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Sensitivity analysis of statistical measures for the reconstruction of
microstructures based on the minimization of generalized least-square
functionals

D. Balzani, D. Brands, J. Schröder, C. Carstensen

For the simulation of micro-heterogeneous materials the FE2-method provides incorporation of the mechanical
behavior at the microscale in a direct manner by taking into account a microscopic boundary value problem based
on a representative volume element (RVE). A main problem of this approach is the high computational cost, when
we have to deal with RVEs that are characterized by a complex geometry of the individual constituents. This leads
to a large number of degrees of freedom and history variablesat the microscale which needs a large amount of
memory, not to mention the high computation time. Therefore, methods that reduce the complexity of such RVEs
play an important role for efficient direct micro-macro transition procedures. In this contribution we focus on ran-
dom matrix-inclusion microstructures and analyze severalstatistical measures with respect to their influence on
the characterization of the inclusion phase morphology. For this purpose we apply the method proposed in Balzani
and Schr̈oder (2008); Balzani et al. (2009a), where an objective function is minimized which takes into account
differences between statistical measures computed for theoriginal binary image of a given real microstructure and
a simplified statistically similar representative volume element (SSRVE). The analysis with respect to the capability
of the resulting SSRVEs to reflect the mechanical response insome simple independent virtual experiments allows
for an estimation of the importance of the investigated statistical measures.

1 Introduction

Many fields in metal processing like bending, deep-drawing or hydro-forming require a high ductility and stiffness
of the used steel. According to advanced requirements in high-tech applications minimization of the dead weight
by simultaneously increasing safety demands is one of the major goals in industry. In this context multi-phase
steels have the potential to fulfill these requirements. This is due to the fact that the interplay between the individ-
ual constituents on the microscale yield outstanding strength and ductility properties. However, the complicated
interactions of the individual phases of the micro-heterogeneous composite lead to complex local and global hard-
ening effects and failures on the microscale. In order to capture these phenomena up to a certain accuracy we
focus on a two-scale modeling approach. In this framework weattach a sufficient large section of the microstruc-
ture, approximated by a representative volume element (RVE), to each point of the macroscale. The numerical
treatment of this approach is known as the direct micro-macro-transition procedure or the FE2-method, see e.g.
Smit et al. (1998), Brekelmans et al. (1998), Miehe et al. (1999), Schr̈oder (2000), and Geers et al. (2003). Ba-
sic ideas for the direct micro-macro-transition approach with the application to dual-phase steels (DP-steels) are
given in Schr̈oder et al. (2008). The drawback of this approach is the high computational cost (high computation
times), when we deal with large random microstructures. Furthermore, a large number of history variables occurs
in this case which needs a large amount of memory. In order to circumvent these drawbacks we focus on the
construction of statistically similar representative volume elements (SSRVEs) which are characterized by a much
less pronounced complexity than the real random microstructures. The basic idea for this procedure is to find a
simplified SSRVE, whose selected statistical measures are as close as possible to the real microstructure. The un-
derlying minimization procedure is governed by least-square functionals, which compare the statistical measures
of the real microstructure with the ones of the SSRVE. Besidethe volume fraction we can usen-point probabilty
functions, lineal-path functions, values of the specific internal surface and integral of mean curvature, etc. Parzen
(1992) has shown that the two-point probability density function is correlated to the power spectral density in the
frequency domain. Based on this work Povirk (1995) computeda simplified RVE for a composite consisting of
a matrix with circular inclusions. In this generalized approach we describe the inclusion phase with splines and
compare different statistical measures, in this context see Balzani and Schröder (2008); Balzani et al. (2009b).
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2 Mechanical framework

In this work we focus on a direct micro-macro transition approach which takes into account a micromechani-
cal boundary value problem for the determination of material properties at the macroscale. At the microscale
an isotropic finiteJ2-plasticity model with a von Mises yield law is taken into account for the response of the
individual phases building up the microstructure.

2.1 Kinematics at different scales

Let B ⊂ R
3 denote a physical body at the microscale in its undeformed (reference) configuration at timet = t0,

parameterized in position vectorsX, whereinR
3 is the euclidian three-dimensional space. A deformed (actual)

configuration is denoted byS ⊂ R
3, parameterized byx at a fixed timet ∈ R+. Concentrating on the Boltzman

continuum theory the deformation of the body can be interpreted as the motion of material points. The non-
linear, continuous and one-to-one transformationϕ(X, t) : B → S maps at timet ∈ R+ pointsX ∈ B of the
microscopic reference configuration onto pointsx ∈ S of the actual microscopic configuration. For the description
of deformations we define the microscopic deformation gradient

F(X) := Grad[ϕt(X)] . (1)

At the macroscale we use the analogous definitions and use overlined characters to identify macroscopic quantities,
then we consider the transformation mapϕ(X, t) : B → S with the macroscopic physical bodiesB andS in the
reference and in the actual configuration, respectively. Then, the macroscopic deformation gradient is defined by

F(X) := Grad[ϕt(X)] . (2)

2.2 Constitutive modeling of the individual phases on the microscale

In order to solve the boundary value problem on the microscale, we have to set up constitutive equations for
the individual phases on the microscale. During the deformation process the composite exhibits large plastic
deformations. Due to the lack of experiments, we apply an isotropic material behavior for both phases, the metallic
matrix and the metallic inclusion. It seems to be reasonableto use an isotropic finite elastoplasticity formulation
based on the multiplicative decomposition of the deformation gradientF = F

e
F

p in elasticFe and plasticFp

parts, see Kr̈oner (1960), Lee (1969). For details of the thermodynamicalformulation as well as for the numerical
treatment we refer to Simo (1988, 1992), Simo and Miehe (1992), Peric et al. (1992), Miehe and Stein (1992), and
Miehe (1993). In the following we give a brief summary of the used framework. The basic kinematical quantities
are

b = FF
T = F

e
b

p (Fe)T , b
p = F

p (Fp)T , and b
e = F

e (Fe)T , (3)

with the spectral decomposition of the elastic finger tensor

b
e =

3∑

A=1

(λe
A)2nA ⊗ nA , (4)

wherenA denotes the eigenvectors andλe
A the eigenvalues ofbe. The stored energy function is assumed to be of

the formψ = ψe(be) + ψp(α), whereinα denotes the equivalent plastic strains. Following Simo (1992) we use a
quadratic free energy function

ψe =
λ

2
[ǫe1 + ǫe2 + ǫe3]

2 + µ[(ǫe1)
2 + (ǫe2)

2 + (ǫe3)
2] (5)

in terms of the logarithmic elastic strainsǫeA = log(λe
A); λ andµ are the Laḿe constants. In order to model an

exponential-type hardening of the individual phases we apply the well-known function

ψp = y∞α−
1

η
(y0 − y∞) exp(−ηα) +

1

2
h α2 . (6)
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However, the conjugated stress-like variable, defined asβ := ∂αψ
p , is

β = y∞ + (y0 − y∞) exp(−ηα) + h α . (7)

Herein,y0 is the initial yield strength,y∞ andη describe an exponential hardening behavior andh is the slope of
a superimposed linear hardening. The yield criterium is given by

φ = ||devτ || −

√
2

3
β ≤ 0 with τ =

3∑

A=1

τA nA ⊗ nA and τA =
∂ψe

∂ǫe
. (8)

Herein, the Kirchhoff stresses are denoted byτ . The flow rule for the plastic quantity is integrated using animplicit
exponential update algorithm, which preserves plastic incompressibility (Weber and Anand (1990), Simo (1992),
and Miehe and Stein (1992)). The first Piola-Kirchhoff stresses on the microscale are computed byP = τ F

−T .
For the numerical implementation we follow the algorithmicformulation in a material setting as proposed in
Klinkel (2000).

2.3 Numerical homogenization

With respect to direct micro-macro approaches relations for the transition between the micro- and macroscale are
required. For the definition of the macroscopic quantities we consider a representative volume element (RVE),
parametrized inX ∈ B, where the microscopic field quantities are determined. In general the macroscopic defor-
mation gradientF and the macroscopic first Piola-Kirchhoff stressesP are defined by suitable surface integrals
and volumetric averages

F =
1

vol(RVE)

∫

∂B

x ⊗ N dA and P =
1

vol(RVE)

∫

∂B

t0 ⊗ X dA =
1

vol(RVE)

∫

B

P dV , (9)

whereint0 are traction vectors acting on the boundary in the referenceconfiguration. In a variety of applications
we are interested in the incremental overall response of thematerial∆P = A : ∆F, whereinA := ∂F P denotes
the macroscopic nominal moduli. Having such transition relations in hand one is able to compute the micro-
and macroscopic boundary value problem. Whereas the macroscopic boundary value problem is standard, the
boundary value problem at the microscale is given by

Div[P] = 0 in B , (10)

where we have neglected acceleration terms and volumetric forces. The boundary conditions of the boundary value
problem at the microscale are derived from the macro-homogeneity condition, also referred to as Hill–condition,
see Hill (1963). It postulates that the macroscopic power isequal to the volumetric average of the microscopic
powers, i.e.

P · Ḟ =
1

vol(RVE)

∫

B

P · Ḟ dV ⇔
1

vol(RVE)

∫

B

(t − PN) · (ẋ − ḞX) dV = 0 . (11)

Possible boundary conditions are (i) the stress boundary condition, (ii) the linear boundary displacements, and (iii)
periodic boundary conditions:

(i) t = PN on ∂B , (ii) x = FX on ∂B , (iii) x = FX + w̃, w̃
+ = w̃

−, t
+ = −t

− on ∂B . (12)

Note thatw̃ denotes fluctuations of the displacement field and that(•)+, (•)− means quantities at periodically
associated points of the RVE-boundary, for further detailswe refer to Miehe et al. (1999), Schröder (2000). The
basic idea of the FE2-method is that a microscopic boundary value problem is solved at each Gauss point of
a macroscopic boundary value problem. Focusing on periodicboundary conditions (iii) the microscopic BVP
is solved and then the average of the resulting microscopic stressesP according to (9)2 is transferred to the
macroscale. At the microscale we consider the weak form and its linear increment for a typical finite element

Ge(δF,F) =

∫

Be

δF̃ · P dV and ∆Ge(δF,F,∆F) =

∫

Be

δF̃ · (A : ∆F̃) dV , (13)
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with the microscopic nominal moduliA := ∂F P. The fluctuation parts of the actual, virtual and incremental
deformation gradient can be approximated by using standardansatz functions for the fluctuation displacements
interpolating between the fluctuation parts of displacements d̃, virtual displacementsδd̃, and incremental dis-
placements∆d̃. Then we obtain the discrete representation of the linearized problem

δD̃T {K∆D̃ + R} = 0 , (14)

with the global vectors of incremental fluctuation displacementsD̃ and residual forcesR, and with the global
microscopic stiffness matrixK. In each iteration the actual increments of displacement fluctuations are computed
from (14) and updated, i.e.̃D ⇐ D̃ + ∆D̃, until |R| < tol, wheretol represents the algorithmic tolerance. At the
macroscale a standard FE-discretization is considered where the macroscopic moduli which enter the macroscopic
stiffness matrix, are computed by

A = 〈A〉 −
1

vol(RVE)
L

T
K

−1
L with 〈A〉 =

1

vol(RVE)

∫

B

A dV , (15)

denoting the classical Voigt bound. Herein, the second additive term represents a softening modulus necessary for
the consistent linearization. For its calculation the matrix

L =
nele

A
e = 1

∫

Be

B
T

A dV (16)

makes use of the same assembling operator applied for assembling the global microscopic stiffness matrix;B
denotes the standard B-matrix. For details on deriving the consistent macroscopic moduli please see e.g. Miehe
et al. (1999); Schr̈oder (2000).

3 Method for the construction of SSRVEs

The method for the generation of statistically similar representative volume elements (SSRVEs) is substantiated on
the approach for the construction of periodic structures proposed in Povirk (1995). There, the position of circular
inclusions with constant and equal diameters is optimized by the minimization of a least-square functional taking
into account the side condition that the spectral density ofthe periodic RVE should be as similar as possible to the
one of the non-periodic microstructure. For our further studies we consider the generalized minimization problem

L(γ) → min with L(γ) =

nsm∑

L=1

ω(L)L
(L)
SM (γ) , (17)

which has been introduced in Balzani et al. (2009a), see alsoBalzani et al. (2009b).L(L)
SM describes the least-square

functional defined by a suitable difference of a particular statistical measure computed for the real microstructure
and for the SSRVE. The number of considered statistical measures is represented bynsm, whereas the weighting
factorω(L) levels the influence of the individual measures with number(L). For the description of a general inclu-
sion phase morphology in the SSRVE we assume a suitable two-dimensional parameterization controlled by the
vectorγ. In our analysis we focus on splines for the parameterization, thus, the coordinates of the sampling points
enterγ.
For an illustration of the main characteristics of the minimization problem a simple test example is given in Balzani
et al. (2009a), where the spectral density is taken into account as the main statistical measure. There an assumed
real two-dimensional microstructure with one inclusion isconsidered as a target structure, which is generated by
randomly distributing four sampling points. Then a SSRVE isconstructed by one spline with four sampling points
as well, where three sampling points are set to the values used for the generation of the target structure. Hence, we
end up in a problem where only one sampling point is free to move in the optimization process and one is able to
visually analyze the objective function plotted over the degrees of freedom. As shown in Balzani et al. (2009a) the
resulting objective function is far away from being smooth.Apparently, the computation of the discrete spectral
density and the volume fraction takes into account a specificdiscrete image resolution. Hence, this leads to a
non-smooth function and precludes the application of standard gradient-based optimization procedures. This is a
rather structural problem since most statistical measuresare based on a discrete image characterized by a given
resolution. In addition to this, the problem is non-convex and thus, we have to deal with many local minima when
increasing the number of degrees of freedom.
To overcome the difficulties arising from the particular minimization problem a moving frame algorithm is applied.
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For this purpose random initial sampling point coordinatesx0,k, y0,k are generated first, which direct to the sam-
pling pointM0,k. Then furthernmov random pointsMj,k(xj,k, yj,k), j = 1..nmov in a frame of the size2a× 2a
are generated, see Fig. 1a, and the objective function is evaluated for each generated sampling point.

M4

M2

M1

M3

M4

M2

M1

M3

Framek

a

a

M0 ⇐ M1

L(M0,k) :
M1

framek + 1

new randomMj

for j = 1...4:

L(M0,k+1)

if L(Mj,k+1) >
if L(M1,k) <

framek + 2 b= framek + 1

M0

M0

M0
d

a) b) c)

Figure 1: Schematic illustration of moving frame algorithm.

Then the initial sampling point moves to the sampling pointM0,k+1 defined by the lowest value ofL and the
iteration counter is initializedliter = 0, see Fig. 1b . If the frame center remains unaltered, i.e. no lower value
of L is found in this iteration step (M0,k+1 = M0,k+2), we setliter = liter + 1, see Fig. 1c. Ifliter = litermax

the stopping criterion is reached and the actual minimal value ofL is interpreted as local minimum associated to
the starting value. In addition, this procedure is repeateda predefined number of cycles with different random
starting values. If a high fraction of minimizers of the individual optimization cycles leads to similar sampling
point coordinates, then we choose this result as an appropriate solution. In order to improve the method the frame
sizea can be modified depending on the difference|d| andliter. Furthermore, a combination with a line-search
algorithm is implemented, whereL is also evaluated at a number ofnline points interconnecting the frame center
pointM0 with the random pointsM1,M2, . . .Mnmov

.
The moving-frame algorithm used here is rather a statistical method for finding the minima. Further possiblities
for the solution of non-smooth optimization problems can befound in e.g. Kolda et al. (2003), Conn et al. (2009)
and Mäkel̈a and Neittaanm̈aki (1992). A possible improvement of the minimization algorithm may be obtained
by filtering out structural oscillations associated to the non-smoothness in order to obtain at least locally smooth
objective function approximations. In this case bundle methods where generalized gradient information is exploited
(e.g. Schramm and Zowe (1992)) could be used or the Nelder-Mead method (Nelder and Mead (1965)), if only
function evaluations are desireable.

4 Numerical sensitivity analysis of different statisticalmeasures

In this section we study the significance of different statistical measures for the description of the inclusion mor-
phology with respect to the mechanical behavior. Therefore, we compare the mechanical response of a randomly
generated microstructure, dealing as a target structure, with the response of different types of SSRVEs. The target
structure is obtained by applying the Boolean method, whereellipsoids built from the matrix material are inserted
at random points in a pure inclusion material until a predefined volume fraction is reached. For this contribution
we consider the target structure shown in Fig. 2a, which is the result of applying the Boolean method for an aspect
ratio of the semi-principal axis ofrx/ry = 14.3 and randomly generatedrx ∈ [3, 6].

a) b) c)
rx/ry = 14.3, rx ∈ [3, 6] PV = 0.1872 nele = 5452 , ndof = 21930

Figure 2: Steps for the generation of the target structure: a) result of the Boolean method, b) smoothed target
structure, and c) discretization of the target structure.

301



The stopping criterion for the Boolean method is given by a volume fraction of the inclusion phase of0.2 ± 1%.
In the next step we smoothen the boundaries of the inclusionsin order to avoid singularities, see Fig. 2b, then
the resulting volume fraction isPV = 0.1872. For Finite-Element simulations the smoothened target structure is
discretized by5452 triangular elements with quadratic shape functions, see Fig. 2c. For our analysis we consider
three different types of virtual macroscopic experiments:i) horizontal uniaxial tension, ii) vertical uniaxial tension
and iii) simple shear, cf. Fig. 3.
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Figure 3: Virtual macroscopic experiments of the pure matrix (ferrite) and inclusion material (martensite); at the
microscale periodic boundary conditions are used.

At the microscale the periodic boundary conditions (iii) are used, cf. (12). For the ferritic matrix material and the
martensitic inclusions the material parameters given in Table 1 are used. Then a stress-strain response as shown in
Fig. 3 is observed for the individual phases in the three virtual experiments.

phase λ µ y0 y∞ η h
[MPa] [MPa] [MPa] [MPa] [-] [-]

ferrite 118,846.2 79,230.77 260.0 580.0 9.0 70.0
martensite 118,846.2 79,230.77 1000.0 2750.0 35.0 10.0

Table 1: Material parameters of the single phases

The SSRVEs are constructed considering several combinations of statistical measures as optimization criteria.
Since the volume fraction is an important overall information with view to the influence of the morphology on the
mechanical properties we take it into account for all SSRVE constructions given in this contribution. Then, the
associated least-square functional reads

L(1) := LV (γ) =

(
1 −

PSSRV E
V (γ)

Preal
V

)2

, (18)

which is used within the general minimization problem (17).Since we analyze two-dimensional images the volume
fractionsPreal

V andPSSRV E
V required for the computation ofLV are computed by

PV :=
VI

V
, (19)

whereVI denotes the area of the inclusion phase andV the total area of the considered microstructure image. The
computation of the volume fraction is performed directly from the binary images of the given target structure and
the SSRVE.
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4.1 Sensitivity for two different statistical measures

In a first step we study the significance of several statistical measures for the generation of SSRVEs with respect to
their mechanical behavior compared with the target structure. As already mentioned the volume fraction is in all
cases an additional constraint in the optimization process.

4.1.1 Specific internal surface

In Ohser and M̈ucklich (2000) the specific internal surface is mentioned asone basic parameter to describe mi-
crostructure morphology. It seems to be a suitable measure for the specification of the inclusion phase’s distribu-
tion. In the general three-dimensional case this parameteris given by

P3D
S :=

SI

V
, (20)

with the interface areaSI separating the inclusion from the matrix material and the total volumeV of the considered
microstructure. Here we focus on the two-dimensional case and so this parameter can be calculated by

PS :=
4

π
LA , (21)

whereinLA is the specific boundary line length between the two phases. It is mentioned that Eq. (21) can be
derived from Crofton’s slice formulas for compact bodies, see Ohser and M̈ucklich (2000). Then the associated
least-square functional reads

L(2) := LS(γ) =

(
1 −

PSSRV E
S (γ)

Preal
S

)2

, (22)

and together with the volume fraction functional (18) we getthe first minimization problem

L1(γ) =

2∑

L=1

ω(L)L(L) = ωV LV (γ) + ωSLS(γ) → min with ωV = ωS = 1 , (23)

For the parameterization of the inclusion morphology of theSSRVE splines are used, thus, the coordinates of
the sampling points arranged inγ represent the degree of freedom in the optimization problem. Here we take
into account four types of inclusion parameterization: oneinclusion with three sampling points (type I) leading
to convex inclusions, one inclusion with four sampling points (type II), and two inclusions with three and four
sampling points each (type III and type IV), respectively. The results of the optimization process considering the
microstructure in Fig. 2 as target are shown in Fig. 4. The decreasing values of the objective function together
with an increasing number of sampling points can be observed. This is an expected behavior as we know that
the number of sampling points reflects the degree of freedom for the generation, thus also the complexity of the
inclusions. But the higher complexity implicates a larger quantity of finite elements in the discretization. This is
a non-negligible aspect in the context of replacing a RVE with an arbitrary complex inclusion morphology by a
simpler one with similar mechanical behavior.

Type I:ndof = 2394 Type II: ndof = 2762 Type III: ndof = 4058 Type IV: ndof = 4650

L1 = 0.0188 L1 = 1.5 · 10−9
L1 = 1.5 · 10−9

L1 = 2.4 · 10−10

Figure 4: Discretization of the SSRVEs resulting from the minimization ofL1.
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In order to study the SSRVEs capability to reflect the mechanical response of the target structure we compare the
stress-strain response of the SSRVEs with the response of the target structure in the three virtual experiments, see
Fig 3. The resulting stress-strain curves are shown in Fig. 5. For the estimation of the accuracy we compute the
relative errors

r(i)x =
σreal

x,i − σSSRV E
x,i

σreal
x,i

, r(i)y =
σreal

y,i − σSSRV E
y,i

σreal
y,i

, r(i)xy =
σreal

xy,i − σSSRV E
xy,i

σreal
xy,i

, (24)

as the deviation of the SSRVE stress response from the targetstructure response at each evaluation pointi. To
consider relative quantities is important here in order to be able to compare the different virtual experiments. Then
the average error for each virtual experiment is computed by

r̃ =

√√√√ 1

n

n∑

i=1

[
r(i)( i

n
△lmax/l0)

]
. (25)

As a comparative measure we define the overall average error

r̃∅ =
1

3
(r̃x + r̃y + r̃xy) . (26)

The error values for the experiments based on the SSRVEs generated throughL1 are shown in Table 2.
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Figure 5: Results of the virtual experiments using the discretizations of the SSRVEs based onL1 (Figure 4).
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In Fig. 5 the stress-strain curves of each SSRVEs shows different accuracies with respect to the virtual experiments.
In the first test, the horizontal tension, the mechanical errors decrease depending on the complexity of the SSRVE,
but also type IV has an error above five percent at most evaluation points. On the other hand in the vertical tension
the behavior differs totally. Here the types I and II show a good agreement with the results of the target structure
(ry < 1%) and the both other types differ more. But all errors are lower compared to them from the horizontal
tension. The simple shear experiments show qualitatively similar results as we have seen in the horizontal tension
test. But the error values particularly the higher order types are at a lower level, see also Table 2. If we take a
look at the overall average error in Table 2 we see that the specific internal surface and sufficient complexity of
the SSRVEs inclusions yield slightly the mechanical response of the target structure. But the significant different
accuracies comparing the both tension experiments show that the specific internal surface does not contain enough
directional information of the inclusion morphology and istherefore not able to cover macroscopic anisotropy
information. Thus, we have to take another statistical measure into account to describe this characteristic of a
microstructure.

SSRVE L1 LV LS nele erx ery erxy er∅

type [-] [-] [-] [-] [%] [%] [%] [%]

I 0.0188 0.0 0.0188 566 12.44± 2.83 0.39± 0.40 9.18± 3.18 7.34
II 1.5·10−9 0.0 1.5·10−9 658 9.67± 2.18 0.27± 0.16 2.23± 1.09 4.06
III 1.5·10−9 0.0 1.5·10−9 982 9.12± 2.09 4.68± 1.35 2.16± 1.12 5.32
IV 2.4·10−10 0.0 2.4·10−10 1130 6.52± 1.43 3.00± 0.85 0.66± 0.17 3.40

Table 2: Values of the objective functionL1 and the errors̃r using the SSRVEs shown in Figure 4.

4.1.2 Specific integral of mean curvature

As an other basic parameter for the descrictpion of the morphology of heterogeneous microstructures the specific
integral of mean curvature for the general three-dimensional case is defined as

P3D
M :=

1

2V

∫

S

(
min

β
[κ] + max

β
[κ]

)
ds , (27)

cf. Ohser and M̈ucklich (2000). The integral is evaluated over the interface S between the inclusion and matrix
phase of the average curvatureκ := κ(β) varying with directionβ in the tangential plane. For the two-dimensional
case the specific integral of mean curvature can be calculated by

PM := 2πXA , (28)

with the specific Euler number following Ohser and Mücklich (2000). For the optimization process we formulate
the associated least-square functional

L(2) := LM (γ) =

(
1 −

PSSRV E
M (γ)

Preal
M

)2

, (29)

Type I:ndof = 2370 Type II: ndof = 2642 Type III: ndof = 3178 Type IV: ndof = 6522

L2 = 0.2648 L2 = 8.5 · 10−4
L2 = 8.5 · 10−4

L2 = 8.5 · 10−4

Figure 6: Discretization of the SSRVEs resulting from the minimization ofL2.
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As before we also consider the functional (18) and get the second minimization problem

L2(γ) =

2∑

L=1

ω(L)L(L) = ωV LV (γ) + ωMLM (γ) → min with ωV = ωM = 1 . (30)

The vectorγ contains the sampling points for the generation of SSRVEs bysplines. We again consider four
different types of inclusion parametrization, for detailssee Section 4.1.1. As the result from the optimization we
get the four SSRVEs shown in Fig. 6.
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Figure 7: Results of the virtual experiments using the discretizations based onL2 (Figure 6).

The stress-strain curves of the three virtual experiments (Fig. 3) performed with the discretized SSRVEs from
Fig. 6 are shown in Fig. 7 compared to the results of the targetstrcuture. For the comparision of these results we
compute again the errors (24)-(26), which are listed in Table 3.

SSRVE L2 LV LM nele erx ery erxy er∅

type [-] [-] [-] [-] [%] [%] [%] [%]

I 0.2648 0.0 0.2648 560 11.58± 2.66 0.33± 0.20 2.40± 0.65 4.77
II 8.5·10−4 0.0 8.5·10−4 628 9.02± 2.00 0.58± 0.31 0.85± 0.18 3.48
III 8.5·10−4 0.0 8.5·10−4 762 9.79± 2.21 2.65± 0.57 0.84± 0.19 4.43
IV 8.5·10−4 0.0 8.5·10−4 1598 10.20± 2.32 1.22± 0.54 1.99± 0.90 4.47

Table 3: Values of the objective functionL2 and the errors̃r using the SSRVEs shown in Figure 6.

In Fig. 7 the stress-strain curves for the vertical tension and the simple shear tests of the SSRVEs show good
agreements with the results of the target structure. In bothcases the error is lower than5% in all evaluation points.
But in the first test, the horizontal tension, all types of SSRVE have errors above10% in several evaluation points.
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The errors in Table 3 confirm the observation from the stress-strain curves and also shows that an increasing number
of sampling points does not achieve better results. The errors of the horizontal and the vertical tests differ again
in a strong manner and so the specific integral of mean curvature is again not a parameter covering directional
information of the microstructure. Also a larger range in the values of the overall average errors can be observed
in Table 2, which are associated to the volume fraction and the specific internal surface, compared to the results in
this section here.

4.1.3 Spectral density

The results from Section 4.1.1 and 4.1.2 show that we need to consider statistical measures which cover directional
information. A possibility is the (discrete) spectral density (SD) for the inclusion phase of a binary image, which
is computed by the multiplication of the (discrete) Fouriertransform with its conjugate complex. The discrete SD
is defined by

PSD(m, k) :=
1

2πNxNy

|F(m, k)|2 (31)

with the Fourirer transform given by

FI(m, k) =

Nx∑

p=1

Ny∑

q=1

exp

(
2 i π mp

Nx

)
exp

(
2 i π k q

Ny

)
χI(p, q) . (32)

The maximal numbers of pixels in the considered binary imageare given byNx andNy; the indicator function is
defined as

χ :=

{
1, if (p, q) is in inclusion phase
0, else.

(33)

For the consideration of the SD in the optimization problem we write the least-square functional

L(2) := LSD(γ) =
1

NxNy

Nx∑

m=1

Ny∑

k=1

(
Preal

SD (m, k) − PSSRV E
SD (m, k,γ)

)2
, (34)

and together with (18) we get the minimization problem

L3(γ) =

2∑

L=1

ω(L)L(L) = ωV LV (γ) + ωSDLSD(γ) → min with ωV = ωSD = 1 . (35)

The evaluation of the functional (34) requires a more detailed treatment since the others are scalar-valued. In order
to get reasonable results and to obtain an efficient optimization procedure it may be necessary not to consider the
spectral density at a very fine resolution level (Nx andNy very large). Therefore, first the SD is computed at a
high resolution. Second, the spectral density is rebinned such that a lower resolution is obtained, which means that
Nx andNy are decreased. Finally, the SD is normalized by dividing by its maximum value maxm,k[PSD(m, k)].
In Fig. 8 the resulting SSRVEs from the optimization processare shown, whereas the same types of SSRVE

Type I:ndof = 2314 Type II: ndof = 3250 Type III: ndof = 4350 Type IV: ndof = 5666

L3 = 0.0144 L3 = 0.0133 L3 = 0.0127 L3 = 0.0100

Figure 8: Discretization of the SSRVEs resulting from the minimization ofL3.
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Figure 9: Results of the virtual experiments using the discretizations of the SSRVEs based onL3 (Figure 8).

parametrization are considered as described in detail in section 4.1.1. Again for the discretized SSRVEs in Fig. 8
we perform the three virtual experiments (Fig. 3) and compute the errors with respect to the results of the target
structure by (24)-(26). As a result we get the stress-straincurves in Fig. 9 and the errors in Table 4.
From the stress-strain curves we see the best accuracies forthe vertical tension test (< 2.5%). A similar result
can be observed from the curve of type I and II in the simple shear test. But there both other types have a higher
deviation. The horizontal tension test shows a wide spectrum in the mechanical error, from nearly14% for type I
to 6% for type VI. This experiment shows a decreasing deviation together with an increasing number of sampling
points, which could be put on a level with the complexity of the SSRVE. Also the values of the objective function
in Table 4 show the same behavior.
It seems that the spectral density is a statistical measure for the description of directional information but the
prediction of the objective function does not correspond with the mechanical behavior in details. So our next step
is to analyse the combination of more than two statistical measures.

SSRVE L3 LV LSD nele erx ery erxy er∅

type [-] [-] [-] [-] [%] [%] [%] [%]

I 0.0144 0.0 0.0144 546 11.80± 2.70 1.35± 0.30 1.53± 0.35 4.89
II 0.0133 2.9·10−7 0.0133 780 9.48± 2.15 0.96± 0.54 0.78± 0.41 3.74
III 0.0127 1.1·10−6 0.0127 1046 7.85± 1.74 1.24± 0.25 5.83± 2.37 4.97
IV 0.0100 3.5·10−5 0.0100 1384 5.04± 1.14 0.59± 0.25 4.52± 1.84 3.38

Table 4: Values of the objective functionL3 and the errors̃r using the SSRVEs shown in Figure 8.
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4.2 Combination of three different statistical measures

As in the analysis in section 4.1 we take into account the volume fraction for all optimization processes as a
standard parameter. In addition, as an outcome of the lattersection, we also consider the spectral density as a
suitable statistical measure, because of its possibility to cover directional information of the morphology. We
combine these both with first, the specific surface and second, the specific integral of mean curvature.

4.2.1 Specific internal surface

For the consideration of the volume fraction, the spectral density and the specific internal surface during the
generation of the SSRVEs we setL(1) = LV , L

(2) = LSD, L
(3) = LS and formulate the following minimization

problem

L4(γ) = ωV LV (γ) + ωSDLSD(γ) + ωSLS(γ) → min with ωV = ωSD = ωS = 1 , (36)

using the objective functions (18), (34) and (22). We also consider the same types of SSRVE parametrization
during the optimization process as before and the resultingdiscretizations are shown in Figure 10.

Type I:ndof = 2442 Type II: ndof = 2886 Type III: ndof = 3074 Type IV: ndof = 4362

L4 = 0.0343 L4 = 0.0134 L4 = 0.0131 L4 = 0.0132

Figure 10: Discretization of the SSRVEs resulting from the minimization ofL4.

For the comparison of the results from the virtual experiments we compute the errors (24)-(26). In Fig. 11 the
stress-strain curves of the virtual experiments for the target structure and the SSRVEs are shown and the errors are
listed in Table 5.

SSRVE L4 LV LSD LS nele erx ery erxy er∅

type [-] [-] [-] [-] [-] [%] [%] [%] [%]

I 0.0343 1.1·10−6 0.0155 0.0188 578 12.44± 2.83 0.41± 0.39 9.12± 3.16 7.32
II 0.0134 1.1·10−6 0.0134 1.3·10−7 680 9.07± 2.05 3.44± 1.15 0.61± 0.30 4.37
III 0.0131 1.1·10−6 0.0131 5.7·10−6 736 11.20± 2.54 1.56± 0.33 3.50± 1.52 5.42
IV 0.0132 2.9·10−7 0.0132 9.9·10−7 1058 10.80± 2.44 2.59± 0.53 4.43± 1.82 5.94

Table 5: Values of the objective functionL4 and the errors̃r using the SSRVEs shown in Figure 10.

The stress-strain curves do not show a better result compared to the one based on the SSRVEs from the optimization
without the specific internal surface. In fact, the simple shear test shows a worse result than Fig. 8 and it seems
that the directional information provided by the spectral density does not influence the mechanical response in any
case. The values of the objective function and of the errors in Table 5 do not decrease with increasing degrees of
freedom for the SSRVE generation. So the application of the specific internal surface combined with the volume
fraction and the spectral density does not improve the accuracy of the mechanical results with respect to the target
structure. In some cases the opposite effect can be observed.
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Figure 11: Results of the virtual experiments using the discretizations of the SSRVEs base onL4 (Figure 10).

4.2.2 Specific integral of mean curvature

Instead of the specific internal surface we now apply the objective function (29) of the specific integral of mean
curvature to the minimization problem, setL(1) = LV , L

(2) = LSD, L
(3) = LM and end up with

L5(γ) = ωV LV (γ) + ωSDLSD(γ) + ωMLM (γ) → min with ωV = ωSD = ωM = 1 . (37)

From the optimization process we get the SSRVEs in Fig. 12, where we consider the already mentioned four types
of parametrization through a different number of sampling points. There, an increasing number of elements for the
discretization of the SSRVEs together with an increasing number of sampling points can be observed.

Type I:ndof = 2290 Type II: ndof = 2786 Type III: ndof = 3162 Type IV: ndof = 4442

L5 = 0.2792 L5 = 0.0142 L5 = 0.0131 L5 = 0.0122

Figure 12: Discretization of the SSRVEs resulting from the minimization ofL5.
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The errors listed in Table 6 and computed by (24)-(26) show again, that a higher level of complexity for the SSRVE
generation produces a lower deviation. This behavior is also reflected by the values of the objective function.

SSRVE L5 LV LSD LM nele erx ery erxy er∅

type [-] [-] [-] [-] [-] [%] [%] [%] [%]

I 0.2792 0.0 0.0144 0.2648 540 11.80± 2.70 1.49± 0.32 1.56± 0.36 4.95
II 0.0142 1.1·10−6 0.0133 8.5·10−4 664 9.57± 2.15 2.84± 1.17 0.89± 0.48 4.44
III 0.0131 2.6·10−6 0.0123 8.5·10−4 750 6.35± 1.41 0.21± 0.19 6.61± 2.67 4.39
IV 0.0122 2.6·10−6 0.0113 8.5·10−4 1070 8.51± 1.88 0.26± 0.13 1.82± 0.95 3.53

Table 6: Values of the objective functionL5 and the errors̃r using the SSRVEs shown in Figure 12.

But we can not observe a significantly lower deviation than the ones in Table 4 associated to the SSRVEs based
only on the volume fraction and the spectral density.
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Figure 13: Results of the virtual experiments using the discretizations of the SSRVEs based onL5 (Figure 12).

The overall average errors of the virtual experiments in this section are in a smaller range as the errors of the results
in the previous section, where we consider the volume fraction, spectral density and specific internal surface. This
behavior was already recognized in sections 4.1.1 and 4.1.2by comparing the results of the SSRVEs generated
without consideration of the spectral density.
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4.3 Combination of all four statistical measures

At least we consider all statistical measures which are discussed in this contribution. Using the objective func-
tion (18), (22), (29) and (34) we formulate the minimizationproblem

L6(γ) = ωV LV (γ) + ωALA(γ) + ωMLM (γ) + ωSDLSD(γ) → min (38)

with ωV = ωA = ωM = ωSD = 1 ,

for the generation of the four different types of SSRVE. The results of the optimization process are depicted in
Fig. 14.

Type I:ndof = 2322 Type II: ndof = 3426 Type III: ndof = 3034 Type IV: ndof = 4690

L6 = 0.2853 L6 = 0.0144 L6 = 0.0139 L6 = 0.0140

Figure 14: Discretization of the SSRVEs resulting from the minimization ofL6.

The stress-strain curves in Fig. 15 do not show better accuracies than the results from the previous section, where
we do not consider the specific internal surface. On the contrary we can observe larger error values up to nearly17%
in the horizontal tension test. Computing the average errors by (24)-(26) and listing them in Table 7 we see again
the worse results. Although the value of the objective function nearly decreases from one complexity level to the
next one, the overall average error does not show the same behavior.

SSRVE L6 LV LSD LS LM nele erx ery erxy er∅

type [-] [-] [-] [-] [-] [-] [%] [%] [%] [%]

I 0.2853 0.1653 0.0160 0.0301 0.0739 548 14.43± 3.30 2.97± 0.61 6.18± 2.23 7.86
II 0.0144 2.9·10−7 0.0136 2.2·10−8 8.5·10−4 824 6.92± 1.55 0.40± 0.20 0.35± 0.29 2.56
III 0.0139 1.1·10−6 0.0131 5.7·10−6 8.5·10−4 726 11.20± 2.55 1.62± 0.37 3.48± 1.52 5.43
IV 0.0140 0.0 0.0132 2.2·10−8 8.5·10−4 1140 8.80± 1.94 1.69± 0.89 0.60± 0.35 3.70

Table 7: Values of the objective functionL6 and the errors̃r using the SSRVEs shown in Figure 14.

4.4 Discussion

For a concluding discussion of the optimizations and the virtual experiments in the previous subsections we sum-
marize the results in Table 8. The valuesLi of the corresponding objective function represent the optimization
level of accuracy of the generated SSRVE. Whereas, the overall average errors̃r∅ describe the accuracy of the
virtual experiments of the SSRVEs compared with those of thetarget structure. At first we take a look at the over-
all behavior of the least-square functionalsLi. In most of the cases we observe a decreasing value forLi along
with an increasing number of sampling points and therewith increasing morphology complexity. This behavior
was expected, as the number of sampling points represents the degree-of-freedoms for the minimization problem
during the SSRVE generation.
The improvement of the mechanical error with a decreasing value of the minimal least-square functional is ob-
served for the objective functions, where the spectral density is taken into account and where the specific internal
surface is not considered (L3 andL5). This indicates that the specific internal surface seems not to be a very
suitable statistical measure. Although the specific integral of mean curvature seems not to degrade the quality of
the mechanical error when using the spectral density, it does also not improve the quality particularly. This can be
seen for the examined microstructures by a more or less similar behavior with respect to the mechanical response
of the SSRVEs obtained from objective functionsL3 andL5. Comparing the overall average errors of the first
three measure combinationsL1, L2 andL3 we notice that a suitable improvement of the mechanical error with
increasing complexity of the SSRVE is only obtained for the objective function where the spectral density is taken
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Figure 15: Results of the virtual experiments using the discretizations of the SSRVEs based onL6 (Figure 14).

into account (L3). In addition, also the absolute values of the mechanical errors besides SSRVE type I, in particular
for the horizontal and vertical tension tests, are lower forL4. This is somehow obvious since a macroscopically
anisotropic target structure is taken into account and the specific internal surface as well as the specific integral of
mean curvature are not able to cover directional information.

SSRVE L1 er∅ L2 er∅ L3 er∅ L4 er∅ L5 er∅ L6 er∅

type [-] [%] [-] [%] [-] [%] [-] [%] [-] [%] [-] [%]

I 0.0188 4.89 0.2647 4.77 0.0144 7.34 0.0343 7.32 0.2792 4.950.2853 7.86
II 1.5·10−9 4.06 8.5·10−4 3.48 0.0133 3.78 0.0134 4.37 0.0142 4.44 0.0144 2.56
III 1.5·10−9 5.32 8.5·10−4 4.43 0.0127 4.97 0.0131 5.42 0.0131 4.39 0.0139 5.43
IV 2.4·10−10 3.40 8.5·10−4 4.47 0.0100 3.38 0.0132 5.94 0.0122 3.53 0.0140 3.70

Table 8: ValuesLi of the corresponding objective functions and the overall average errors̃r∅ of the virtual exper-
iments using the SSRVEs from all minimization problems 1-6.

5 Conclusion

In this contribution the applicability of different statistical measures describing the microstructural morphologyto
the construction of statistically similar representativevolume elements (SSRVEs) were studied. The generation of
SSRVEs was based on the minimization of an ojective functionconsidering the difference of statistical measures
computed from the “real” microstructure and the SSRVE. For an estimation of the possibility of the measures to
cover mechanical information of the microstructure we compared the mechanical response of virtual experiments
performed for the SSRVEs with those of the target structure.
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As an important overall information of the morphology the volume fraction was firstly combined pairwise with
the specific internal surface, the specific integral of mean curvature and the spectral density. Then the spectral
density turned out to be the most suitable parameter besidesthe volume fraction for the SSRVE generation and
was therefore combined with each of the both others for further studies. However, no improvement was observed
when extending the objective function taking into account the spectral density and the volume fraction by one of
the other basic parameters. In fact, even worse results wereobtained when using the specific internal surface.
However, the spectral density turned out to be a suitable measure for the description of inclusion phase morphology,
although further improvements are expectable by applying statistical measures of higher order as e.g. lineal-path
functions or three-point probability functions. In addition to that, the parameterization of the SSRVEs by splines
that are generally permitted to transform arbitrarily in the search space needs to be investigated. Probably improved
results can be expected when constraining the splines such that e.g. no intersections of individual splines are
allowed.
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