more areas
rather homogeneously deformed according to different slip systems. Somehow the localization of straining is less-
ened by work hardening that tends to spread the deformation over wider areas. Full-field measurements methods,
such as digital image correlation, can be used to investigate the evolution of deformation on the surface of the
specimens and often reveal a direct connection of the strain patterns to the underlying microstructure, (Tatschl and
Kolednik, 2003). Moreover techniques such as orientation imaging microscopy and X-ray microdiffraction can
provide detailed information regarding the local grain orientation in highly resolved areas, (Kamaya et al., 2005).
In addition to experimental tools, finite element simulations of polycrystals can be used to analyze deformation
and re-orientation phenomena at the grain scale and monitor microstructural features related to lattice orientation,
(Kalidindi et al., 2004). While experimental data are available only at limited load levels and at specific locations
in the sample, with the FE calculations a wide range of information is accessible through the whole deformation
history and in all the elements of the model. In this work numerical simulations are employed to study some as-
pects of strain distribution and of intragranular lattice misorientations in an aluminum alloy. The goal, is to better
understand quantitative trends related to the role of the grain boundaries, and to asses how the representation of
the microstructural features such as the grain shape and arrangement, affects the response of the polycrystal both
at the macroscale and at the crystal-level scale.
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2 Micromechanical modeling of polycrystalline materials

The simulations presented are based on the finite element method; within this context four main issues are involved
in the modeling of polycrystalline materials:

1. the choice of the scale

2. the definition of constitutive equations

3. the construction of an appropriate microstructure representative of the material

4. the application of suitable boundary conditions.

The phenomena analyzed in the following sections regards the local behavior of the crystals in an aluminum alloy,
therefore the way the grains behave and interact must be included in the modeling effort. The finite element
formulation employed is three-dimensional, allowing a complete definition of the spatial domain, and is based on
an elasto-viscoplastic constitutive model that describes the behavior of the material at the crystal scale. The elastic
response is linear and anisotropic while the rate-dependent plastic response is cast in terms of crystallographic
slip. In a material with FCC crystal structure, crystallographic glide is assumed to take place on twelve {111} <
110> slip systems, being {111} the planes of greatest atomic density and <110> the close-packed directions
within those planes. To better detect the grain interaction and the intra-granular heterogeneities that develop
upon deformation, no mean field assumptions (such as Taylor hypothesis) are used to relate the single crystal
to macroscopic polycrystal response. Instead each grain is discretized into a number of finite elements and the
constitutive equations are enforced at the quadrature points without homogenization. An insight into the model
and its implementation is yielded in Section 4.

In FE crystal plasticity simulations, artificial (or virtual) polycrystals constituted by aggregate of grains have to be
constructed and the level of details adopted in representing the microstructure depends on the phenomena object of
the study. For example texture analysis at large deformation can be dealt with cubic grains, (Sarma and Dawson,
1996), while for the study of strain heterogeneities more realistic grain shape have to be used, (Zhang et al.,
2005). Until few years ago, micrographs of physical microstructures were usually the most common source of
information to infer the spatial distribution of phases, grain morphology and topology. Orientation mapping have
then emerged as a powerful metallographic technique for characterizing grain structures; nevertheless both methods
are two-dimensional in nature. A full three-dimensional description is possible through serial slicing, (Sumigawa
et al., 2004), or sophisticated nondestructive techniques based on diffraction, (Fu et al., 2003). The modeling of
real microstructures is necessary when experimental data, extracted in a well defined portion of the material, is
directly compared to simulation results. This has been done almost exclusively through full-field measurements
of displacements or orientations on the surface of specimens to correlate strain patterns to grain boundaries or
to investigate deformation bands, see for example (Sachtleber et al., 2002; Erieau and Rey, 2004; Héripré et al.,
2007). The procedure for the assembly of the grain aggregates used in this work is expanded in Section 3.

The fourth point concerns the way the virtual polycrystals are constrained and loaded. In this study an aluminum
alloy subjected to monotonic uniaxial loading is considered ant the maximum engineering strain reached is 10%.
Details on the boundary conditions and on the application of the deformation history to the finite element meshes
are provided in Section 5.

3 Virtual grain aggregates for FE modeling

When introducing the methodology in Section 2, it was recalled that the reconstruction of grain aggregates from
experimental evidence may not be straightforward and not always necessary. The easier and more viable way
consists in the arrangement of artificial polycrystalline aggregates, and this has also been the most widely used
procedure in the literature. Another undoubted advantage is that different microstructures can be analyzed and
compared and hints about the role of the grain geometry and arrangement might be drawn. The present work in
fact targets at contributing to the understanding of the implications of some modeling choices on the intra-granular
response of the FCC materials. The definition of an aggregate of non-overlapping and space-filling grains poses
many questions about shape and spatial distribution of the constituent grains. For example the grains could be
regular or irregular solids, convex or concave. In the literature convex shapes have been utilized almost exclusively
due to their simpler construction; concave grains are not considered here.
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Figure 1: (a) 2D Voronoi tessellation generated by 100 randomly distributed nucleation points (indicated by the
marks), and (b) the corresponding centroidal Voronoi tessellation. The aggregate has periodic boundaries.

Figure 2: Distributions of the shape factor (SF ), normalized volume (V/Vm) and normalized area (A/Am) in the
559-grain 3D polycrystals VOR3 (top row) and CVT3 (bottom row).
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Figure 3: Tessellation of space using (a) cubes, (b) truncated octahedra, (c) Voronoi cells and (d) centroidal Voronoi
cells obtained from (c).

The approach that uses regular solids tiled periodically does not require special efforts. There are many space-
filling convex polyhedra with regular faces, (e.g. tetrahedron, triangular prism, gyrobifastigium, . . . ) but only five
of them can be tiled keeping the same orientation in space: cube, hexagonal prism, elongated dodecahedron, trun-
cated octahedron and rhombic dodecahedron. There exist other space-filling solids that do not keep the orientation
or that do not have regular faces. Different shapes can be combined together to obtain a tessellation but this practice
is not common in polycrystals modeling. Cube is the simplest geometry, the tiling is trivial and the realization of
regular mesh, using brick or tetrahedral elements, is straightforward. These are the reasons for their extensive use
in the past, for example (Dawson et al., 2001). The disadvantage of this solid is that the shape is quite far from real
grains, furthermore the faces are aligned in a ”grid” and the number of neighbors is constant and fixed to only six.
To overcome those drawbacks but preserving the ”meshability”, rhombic dodecahedron and truncated octahedron
are good candidates. The first one has 12 faces, 24 edges and 14 vertices; every face has 4 edges. The truncated oc-
tahedron has 14 faces (6 squares and 8 hexagons), 24 vertices and 36 edges; it is characterized by the property that
3 edges meet at every vertex and that, in a periodic pattern, every edge is shared by just 3 adjacent solids. The cube
ant the truncated octahedron can be inscribed in a sphere while the rhombic dodecahedron cannot. Incidentally, it
is known from basic crystallography that the Wigner-Seitz cell of simple cubic lattice unit cell (SC) is the cube, for
the body-centered cubic lattice (BCC) it is the truncated octahedron and finally for the face-centered cubic lattice
(FCC) it is the rhombic dodecahedron. The shape factor, defined for a three-dimensional body in Equation 1, is an
effective means for the characterization of the geometric shapes:

SF =
36π · V 2

A3
(1)

where V is the volume and A is the surface area of the solid. It is a dimensionless parameter (0 ≤ SF ≤ 1) that
becomes unity for spherical bodies and decreases in value with increasing shape irregularity. It results that: cube
SF = 0.52, rhombic dodecahedron SF = 0.74 and truncated octahedron SF = 0.75.

Another common method for the construction of aggregates of solids is the Voronoi tessellation. It has been
widely adopted as a modeling tool in many fields in materials science such as the simulation of grain growth,
crack growth, damage and shear banding in polycrystals. The applications of Voronoi tessellation are however
not restricted to mechanical problems. Among others, simulation of magnetisation processes, study of foams, and
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Figure 4: Examples of grains with geometric features that affect the size and the quality of the mesh: (a) small
faces, (b) small edges and (c) small angles. (d-f) Removal of the small features.

concrete. The Voronoi algorithm is renowned for being able to create stochastic microstructures that well resemble
typical grain aggregates. In short, a n-dimensional space is partitioned into convex and space-filling polytopes: in
2D this results in polygons, whereas in 3D the outcome is a cell structure of polyhedra with planar faces that are
the perpendicular bisectors of the segments joining the nucleation point with the other neighbors. The subdivision
of the space is completely determined by the position of the set of nucleation points (or seeds). The Voronoi
tessellation mimics the morphogenetic process of nucleation and radial growth from fixed seeds in a isotropic and
homogeneous way. The cells have the interesting feature that all the vertices act as ”triple junctions”: exactly three
cells meet at every corner. It follows that each edge is in contact with just 3 polyhedra in 3D (2 polygons in 2D).
This characteristic is shared by cubic shapes and by truncated octahedra but not by rhombic dodecahedra. Since the
discrete set of nucleation points completely defines the resulting cell structure, it might be envisaged that one could
position them in such a way to create certain types of polyhedra with a specific stereology, but in general this is not
straightforward. A random set of points is most often used and a very complex cell structure is then produced. Two
issues arise, the first is related to the ”meshability” of the grains: the more complex is the geometry of the grains,
the higher is the number of finite elements required. The second concerns the accuracy in the representation of the
microstructure in terms of grain size distribution. If a particular distribution is found in the material studied and if
this is considered relevant for the modeling then the nucleation points have to be placed with ad hoc procedures.

A special type of Voronoi tessellation, called centroidal Voronoi tessellation, has the distinct property that ideally
the nucleation points coincide with the centroids of the cells. This has an impact on the size and shape distributions
of the grains, simply speaking the seeds get well-spaced and the size distribution is less spread. Several algorithms
can be used to generate this special tessellation, for instance it can be obtained from a pre-existing Voronoi tessel-
lation through an iterative minimization process of the distance between the centroid and the nucleation point in
all the cells. Figure 1 shows an example of tessellation of a portion of a plane by 100 cells, the external bounds
are also shaped to allow a periodic tiling of the whole aggregate: on the left the Voronoi tessellation generated by
random seeds, on the right the corresponding centroidal Voronoi tessellation. Some cells are highlighted to better
track their evolution. It is evident how the minimization process heavily alters the position and geometry of the
cells and how a higher degree of uniformity in shape and size is gained. To create such aggregates, some Matlab
scripts based on the routines by prof. J. Burkardt 1 were implemented by the authors. A detailed investigation of
the theory of the centroidal Voronoi tessellation and of the mathematical aspects may be found in (Du et al., 1999).
Figure 2 shows an example of grain statistics in a Voronoi tessellation and in the related centroidal Voronoi tessel-
lation for a cube filled with 559 nucleation points randomly distributed (these aggregates will be called VOR3 and
CVT3 in the subsequent parts of the paper). Three parameters are plotted in form of histograms: the shape factors
SF , the grain volumes V normalized by the mean value Vm, and the area A of the grain surfaces normalized by
the mean value Am. The mean shape factor for VOR3 is 0.49 while for CVT3 it is 0.61 which is about 25% higher,
so the grains in CVT3 are somehow more spheroidal. Aggregate VOR3 has a mean shape factor quite low and
comparable to the cubic grains; it is also fairly far from both rhombic dodecahedra and truncated octahedra, these
regular solids are not even reached by the grains in CVT3. In the centroidal Voronoi tessellation not only the grains
are more equiaxed but also the size dispersion is reduced as can be seen inspecting the scatters in the histograms of
the top and bottom rows of Figure 2. The normalized volume V/Vm and area A/Am tend to concentrate more in
proximity of 1, which stands for the case of iso-volume and iso-area, but some scatter is still present. The absence

1http://people.sc.fsu.edu/ burkardt
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Figure 5: Free mesh (a), regular mesh with ”staircase” boundaries (b), and use of multiphase elements (c) in a
two-dimensional polycrystal.

of scatter (V/Vm = 1 and A/Am = 1) would be obtained only using a tessellation of regular solids as discussed
before. Figure 3 shows four aggregates of cubic grains and truncated octahedral grains together with examples
of a Voronoi tessellation and of a centroidal Voronoi tessellation. The different grain packing is clear with the
regular grain shapes characterized by a repetitive pattern and with the centroidal Voronoi grains more equiaxed
and manifesting a more uniform shape distribution than the standard Voronoi. These four types will be used, and
the corresponding results compared, in Section 5.

If the generation of Voronoi cells is aimed at the creation of a FE model then the ”meshability” is a primary issue.
The resulting polyhedra usually have geometric features that would require locally a very fine mesh, but a high
level of refinement per grain might imply a computational cost that could reduce the total number of grains in
one simulation run. Typical cases of problematic geometric features are shown in Figure 4 and consist in small
edges, faces and angles. For example some edges or faces could be a couple of order of magnitude smaller than the
average (or desired) element size and this certainly leads to strong element size gradient and possibly to distorted
elements. Small angles result in bad element shape metrics, regardless of the size. To improve the mesh quality,
some corrections can be applied to the geometry of the grains before the discretization is performed. Figure 4e-f)
suggests indeed a possible solution based on the direct removal of the small features obtained by collapsing and
merging of edges or vertices. Given a threshold value of acceptance for the edge and face size or for the angle, one
could run a check in the whole aggregate and then modify the geometry where needed. It must be mentioned that
the suppression of these features could locally eliminate one of the main characteristics of the Voronoi tessellation,
i.e. the fact that all the vertices are triple junctions, as more than three edges may converge to one vertex, see
Figure 4e). This drawback however should be totally overcome by the mesh quality improvement. The corrective
actions in Figure 4e-f) have not been implemented yet by the present authors so the meshes used in Section 5 will
unavoidably present some distorted elements.

In the literature other strategies have been proposed and are based on the manipulation of the grain boundaries,
more precisely the flatness of faces is altered to allow a quick construction of a regular mesh without any of the
problems above, Figure 5b-c). Figure 5a) is the standard approach just discussed and used in this paper, the grain
boundaries are flat, every grain is partitioned into finite elements and at the boundaries the mesh is coherent with
the neighbors. The second approach, case b), adopts a regular mesh and the boundaries assume a ”staircase” pattern
that mimics only partially the original flat borders. The evident advantage is that the mesh can be easily created
in the whole aggregate; the drawback is the alteration of the grain shapes and the distortion of the boundaries,
(Diard et al., 2005). This type of mesh is however suitable when used to replicate real microstructures if the
information is in form of a discrete set of voxels or pixels, for example from tomography or EBSD data. A similar
idea is applied in case c) of Figure 5, the mesh preserves the same regular pattern but at the grain boundaries
”multiphase” elements are adopted. In these special elements part of the integration points belongs to one grain
while the remaining part belongs to the neighboring grain, the ”staircase” effect is mitigated and the advantages of
the regular mesh are preserved.

In all the discussion above, it was tacitly implied that the three-dimensional space to be tessellated was bounded
by flat faces, and the simplest case is a unit cube. When the cube is filled with regular solids, some of them have
to be trimmed and this is usually done along their symmetry planes. In the case of Voronoi and centroidal Voronoi
tessellations, the flat borders are obtained by mirroring the nucleation points. Periodic aggregates can also be
constructed as shown in Figure 1: for regular solids this does not require any trimming, for Voronoi tessellations
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Figure 6: Kinematics of single crystal deformation: (a) reference, (b) intermediate and (c) actual configurations.
(d) Directional elastic modulus Ehkl plotted on unit hemisphere for aluminum. (e) Schematics of the slip systems
{111} <110> for an FCC crystal.

the nucleation points have just to be copied and replicated in accordance with the directions where periodicity is
desired. In the all simulations presented in Section 5 only flat faces will be used.

4 Crystal constitutive equations

The kinematics of crystal deformation is based on the multiplicative decomposition of the deformation gradient F
as in Equation 2 and Figure 6a-c), where F e is associated with elastic lattice stretching and rigid rotation while
F p is the plastic contribution due to shearing of the slip systems only. F p represents, in a continuum fashion,
the cumulative effect of the dislocation motion in the crystal, therefore it is assumed to leave the crystal lattice
undistorted and unrotated. As conventional in metals, the plastic deformation is supposed to occur at constant
volume and the incompressibility condition is det(F p) = 0. Although small, elastic volume changes are allowed
and det(F e) > 0.

F = F eF p (2)

The intermediate (or relaxed) configuration, Figure 6b, is unique and is obtained from the current configuration,
Figure 6c), by elastic unloading and upon returning the lattice to its original orientation. This partition of the
deformation gradient is purely conceptual and provides a suitable mathematical framework for the single crystal
plasticity theory. Since in this basic formulation the plastic flow takes place uniquely through crystallographic
glide, the plastic velocity gradient Lp is completely controlled by the shear rates occurring on the N active slip
systems of the crystal; in the intermediate configuration Equation 3 holds:

Lp =
N∑

α=1

γ̇αsα
0⊗mα

0 . (3)

Each slip system α is defined by the glide direction mα
0 and by the slip plane normal sα

0 given in the refer-
ence configuration. These are time-independent orthonormal unit vectors but in the current configuration only
the orthogonality is preserved. To define the material behavior both the elastic and plastic deformation must be
prescribed at each instant of the analysis. In the elastic behavior of the crystals it is assumed that second-order
effects are negligible therefore the constitutive law is linear and anisotropic. The elastic lattice strain Ee is defined
in terms of the elastic deformation gradient F e as:

Ee =
1
2

(
F eT F e − I

)
. (4)
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The corresponding stress measure, elastic work-conjugate to Ee in the intermediate configuration, is the second
Piola-Kirchhoff stress T e. Assuming that the elastic strains are small, which is reasonable since the elastic moduli
of metallic materials are usually various orders of magnitude greater than the strengths, the relationship between
T e and Ee is:

T e = LEe (5)

where L is the fourth-order elasticity tensor. For crystals with cubic symmetry three independent elastic constants
are needed to fully define L: C11, C12, C44. Given the Jacobian determinant J = det(F e), the Cauchy stress
tensor σ and the elastic stress tensor T e are related by:

T e = JF e−1σF e−T . (6)

The basic physics of slip in crystals is simple, when a slip system activates, it causes the dislocations to move along
the slip direction and this induces an accumulation of dislocations, which in turn increases the stress required to
promote additional dislocation movement. It is the strain hardening effect: the higher the deformation of the
crystal, the more work is required to induce further straining. The equations that rule these concepts must be
specified locally for every slip system. Two quantities are involved in the definition of the slip rates: the resolved
shear stress τα on the α-th slip system (the stress component that acts in the direction of slip), and the slip system
deformation resistance gα. The material model adopted here is rate-dependent inasmuch as the slip rates γ̇α are
uniquely determined in terms of the described deformation or stress rates. In rate-dependent models there is not
explicit yielding and all slip systems are inherently active, plastic shearing on the α-th slip system occurs as soon
as the resolved shear stress τα is nonzero. The flow rule is a kinetic relation with a general form γ̇α = f(τα, gα).
A fairly common power law relationship, (Hutchinson, 1976; Pan and Rice, 1983), is:

γ̇α = γ̇0

∣∣∣∣
τα

gα

∣∣∣∣
1/m

sgn(τα) (7)

which is suited for a limited range of strain rates about a constant reference value, γ̇0. The parameter m is
the material rate sensitivity and the rate-independent limit is reached when m → 0. All the slip systems are
considered to have the same initial resistance g0, however, since the various slip systems affects the others, the
evolution equation (hardening law) of the strength gα is:

ġα =
N∑

β=1

hαβ |γ̇β |. (8)

The hardening matrix hαβ represents the slip hardening rates, every coefficient accounts for the effect of β-th slip
system on the α-th. The expression used here is:

hαβ =
[
q + (1− q)δαβ

]
hβ (9)

where q is a latent-hardening parameter and hβ is the self-hardening rate:

hβ = h0

∣∣∣∣1−
gβ

gs

∣∣∣∣
a

. (10)

In the FCC crystals considered in this work, the hardening parameters a, gs, g0 and h0 are assumed to be identical
for all the slip systems. The resolved shear stress on the α-th slip system is finally calculated through the following
expression:

τα = Jσ·(sα⊗mα). (11)

The constitutive equations above have been implemented as a material model in the commercial finite element
program ABAQUS/Standard through a user material subroutine UMAT. The numerical integration of the equations
follows essentially the procedures proposed in (Kalidindi et al., 1992) and (Anand, 2004).
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Table 1: Suite of grain aggregates used in the FE simulations.
orientations polycrystalline mesh

set 1 CUB1 TO1 CVT1 VOR1
set 2 CUB2 TO2 CVT2 VOR2
set 3 CUB3 TO3 CVT3 VOR3

Figure 7: (a) Mesh on the surface of polycrystal CVT1 and (b) distorted elements in the interior.

5 FE simulations

In the series of FE simulations carried out, three set of 559 grain orientations and four type of grain arrangements
were considered. The polycrystals were confined in unit cubes with flat faces to ease the application of the bound-
ary conditions. Each set of orientations was obtained by randomly sampling a uniform orientation distribution
therefore, at the beginning of the simulation, each polycrystal had no preferred crystallographic texture. Referring
to Section 3, two grain arrangements were constructed from regular grain shapes, cube (CUB) and truncated octa-
hedron (TO). The other two types were derived from tessellation of space using irregular convex solids. One type
was the conventional Voronoi tessellation (VOR) based on randomly distributed nucleation points. Three set of dif-
ferent nucleation points were created giving therefore three distinct grain aggregates. These aggregates were then
transformed into corresponding centroidal Voronoi tessellations (CVT) through the minimization process outlined
in Section 3, therefore other three polycrystals were assembled. The complete set of virtual polycrystals analyzed
is summarized in Table 1. Figure 3 shows examples of grains internal to the polycrystals.

A high number of grains is required to have a good statistical description of the microstructure of the material and
to provide a macroscopic response in agreement with the experimental observations. Additionally each crystal
should be resolved in several finite elements to better catch the local heterogeneities at the crystal scale, (Zhao
et al., 2007). Both requirements, together with the high non-linearity of the constitutive equations, determine the
computational cost of the single simulation. The fine discretization of the crystals was judged essential in this study,
so the number of elements per grain in the cubic grains was 648, in truncated octahedra was 912 (this refers to the
complete solids, excluding the trimmed ones at the polycrystal surfaces). For families VOR and CVT the average
number of elements per grain was about 685. The number of grains in each aggregate was set equal to 559 for
aggregates TO, VOR and CVT while it was equal to 512 for type CUB. The latter comes simply from the partition

Table 2: Material parameters of the aluminum alloy.
C11 (GPa) C12 (GPa) C44 (GPa) m γ̇0 (s−1) h0 (MPa) g0 (MPa) gs (MPa) a q

107.3 60.9 28.3 0.012 0.001 700 75 170 2.2 1.4
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Figure 8: Macroscopic (engineering) stress-strain curves obtained from the twelve polycrystals.

of each edge in 8 cubes. Summing up all the grains of the twelve aggregates in Table 1 the total number is 6567.
The CUB polycrystals had 331776 elements, the TO types had 393984, the other meshes consisted of about 380000
elements each. Four-noded tetrahedral (linear) elements were used. The CUB and TO polycrystalline meshes did
not suffer from any of the problems in Figure 4, on the other hand VOR and CVT presented several distorted
elements. The number of highly distorted elements was estimated to be about 1500 ÷ 2000 which is 0.4 ÷ 0.5%
of the total number of finite elements. Some more thousands elements had poor shape metrics parameters but,
unfortunately, this is quite the rule with such complex geometries. An example of mesh is given on the left of
Figure 7, on the right the highly distorted elements inside the polycrystal are isolated. In all the data analysis
presented in Section 6 the distorted elements were discarded to avoid introducing spurious effects on the validity
of the results.

At the beginning of the simulations the same lattice orientation was assigned to all the elements in each grain. Upon
deformation the orientation of the elements is however expected to evolve differently thus creating misorientation
fields over the whole polycrystals. For all the entries in the matrix of Table 1, the assignment of the orientations
to the grains was random for type CUB, TO and VOR. For type CVT the grains had the same orientations as the
original Voronoi cells before the minimization process. Symmetry boundary conditions were set to three faces of
the polycrystals, a uniform displacement along the loading direction (z) was applied to a face parallel to plane x−y,
and the remaining two surfaces were free to deform. The displacement was such that the strain rate resulted in a
constant value ε̇ = 0.001 s−1. The maximum engineering strain reached was 10% which represents a condition
with a fully developed plasticity. The reference material employed here is a AlSi7Mg alloy with macroscopic
mechanical properties as follow: yield stress = 215 MPa, ultimate stress = 315 MPa and fracture strain about 15%.
The material parameters of the aluminum alloy were obtained by matching the macroscopic stress-strain curves
and are reported in Table 2. The elastic constants are from (Hosford, 1993) and the latent hardening parameter q
in Equation 9 is set equal to 1.4 which holds for non-coplanar slip systems in FCC crystals, (Anand, 2004).

6 Results and discussion

The macroscopic stress-strain curves obtained from the FE simulations are plotted in Figure 8. The curves are
fairly similar for all the polycrystals except type CUB which exhibit a slightly softer behavior. At the maximum
strain (ε = 10%) the average difference in stress is about 15 MPa with respect to TO, VOR and CVT. The three
set of orientations show also some discrepancies but this is probably due to the relatively low number of grains
in the aggregates, especially in type CUB. However the number of grains alone cannot justify the softer response
of the polycrystals CUB so the reasons have to be found in grain shape which evidently influences the way the
deformation is distributed in the aggregate. This will become more evident in the following.

The crystal-scale behavior is now considered, in particular the plastic strain and the intra-granular misorientations.
They are caused by the local slip system activity and by the change in orientation that develop upon deformation.
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Figure 9: (a) Distributions of the misorientations θi in aggregate CVT2. (b) Comparison of the distributions at
εzz=10% for aggregates with set of orientations 2.

Figure 10: (a) Misorientations and (b) equivalent plastic strain in a cluster of grains in the bulk of aggregate CVT1,
εzz=10%.

Two scalar variables are used here to quantify them, the first is the conventional equivalent plastic strain:

ε̄pl =
∫ t

0

√
2
3
Dp : Dp dt (12)

where Dp is the symmetric part of the plastic velocity gradient Lp and t is the current time of the analysis. This
gives an average measure of the accumulated slip systems activity in the finite elements, and since the loading
is monotonic (without neither changes in path nor unloadings) ε̄pl always increases with the macroscopic strain.
The second variable is related to the re-orientation field that takes place within the crystals. More specifically
the focus here is on the differences between the local orientation of the elements constituting a grain and the
average orientation of the whole grain. In general, given a set of n lattice orientations, known at specific points in
a deformed grain, it is possible to define an average orientation θavg , (Barton and Dawson, 2001). These points
can be locations in a physical sample where orientations are measured through diffraction techniques, or can be
points in the mesh of virtual polycrystals. The latter is the case here as for each element in the mesh the orientation
is known at several instant along the loading history. The misorientation angle of element i with respect to θavg

is labeled θi and it is a positive value. Considering all the elements in the mesh2, a gamma distribution is found
to well estimate the probability density function of the misorientations θi. Referring for example to aggregate
CVT2, Figure 9a) shows the evolution of the fitted distributions for some macroscopic strain levels. At εzz=1% the
misorientations θiare still low and the scatter is very weak, but as the deformation fully enters in the plastic regime
the mean value increases and, above all, the distributions widen. The other aggregates show the same trends and
the comparison at εzz=10% for the set of orientation 2 is reported in Figure 9b) (very similar curves are obtained
for sets 1 and 3). Here it is observed that type CUB differentiates from the others because of higher misorientations.

2The distorted elements are excluded from all the data analysis presented in this Section.
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Figure 11: Frequency histogram θi- ε̄pl for the elements in aggregate CVT1 at εzz=10%.

Figure 12: Two-dimensional representation of the distances d (between the grain centroid C and the element
centroid A) and d∗ (between the grain centroid C and the grain boundary B).

The equivalent plastic strain ε̄pl shows a very heterogeneous pattern in the polycrystals and it is known to be caused
by the different attitude to crystallographic slip of the constituent grains (due to the orientation with respect to the
load direction) and by the constraining effect of the neighboring grains that forces each crystal to deform in a
compatible way. Locally the role of the grain boundary is important since they separate areas with contrasting ori-
entation and therefore different behavior. The regions close to the grain boundaries are expected to act differently
from the grain center, at least till large deformation involves massively the grain and phenomena such as grain
splitting or banding strongly change the local properties or the orientation. It is stimulating to investigate if there
is a correlation between the local accumulated plastic strain and the misorientation. An example is given in Figure
10 where four grains, isolated from the bulk of aggregate CVT1, are visualized with contour maps of ε̄pl and θi at
εzz=10%. Several elements on the grain surfaces have quite low misorientation indicating that their orientation is
not far from the respective grain average θavg , but some elements show however high values. Similar considera-
tions can be drawn looking at the equivalent plastic strain: the field is not homogeneous and peaks are found on the
grain surfaces, i.e. the grain boundaries. From this only extract one might conclude that an element-by-element
correlation between θi and ε̄pl does not exist. The proof comes from Figure 11 which is a frequency histogram
(in form of a 50x50 matrix) that relates the misorientation and the equivalent plastic strain of all the elements in
aggregate CVT1 at the maximum strain level (10%). The number of finite elements in each cell determines the
color. The iso-values lines that can be pictured are quite circular and therefore a direct relationship between θi and
ε̄pl could be reasonably excluded, at least for the range of macroscopic strain investigated here. Once again the
same pattern is found analyzing the other eleven polycrystals in Table 1.
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Figure 13: Frequency histogram matrix θi - d/d∗ of the elements in polycrystal VOR3 at εzz=10% (left). Equivalent
representation after reducing the data in 8 bins and calculating the mean value and the standard deviation (right).

Figure 14: Mean value and standard deviation of θi in the 8 bins of d/d∗ at different macroscopic strain levels.
The plots refer to aggregate VOR3.

From the experimental point of view, intra-grain misorientation are of interest because they can be used to under-
stand and quantify the storage of dislocations and the inhomogeneous straining occurring within grains. Often in
fact the experimental evaluation of the slip system activity can be difficult, instead, the underlying activity can be
estimated in terms of the local lattice re-orientations. The results obtained from the simulations here suggest that
this strict correlation might be questionable.

The attention is now turned to the intra-grain behavior and more specifically to the spatial variation of the two
chosen variables inside the crystals. The influence of the grain boundaries is studied in an average way introducing
the parameter ”position” inside the crystal. Referring to the two-dimensional case of Figure 12, let C be the
centroid of the grain and A be the centroid of one element constituting the grain. In linear tetrahedral elements
the centroid coincides with the only integration point, where all the field variables are usually available as output.
A straight segment stemming from C and passing trough A is constructed and extended until it intercepts a grain
boundary in a point B. Now if distance C − A is called d and the distance C − B is labeled d∗ then d/d∗

becomes the normalized location of the element with respect to the grain center and the impinged grain boundary.
Note that due to the convexity of all the grains there is one and only one possible solution to the calculation of
d∗. This calculation necessitates the mathematical representations of the grains in terms of vertices, edges and
faces. The idea is to compute the parameter d/d∗ for all the elements in each grain in the virtual aggregates and
to investigate the spatial variation of some quantities within the grains. Figure 13a) shows the frequency matrix
of the misorientation angle θi and the normalized distance d/d∗ for polycrystal VOR3 at the macroscopic strain
of 10%. To better emphasize the most populated region of the graph the upper bound of θiis set to 6◦. The
number of elements obviously augments as d/d∗ moves from 0 to 1, but superimposed there is also an increment
both in the average θi and in the range of misorientations. These trends appear more clearly if the normalized
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Figure 15: Mean value and standard deviation of ∆ε in the 8 bins of d/d∗ at different macroscopic strain levels.
The plots refer to aggregate VOR3.

distance d/d∗ is binned in a reduced number of intervals, say 8, and the mean and standard deviation of the
misorientation of the elements inside each bin is calculated. The results of such procedure are reported in Figure
13b). The misorientation θi becomes progressively higher as the location of the element inside the grain moves
from the centroid towards the closest grain boundary. The trend has a parabolic nature and the mean value of θi

inside the first bin (position close to the centroid) is about 1◦ whereas in the last bin (position close to the grain
boundary) is about 2◦. The error bars indicate that also the deviation from the mean value is more pronounced
towards the boundaries with a maximum value of 1.1◦ in the last bin which represents a considerable fraction
of the corresponding mean value. The evolution of the intra-granular misorientation field as a function of the
macroscopic straining εzz is shown in Figure 14 for the same polycrystal VOR3. The mean value and the standard
deviation are separated in two plots and are reported for six different levels of εzz . As expected the higher the
macroscopic strain the higher the misorientations, but also the scatter increases with εzz .

The same analysis scheme can be applied to other field variables, for example the accumulated plastic strain ε̄pl,
to ascertain the regions inside the grains more or less prone to deform. To emphasize the differences between the
grain average and the quantities at each element a parameter ∆ε defined as in Equation 13 is introduced:

∆ε = |ε̄pl − ε̄pl
avg|. (13)

∆ε represents the difference between the elemental equivalent plastic strain ε̄pl and the grain average value ε̄pl
avg ,

the absolute value is used to capture the relative difference disregarding the sign, in fact the slip system activity
at the center of the grain is expected to have dissimilarities compared to the regions close to the boundaries. This
was already observed in Figure 10b) and in particular in the crystal on the right, here the grain average is about
0.119 and many visible elements have ε̄pl close to this value but both the maximum (0.145) and the minimum
(0.094) are on the faces that act as grain boundaries. Not all the grains however exhibit such a strong mismatch
between the maximum and the minimum values of ε̄pl. Considering now all the grains in one of the aggregates, for
instance VOR3, the computed values of the parameter ∆ε in each bin along the normalized distance d/d∗ is given
in Figure 15. Here once more it is confirmed that towards the periphery of the crystals there is a higher discrepancy
with respect to the grain average. Given the definition of ∆ε in Equation 13, this mismatch comes either from
elements that go trough an extensive deformation or from elements where slip is somehow limited. Both the mean
curves and the standard deviation curves show a progressive growth and they peak near the grain boundaries. The
evolution of ∆ε with the macroscopic strain coincides with the trend of the misorientation θi, in fact the mean
and the deviations values of ∆ε increase parabolically with εzz . This means that the plastic strain heterogeneity,
as described by ∆ε, is in average stronger as the elasto-plastic transition is passed and keeps growing with the
application of the strain. Moving from the grain boundary (last bin) towards the grain center (first bin) both the
mean value and the standard deviation of ∆ε almost halves for basically all the strain levels considered here. At
εzz=10% the mean difference between the first bin and the last bin is about 0.05 which represents the 50% of the
macroscopic total strain. Another remark comes from the relative distance of the curves which slightly reduces
as the deformation increases (at least in the range of macroscopic strain considered here), this means that the rate
at which the plastic strain heterogeneity changes with respect to the grain average lessens with the macroscopic
strain. The standard deviations in Figure 15b) exhibit pretty the same features. It should be mentioned that in both
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Figure 16: Mean values and standard deviations of θi in the 8 bins along d/d∗. Comparison between all the
polycrystalline aggregates.

Figure 17: Mean values and standard deviations of ∆ε in the 8 bins along d/d∗. Comparison between all the
polycrystalline aggregates.

Figure 15 and 14 the bins contain a different number of elements (for example: some hundreds in the first bin,
some thousands in the second bin and more than 10e5 in the eighth bin) so the calculated values have not the same
statistical basis. Nonetheless the trends are quite consistent therefore even the data from the less populated bin are
deemed to be acceptable.

The procedure was then applied to all the other eleven polycrystals and the comparison is given in Figure 16 for
the misorientations θi and in Figure 17 for the parameter ∆ε. Because of the regularity and topology of the mesh
of each grain (with multiple symmetries for the cubes and for the truncated octahedra), the first bin is empty for
types CUB and TO as no elements have the centroid close enough to the grain center. The first comment that can
be done deals with the set of orientations: the number of grains adopted is quite sufficient to grant a comparable
response because, for each type of tessellation, the differences between the curves are small. The second comment
has to do with the comparison between the types of grain aggregates, in fact it is found that family VOR and family
CVT show very similar behavior both for θi and for ∆ε. These curves represent also the lower bounds for all the
cases studied here. On the other hand, the aggregates with cubic grains (family CUB) act as the upper bounds and
the values are about twice the values of CVT and VOR. Type TO is intermediate but tends to converge to the lower
bound for d/d∗ approaching to 1. Curves TO do not follow so well the parabolic trend discussed before but this
is blamed again to the mesh in fact, even if there are many elements in each complete grain (648), because of the
regularity there is a small set of distances d/d∗ and they do not coincide exactly with the number of bins chosen
here. The use of quadratic tetrahedral elements would, in general, improve the quality of the results and, due to the
higher number of integration points, would also increment the number of points A (as defined in Figure 12) to be
selected for the bins. Obviously the computational cost of such FE simulations would increase quite considerably.
From all the results presented here, really noticeable differences between CVT and VOR were not found. Even if
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CVT has a more uniform grain distribution, still the complexity of the crystal shapes and of the network of grain
boundaries determines a behavior comparable to type VOR. Cubic grains always gave discrepant results from the
other tessellations. TO aggregates probably represent a good compromise between complexity of the grain shape
and the quality of the mesh; most of the results were aligned with CVT and VOR.

Although the grains at the free surface may behave differently from the grains in the bulk, this aspect is neglected
in this work and all the grains in the polycrystals were considered in the data analysis. No grains were excluded
to maintain a sufficiently high number of grains for good statistics. A finer discretization of the mesh in each
grain could also better resolve the plastic strain and misorientation fields. The specific role of the triple junctions,
present in all the twelve aggregates, cannot emerge from the averaging procedure introduced here. The study
of the triple, or multiple, junctions is certainly complicated by the contribution of three, or more, grains; stress
fluctuations and stress singularities were in fact found from crystal plasticity simulations in (Kanjarla et al., 2009).
Another interesting extension of the work would include the analysis of the local fields across the grain boundaries
where stress and strain heterogeneities are induced by the compatibility necessary to accommodate the shape and
orientation changes in neighbor grains. It is emphasized again that the model employed does neither explicitly
consider the dislocations (or the dislocation density) nor incorporates strain-gradient or non-local effects. Relevant
phenomena such as slip transmission, dislocation generation, annihilation, absorption or reflection at the grain
boundaries are therefore not accounted for. It is however expected that their implementation could enrich the
quality of the results and possibly provide different scenarios.

7 Conclusions

In this work a review of the most common techniques for the construction of polycrystalline aggregated to be
employed in FE simulations was presented. Advantages and drawbacks of the use of regular solids or irregular tes-
sellations were outlined. The quality of the mesh is definitively better for regular solids but the Voronoi tessellation
provides aggregates more close to reality. A modified version, called centroidal Voronoi tessellation, was proposed
as an alternative to the standard Voronoi procedure. This tessellation gives a more uniform distribution of grains
both in size and in shape. From the simulations of the twelve aggregates of the aluminum alloy several topics were
analyzed. The cubic grain shape provides a slightly softer macroscopic stress-strain curve compared to the other
polycrystals. The misorientation distribution in aggregate types TO, VOR and CVT was found to be very similar,
type CUB showed a higher level of misorientations. On an element-by-element basis a correlation between the
plastic strain and the misorientation was not evident. The role of the grain boundaries as source of heterogeneities
was illustrated trough an original analysis of the intra-granular plastic strain and misorientation fields. Close to the
boundaries higher differences (and wider scatter) were found with respect to the grain center and the values are a
function of the macroscopic strain level.
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