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Sensitivity analysis of statistical measures for the reconstruction of
microstructures based on the minimization of generalized least-squar
functionals

D. Balzani, D. Brands, J. Sabder, C. Carstensen

For the simulation of micro-heterogeneous materials thé-Riethod provides incorporation of the mechanical
behavior at the microscale in a direct manner by taking into@nt a microscopic boundary value problem based
on a representative volume element (RVE). A main problemmisépproach is the high computational cost, when
we have to deal with RVEs that are characterized by a com@erngtry of the individual constituents. This leads
to a large number of degrees of freedom and history variabtedbe microscale which needs a large amount of
memory, not to mention the high computation time. Thergefasthods that reduce the complexity of such RVEs
play an important role for efficient direct micro-macro tigition procedures. In this contribution we focus on ran-
dom matrix-inclusion microstructures and analyze sevstatistical measures with respect to their influence on
the characterization of the inclusion phase morphology.tks purpose we apply the method proposed in Balzani
and Schoder (2008); Balzani et al. (2009a), where an objective fiomcis minimized which takes into account
differences between statistical measures computed faripmal binary image of a given real microstructure and

a simplified statistically similar representative voluniereent (SSRVE). The analysis with respect to the capability
of the resulting SSRVES to reflect the mechanical resporsmiie simple independent virtual experiments allows
for an estimation of the importance of the investigatedstiatl measures.

1 Introduction

Many fields in metal processing like bending, deep-drawinigyalro-forming require a high ductility and stiffness
of the used steel. According to advanced requirements imtgigh applications minimization of the dead weight
by simultaneously increasing safety demands is one of thjerrgaals in industry. In this context multi-phase
steels have the potential to fulfill these requirementss Thdue to the fact that the interplay between the individ-
ual constituents on the microscale yield outstanding gtteand ductility properties. However, the complicated
interactions of the individual phases of the micro-heter@pus composite lead to complex local and global hard-
ening effects and failures on the microscale. In order tdwapthese phenomena up to a certain accuracy we
focus on a two-scale modeling approach. In this frameworlatigch a sufficient large section of the microstruc-
ture, approximated by a representative volume element JREeach point of the macroscale. The numerical
treatment of this approach is known as the direct micro-ox@nsition procedure or the Finethod, see e.g.
Smit et al. (1998), Brekelmans et al. (1998), Miehe et al9@9Schoder (2000), and Geers et al. (2003). Ba-
sic ideas for the direct micro-macro-transition approadth whe application to dual-phase steels (DP-steels) are
given in Schéder et al. (2008). The drawback of this approach is the haghpritational cost (high computation
times), when we deal with large random microstructurestiemmore, a large number of history variables occurs
in this case which needs a large amount of memory. In ordeirtoravent these drawbacks we focus on the
construction of statistically similar representativeurak elements (SSRVES) which are characterized by a much
less pronounced complexity than the real random microsires. The basic idea for this procedure is to find a
simplified SSRVE, whose selected statistical measuressartose as possible to the real microstructure. The un-
derlying minimization procedure is governed by least-sgd@anctionals, which compare the statistical measures
of the real microstructure with the ones of the SSRVE. Be#idevolume fraction we can usepoint probabilty
functions, lineal-path functions, values of the specifteinal surface and integral of mean curvature, etc. Parzen
(1992) has shown that the two-point probability densityction is correlated to the power spectral density in the
frequency domain. Based on this work Povirk (1995) compatethmplified RVE for a composite consisting of

a matrix with circular inclusions. In this generalized apgch we describe the inclusion phase with splines and
compare different statistical measures, in this contextBadzani and Sclider (2008); Balzani et al. (2009b).
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2 Mechanical framework

In this work we focus on a direct micro-macro transition aggmh which takes into account a micromechani-
cal boundary value problem for the determination of makgmiaperties at the macroscale. At the microscale
an isotropic finiteJ,-plasticity model with a von Mises yield law is taken into aoat for the response of the
individual phases building up the microstructure.

2.1 Kinematics at different scales

Let B C R? denote a physical body at the microscale in its undeformefér@nce) configuration at tinte= ¢,
parameterized in position vectals, whereinR? is the euclidian three-dimensional space. A deformed &ictu
configuration is denoted by C R3, parameterized by at a fixed timet € R,.. Concentrating on the Boltzman
continuum theory the deformation of the body can be intéegres the motion of material points. The non-
linear, continuous and one-to-one transformatg(iX,¢) : B — S maps at timg € R, pointsX € B of the
microscopic reference configuration onto poirts S of the actual microscopic configuration. For the descriptio
of deformations we define the microscopic deformation gmatdi

F(X) := Gradg;(X)]. (1)

Atthe macroscale we use the analogous definitions and usineeecharacters to identify macroscopic quantities,
then we consider the transformation mapX, ¢) : B — S with the macroscopic physical bodi8sandsS in the
reference and in the actual configuration, respectivelgn] the macroscopic deformation gradient is defined by

F(X) := Gradg,(X)]. (2)

2.2 Constitutive modeling of the individual phases on the nairoscale

In order to solve the boundary value problem on the micresoak have to set up constitutive equations for
the individual phases on the microscale. During the deftiongorocess the composite exhibits large plastic
deformations. Due to the lack of experiments, we apply amdpic material behavior for both phases, the metallic
matrix and the metallic inclusion. It seems to be reasontbiese an isotropic finite elastoplasticity formulation
based on the multiplicative decomposition of the defororagiradientF = F¢ F? in elasticF¢ and plasticF?
parts, see Kiner (1960), Lee (1969). For details of the thermodynaniaahulation as well as for the numerical
treatment we refer to Simo (1988, 1992), Simo and Miehe (92 ic et al. (1992), Miehe and Stein (1992), and
Miehe (1993). In the following we give a brief summary of theed framework. The basic kinematical quantities
are

b=FF =F°b? (F)", b’ =F°(F")T and b®=7F°(F)7, 3)
with the spectral decomposition of the elastic finger tensor

3

b¢ = Z()\‘Z)ZHA dny (4)
A=1

wheren 4 denotes the eigenvectors akf] the eigenvalues dé°. The stored energy function is assumed to be of
the formey) = ¢¢(b®¢) + ¢?(«), whereina denotes the equivalent plastic strains. Following SIm®®)ve use a
quadratic free energy function

P = %[e‘i + €5 + €57 + pl(e9)? + (e5) + (€5)7] ©)

in terms of the logarithmic elastic straiag = log(\%); A andy are the Laré constants. In order to model an
exponential-type hardening of the individual phases weyae well-known function

1 1
wp = Yoo — ;](yo - yoo) eX[X—’r]a) + 5 ha?. (6)
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However, the conjugated stress-like variable, defined as 0,¢? , is

B =Yoo + (Y0 — Yoo) EXP(—n) + D v (7

Herein,y, is the initial yield strengthy., andn describe an exponential hardening behavior faiglthe slope of
a superimposed linear hardening. The yield criterium isigioy

e
Oe.

3
¢_|dew||—\/§ﬁ§0 with 7= 7ins@n, and 74 = 8
A=1

Herein, the Kirchhoff stresses are denoted-byrhe flow rule for the plastic quantity is integrated usingraplicit
exponential update algorithm, which preserves plastiormaressibility (Weber and Anand (1990), Simo (1992),
and Miehe and Stein (1992)). The first Piola-Kirchhoff ste=son the microscale are computediby= 7 F~7
For the numerical implementation we follow the algorithnfiscmulation in a material setting as proposed in
Klinkel (2000).

2.3 Numerical homogenization

With respect to direct micro-macro approaches relationgi® transition between the micro- and macroscale are
required. For the definition of the macroscopic quantitiesognsider a representative volume element (RVE),
parametrized irX € 3, where the microscopic field quantities are determined.elmegal the macroscopic defor-
mation gradieniF and the macroscopic first Piola-Kirchhoff stres&sare defined by suitable surface integrals
and volumetric averages

1

F = RvE)

/x®NdA and P = to ® X dA = PdV, )
oB

whereint, are traction vectors acting on the boundary in the referenaéiguration. In a variety of applications
we are interested in the incremental overall response aftiterialAP = A : AF, whereinA := 9P denotes
the macroscopic nominal moduli. Having such transitiomtiehs in hand one is able to compute the micro-
and macroscopic boundary value problem. Whereas the magiosooundary value problem is standard, the
boundary value problem at the microscale is given by

Dv[P] =0 in B, (10)

where we have neglected acceleration terms and volumettdes. The boundary conditions of the boundary value
problem at the microscale are derived from the macro-hom&igecondition, also referred to as Hill-condition,
see Hill (1963). It postulates that the macroscopic powerisal to the volumetric average of the microscopic
powers, i.e.

1
vol (RVE)

P F= /P-FdV & (t —PN) - (x — FX)dV =0. (11)
B

Possible boundary conditions are (i) the stress boundamgition, (ii) the linear boundary displacements, and (iii)
periodic boundary conditions:

() t=PNonoB, (i)x=FXonoB, (i) x=FX+w, wh=w", tt=—-t~ondB. (12)

Note thatw denotes fluctuations of the displacement field and ¢tlat, (e)~ means quantities at periodically
associated points of the RVE-boundary, for further detagsrefer to Miehe et al. (1999), Sdider (2000). The

basic idea of the FEmethod is that a microscopic boundary value problem isesblat each Gauss point of
a macroscopic boundary value problem. Focusing on periodimdary conditions (iii) the microscopic BVP
is solved and then the average of the resulting microscdpéssesP according to (9) is transferred to the

macroscale. At the microscale we consider the weak formtarishéar increment for a typical finite element

G¢(6F,F)= [ 0F-PdV and AG®(SF,F,AF)= [ OF-(A:AF)dV, (13)
Be Be
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with the microscopic nominal modulk := JrP. The fluctuation parts of the actual, virtual and incremienta
deformation gradient can be approximated by using stanalasdtz functions for the fluctuation displacements
interpolating between the fluctuation parts of displacemen virtual displacementsd, and incremental dis-
placements\d. Then we obtain the discrete representation of the linednmoblem

SDT{KAD + R} =0, (14)

with the global vectors of incremental fluctuation dispimeatsD and residual forceR, and with the global
microscopic stiffness matriK. In each iteration the actual increments of displacemeantufations are computed
from (14) and updated, i.@ < D + AD, until |R| < tol, wheretol represents the algorithmic tolerance. At the
macroscale a standard FE-discretization is consideredaihe macroscopic moduli which enter the macroscopic
stiffness matrix, are computed by

1

_ B , 1
A= <A>—WLTK 'L with  (A) = 7/BAdV7 (15)

vol(RVE)

denoting the classical Voigt bound. Herein, the secondtadderm represents a softening modulus necessary for
the consistent linearization. For its calculation the ixatr

nele

L= A /CBTAdV (16)

makes use of the same assembling operator applied for alisgrtiie global microscopic stiffness matriig
denotes the standard B-matrix. For details on deriving timesistent macroscopic moduli please see e.g. Miehe
et al. (1999); Scliader (2000).

3 Method for the construction of SSRVES

The method for the generation of statistically similar esggntative volume elements (SSRVES) is substantiated on
the approach for the construction of periodic structureppsed in Povirk (1995). There, the position of circular
inclusions with constant and equal diameters is optimizethb minimization of a least-square functional taking
into account the side condition that the spectral densith@feriodic RVE should be as similar as possible to the
one of the non-periodic microstructure. For our furthedita we consider the generalized minimization problem

nsm

L(y) —min with L(y) =Y oLy (), 17
L=1

which has been introduced in Balzani et al. (2009a), seeBakani et al. (2009b)£fgL13[ describes the least-square
functional defined by a suitable difference of a particutatistical measure computed for the real microstructure
and for the SSRVE. The number of considered statistical ureass represented bysm, whereas the weighting
factorw(™) levels the influence of the individual measures with nungliér For the description of a general inclu-
sion phase morphology in the SSRVE we assume a suitable imendional parameterization controlled by the
vector~. In our analysis we focus on splines for the parameterinatiaus, the coordinates of the sampling points
entery.

For an illustration of the main characteristics of the miiziation problem a simple test example is given in Balzani
et al. (2009a), where the spectral density is taken intowtticas the main statistical measure. There an assumed
real two-dimensional microstructure with one inclusiordmsidered as a target structure, which is generated by
randomly distributing four sampling points. Then a SSRVEdastructed by one spline with four sampling points
as well, where three sampling points are set to the valuesfaos¢he generation of the target structure. Hence, we
end up in a problem where only one sampling point is free toaniovthe optimization process and one is able to
visually analyze the objective function plotted over thgrées of freedom. As shown in Balzani et al. (2009a) the
resulting objective function is far away from being smooftpparently, the computation of the discrete spectral
density and the volume fraction takes into account a spedigicrete image resolution. Hence, this leads to a
non-smooth function and precludes the application of steshdradient-based optimization procedures. This is a
rather structural problem since most statistical measaredased on a discrete image characterized by a given
resolution. In addition to this, the problem is non-conves ¢hus, we have to deal with many local minima when
increasing the number of degrees of freedom.

To overcome the difficulties arising from the particular miization problem a moving frame algorithm is applied.
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For this purpose random initial sampling point coordinatgs, yo » are generated first, which direct to the sam-
pling point Mg . Then furthem,,,,, random points\f; 1 (k. Yj.k): J = L..Nmew iN a frame of the siz€a x 2a
are generated, see Fig. 1a, and the objective function isatea for each generated sampling point.

- - -----" /\
x | framek + 1 ! framek + 2 = framek + 1
a 1 if L(M; > | My
Mo it LMy ) < Ms (Mjoet1) > ]
x 2 | ity L(Mo, 1) Ms
M [/(MO,k) : | W[ A;
x x @ forj =1..4: & ¢
My < M; ! My
! X new randomM ; My
L M.
M3 x 2
Framek X
a) b) c)

Figure 1: Schematic illustration of moving frame algorithm

Then the initial sampling point moves to the sampling pdiftf ;1 defined by the lowest value af and the
iteration counter is initialized,;.,, = 0, see Fig. 1b . If the frame center remains unaltered, i.e.owet value

of £ is found in this iteration stepWo x+1 = Mo k+2), We S€liter = lirer + 1, S€€ Fig. 1C. Witer = litermaz

the stopping criterion is reached and the actual minimalevalf £ is interpreted as local minimum associated to
the starting value. In addition, this procedure is repeatguedefined number of cycles with different random
starting values. If a high fraction of minimizers of the ividiual optimization cycles leads to similar sampling
point coordinates, then we choose this result as an apptedlution. In order to improve the method the frame
sizea can be modified depending on the differendeandi;..,.. Furthermore, a combination with a line-search
algorithm is implemented, wher is also evaluated at a numbermaf,,. points interconnecting the frame center
point M, with the random pointd/y, M, ... M, ...
The moving-frame algorithm used here is rather a statistiehod for finding the minima. Further possiblities
for the solution of non-smooth optimization problems caridaand in e.g. Kolda et al. (2003), Conn et al. (2009)
and Makek and Neittaaniki (1992). A possible improvement of the minimization algon may be obtained
by filtering out structural oscillations associated to tl@ismoothness in order to obtain at least locally smooth
objective function approximations. In this case bundlehnds where generalized gradient information is exploited
(e.g. Schramm and Zowe (1992)) could be used or the NeldexdMeethod (Nelder and Mead (1965)), if only
function evaluations are desireable.

4 Numerical sensitivity analysis of different statisticalmeasures

In this section we study the significance of different stetédd measures for the description of the inclusion mor-
phology with respect to the mechanical behavior. Therefeeecompare the mechanical response of a randomly
generated microstructure, dealing as a target structutie thre response of different types of SSRVEs. The target
structure is obtained by applying the Boolean method, whbigesoids built from the matrix material are inserted
at random points in a pure inclusion material until a predefivolume fraction is reached. For this contribution
we consider the target structure shown in Fig. 2a, whichasdisult of applying the Boolean method for an aspect
ratio of the semi-principal axis of, /r, = 14.3 and randomly generated € [3, 6].

a) b) ©)

1oty = 14.3, 75 € [3,6] Py = 0.1872 Nete = 5452, naof = 21930

Figure 2: Steps for the generation of the target structuyeesult of the Boolean method, b) smoothed target
structure, and c) discretization of the target structure.
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The stopping criterion for the Boolean method is given by lmwe fraction of the inclusion phase 62 + 1%.

In the next step we smoothen the boundaries of the inclusionsder to avoid singularities, see Fig. 2b, then
the resulting volume fraction i®y = 0.1872. For Finite-Element simulations the smoothened targaetsire is
discretized byp452 triangular elements with quadratic shape functions, sgeZe. For our analysis we consider
three different types of virtual macroscopic experimenthorizontal uniaxial tension, ii) vertical uniaxial tenga
and iii) simple shear, cf. Fig. 3.
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Figure 3: Virtual macroscopic experiments of the pure mdferrite) and inclusion material (martensite); at the
microscale periodic boundary conditions are used.

At the microscale the periodic boundary conditions (iig ased, cf. (12). For the ferritic matrix material and the
martensitic inclusions the material parameters given iéla are used. Then a stress-strain response as shown in
Fig. 3 is observed for the individual phases in the threaiglréxperiments.

phase A p Yo Yoo n h
[MPa] [MPa] [MPa] [MPa] [] []
ferrite 118,846.2 79,230.77 260.0 580.0 9.0 70.0

martensite 118,846.2 79,230.77 1000.0 2750.0 35.0 10.0

Table 1: Material parameters of the single phases

The SSRVEs are constructed considering several combirsatid statistical measures as optimization criteria.
Since the volume fraction is an important overall inforroativith view to the influence of the morphology on the
mechanical properties we take it into account for all SSR@Estructions given in this contribution. Then, the
associated least-square functional reads

SSRVE 2

r . Ly(y) = (1 _ w> , (18)
P"I’}Ga

which is used within the general minimization problem (1Since we analyze two-dimensional images the volume

fractionsPice and Py V' E required for the computation afy are computed by

v
PV::VIa

whereV; denotes the area of the inclusion phase Erttie total area of the considered microstructure image. The
computation of the volume fraction is performed directigrr the binary images of the given target structure and
the SSRVE.

(19)
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4.1 Sensitivity for two different statistical measures

In a first step we study the significance of several statistigmsures for the generation of SSRVESs with respect to
their mechanical behavior compared with the target stractis already mentioned the volume fraction is in all
cases an additional constraint in the optimization pracess

4.1.1 Specific internal surface

In Ohser and Ncklich (2000) the specific internal surface is mentionedrs basic parameter to describe mi-
crostructure morphology. It seems to be a suitable measutééd specification of the inclusion phase’s distribu-
tion. In the general three-dimensional case this paraneetgaven by

St

P3D = , 20
=5 (20)
with the interface are8; separating the inclusion from the matrix material and tte tmlumel” of the considered

microstructure. Here we focus on the two-dimensional caslesa this parameter can be calculated by

4
Ps:=—La, (21)
s
wherein L 4 is the specific boundary line length between the two phageis. nhentioned that Eqg. (21) can be
derived from Crofton’s slice formulas for compact bodie=e ©hser and Mcklich (2000). Then the associated
least-square functional reads

SSRVE 2
U”:ﬁdw:(“j%zww ’ (22)
Pgea
and together with the volume fraction functional (18) we et first minimization problem
2
Li(y) = Zw(L)E(L) =wyLy(y) +wsls(y) — min with wy =wg =1, (23)

L=1

For the parameterization of the inclusion morphology of #8RVE splines are used, thus, the coordinates of
the sampling points arranged i represent the degree of freedom in the optimization problelare we take
into account four types of inclusion parameterization: ovdusion with three sampling points (type 1) leading
to convex inclusions, one inclusion with four sampling gsitype Il), and two inclusions with three and four
sampling points each (type Ill and type V), respectivelireTesults of the optimization process considering the
microstructure in Fig. 2 as target are shown in Fig. 4. Theeahlsing values of the objective function together
with an increasing number of sampling points can be obserVéis is an expected behavior as we know that
the number of sampling points reflects the degree of freedwrthé generation, thus also the complexity of the
inclusions. But the higher complexity implicates a largeaqtity of finite elements in the discretization. This is
a non-negligible aspect in the context of replacing a RVEhwih arbitrary complex inclusion morphology by a
simpler one with similar mechanical behavior.

Type I: naor = 2394 Type II: ngor = 2762 Type I: naor = 4058 Type IV: naor = 4650

L1 =0.0188 L1 =15-10"° L£1=15-10"° L1 =24-10710

Figure 4: Discretization of the SSRVES resulting from thaimization of ;.
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In order to study the SSRVESs capability to reflect the med@mesponse of the target structure we compare the
stress-strain response of the SSRVEs with the response tdithet structure in the three virtual experiments, see
Fig 3. The resulting stress-strain curves are shown in Fidzds the estimation of the accuracy we compute the
relative errors

real _ SSRVE real _ SSRVE real _ SSRVE
p) = e T Ow p0 = Ty T Ty p0) = Ty = Ty (24)
T O.real ’ Y areal ’ Yy O.V'eal ’
x,0 Y, Y,

as the deviation of the SSRVE stress response from the tsiryeture response at each evaluation painto
consider relative quantities is important here in orderd@ble to compare the different virtual experiments. Then
the average error for each virtual experiment is computed by

n

7= %Z [0 (£ Alax/10)] - (25)
1=1

As a comparative measure we define the overall average error
_ 1. -
Trg = g (T:v + Ty + rzy) . (26)

The error values for the experiments based on the SSRVEsajedehroughC; are shown in Table 2.
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Figure 5: Results of the virtual experiments using the @igzations of the SSRVESs based 6n (Figure 4).

304



In Fig. 5 the stress-strain curves of each SSRVESs showsetliff@ccuracies with respect to the virtual experiments.
In the first test, the horizontal tension, the mechanicalrsrdecrease depending on the complexity of the SSRVE,
but also type IV has an error above five percent at most evaiupbints. On the other hand in the vertical tension
the behavior differs totally. Here the types | and Il show adjagreement with the results of the target structure
(ry < 1%) and the both other types differ more. But all errors are loe@npared to them from the horizontal
tension. The simple shear experiments show qualitativeljlar results as we have seen in the horizontal tension
test. But the error values particularly the higher ordeetypre at a lower level, see also Table 2. If we take a
look at the overall average error in Table 2 we see that theifspenternal surface and sufficient complexity of
the SSRVEs inclusions yield slightly the mechanical respoof the target structure. But the significant different
accuracies comparing the both tension experiments shawhnapecific internal surface does not contain enough
directional information of the inclusion morphology andtlierefore not able to cover macroscopic anisotropy
information. Thus, we have to take another statistical mieato account to describe this characteristic of a
microstructure.

SSRVE L1 Lv Ls nele T Ty Ty T
type [-] [] [] [-] [%0] (%] (%] (%]
I 0.0188 0.0 0.0188 566 12.442.83 0.39+0.40 9.18+3.18 7.34
I 1.5107° 0.0 15107° 658 9.67+2.18 0.27+0.16 2.23+1.09 4.06
n 1.5107° 00 15107 982 9.12+2.09 4.68+1.35 2.16+1.12 5.32
\Y 24107 0.0 24107 1130 6.52+ 1.43 3.00+£0.85 0.66+ 0.17 3.40

Table 2: Values of the objective functialy and the errorg using the SSRVES shown in Figure 4.

4.1.2 Specific integral of mean curvature

As an other basic parameter for the descrictpion of the nwogly of heterogeneous microstructures the specific
integral of mean curvature for the general three-dimeraioase is defined as

- %/5 (mﬁin[ﬂ] + mgx[m]) ds, (27)

cf. Ohser and Nicklich (2000). The integral is evaluated over the intezfadetween the inclusion and matrix
phase of the average curvature= «((3) varying with directions in the tangential plane. For the two-dimensional
case the specific integral of mean curvature can be calclitgte

Pru =27 Xa, (28)

with the specific Euler number following Ohser andiklich (2000). For the optimization process we formulate
the associated least-square functional

PEFEVE () ) - (29)

£ .— La(y) = (1 _
Pyi!

Type I: ngor = 2370 Type Il: ngor = 2642 Type lll: ngor = 3178 Type IV: ngor = 6522

L2 = 0.2648 L2 =85-10"* L2 =85-10"* L;=85-10"*

Figure 6: Discretization of the SSRVES resulting from thaimization of L.
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As before we also consider the functional (18) and get therseéminimization problem

2
Lo(y) = Zw(L)E(L) =wyLy(y) +wpLy(y) — min with wy =wy = 1.
L=1

(30)

The vectory contains the sampling points for the generation of SSRVEsines. We again consider four
different types of inclusion parametrization, for detaiée Section 4.1.1. As the result from the optimization we
get the four SSRVESs shown in Fig. 6.
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Figure 7: Results of the virtual experiments using the @iszations based of, (Figure 6).
The stress-strain curves of the three virtual experiméfitg. @) performed with the discretized SSRVEs from

Fig. 6 are shown in Fig. 7 compared to the results of the tatyetiture. For the comparision of these results we
compute again the errors (24)-(26), which are listed in &&bl

SSRVE Lo Lv Lo Nele T 7y Ty T
type [] [] [-] [] [%0] [%] [%] [%0]
I 0.2648 0.0 0.2648 560 11.582.66 0.33+0.20 2.40+ 0.65 4.77
I 8.5107* 0.0 8.5107* 628 9.02+2.00 0.58+0.31 0.85+0.18 3.48
n 85.10~* 0.0 85107* 762 9.79+2.21 2.65+0.57 0.84+0.19 4.43
\Y 8.5107* 0.0 8.5107* 1598 10.20+ 2.32  1.22+0.54 1.99+ 0.90 4.47

Table 3: Values of the objective functidfy and the errorg using the SSRVESs shown in Figure 6.
In Fig. 7 the stress-strain curves for the vertical tensiod the simple shear tests of the SSRVEs show good

agreements with the results of the target structure. In basles the error is lower thafi in all evaluation points.
But in the first test, the horizontal tension, all types of §&mRave errors aboved% in several evaluation points.
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The errors in Table 3 confirm the observation from the stedssn curves and also shows that an increasing number
of sampling points does not achieve better results. Thesafothe horizontal and the vertical tests differ again
in a strong manner and so the specific integral of mean cue/édlagain not a parameter covering directional
information of the microstructure. Also a larger range ia Walues of the overall average errors can be observed
in Table 2, which are associated to the volume fraction aadggecific internal surface, compared to the results in
this section here.

4.1.3 Spectral density

The results from Section 4.1.1 and 4.1.2 show that we neeahisider statistical measures which cover directional
information. A possibility is the (discrete) spectral digngSD) for the inclusion phase of a binary image, which
is computed by the multiplication of the (discrete) Foutransform with its conjugate complex. The discrete SD
is defined by

1

Psp(mk) = 52N, N,
z Vy

|F(m, k)2 (1)

with the Fourirer transform given by

ZZGX < >eXp<2i;kq> X (p.q). (32)

p=1g=1 v

The maximal numbers of pixels in the considered binary insgegiven byV, andN,; the indicator function is
defined as

_J 1 if (p,q) is ininclusion phase (33)
0, else
For the consideration of the SD in the optimization probleenwite the least-square functional
Nl‘ Ny
£(2) - »CSD real 7k) - ngRVE(mv k? 7))2 ’ (34)
- N, Ny
m=1 Ic:l
and together with (18) we get the minimization problem
2
Ly(y) =) wPLP =wyLy(v) + wspLsp(y) — min with wy =wsp = 1. (35)

L=1

The evaluation of the functional (34) requires a more detiiteatment since the others are scalar-valued. In order
to get reasonable results and to obtain an efficient optiinizg@rocedure it may be necessary not to consider the
spectral density at a very fine resolution leval,(and N, very large). Therefore, first the SD is computed at a
high resolution. Second, the spectral density is rebinnet that a lower resolution is obtained, which means that
N, and N, are decreased. Finally, the SD is normalized by dividingtbyriaximum value max ;[Psp(m, k)].

In Fig. 8 the resulting SSRVEs from the optimization procass shown, whereas the same types of SSRVE

Type I nqor = 2314 Type II: naor = 3250 Type lll: naor = 4350  Type IV: ngor = 5666

L3 =0.0144 L3 =0.0133 L3 =0.0127 L3 =0.0100

Figure 8: Discretization of the SSRVES resulting from tha@imization of 3.
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Figure 9: Results of the virtual experiments using the @iszations of the SSRVESs based 6# (Figure 8).

parametrization are considered as described in detailiinosed.1.1. Again for the discretized SSRVEs in Fig. 8
we perform the three virtual experiments (Fig. 3) and compiié errors with respect to the results of the target
structure by (24)-(26). As a result we get the stress-stmaives in Fig. 9 and the errors in Table 4.

From the stress-strain curves we see the best accuracidsefoertical tension tesk( 2.5%). A similar result
can be observed from the curve of type | and Il in the simplestest. But there both other types have a higher
deviation. The horizontal tension test shows a wide spettnuthe mechanical error, from neardy% for type |

to 6% for type VI. This experiment shows a decreasing deviatigretioer with an increasing number of sampling
points, which could be put on a level with the complexity c BSRVE. Also the values of the objective function
in Table 4 show the same behavior.

It seems that the spectral density is a statistical measuréhé& description of directional information but the
prediction of the objective function does not corresponthitfie mechanical behavior in details. So our next step

is to analyse the combination of more than two statisticasnees.

SSRVE Ls Ly Lsp  nele Ta 7y Tay To
type -] [ [] [ [%] (%] (%] (%]
| 0.0144 0.0 0.0144 546 11.892.70 1.35+0.30 1.53+0.35 4.89
[ 0.0133 291077 0.0133 780 9.482.15 0.96+0.54 0.78+0.41 3.74
1] 0.0127 1.110~° 0.0127 1046 7.8%1.74 1.24+0.25 5.83+2.37 4.97
\Y 0.0100 3.510°° 0.0100 1384 5.041.14 0.59+0.25 4.524 1.84 3.38

Table 4: Values of the objective functialy and the errorg using the SSRVESs shown in Figure 8.
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4.2 Combination of three different statistical measures

As in the analysis in section 4.1 we take into account themaeldraction for all optimization processes as a
standard parameter. In addition, as an outcome of the Ilsgtetion, we also consider the spectral density as a
suitable statistical measure, because of its possibiitgaver directional information of the morphology. We
combine these both with first, the specific surface and se¢badpecific integral of mean curvature.

4.2.1 Specific internal surface

For the consideration of the volume fraction, the spectrisity and the specific internal surface during the
generation of the SSRVEs we &) = Ly, L) = Lgp, £3) = L5 and formulate the following minimization
problem

Li(y) =wvLy(vy) +wspLsp(y) +wsLls(y) — min with wy =wsp =wg =1, (36)

using the objective functions (18), (34) and (22). We alsoswter the same types of SSRVE parametrization
during the optimization process as before and the resutisagetizations are shown in Figure 10.

Type |: ngor = 2442 Type Il: ngor = 2886 Type llI: nqor = 3074 Type IV: ngor = 4362

L4 =0.0343 L4 =0.0134 L4 =0.0131 L4 =0.0132

Figure 10: Discretization of the SSRVES resulting from tHaimization of £,.

For the comparison of the results from the virtual experiteeme compute the errors (24)-(26). In Fig. 11 the
stress-strain curves of the virtual experiments for thgelestructure and the SSRVEs are shown and the errors are
listed in Table 5.

SSRVE Ly Ly Lsp Ls nele Ta Ty Ty To
type [] [-] [] [-] [] [%0] [%0] [%0] (%]
I 0.0343 1.110°® 0.0155 0.0188 578 12.442.83 0.41+0.39 9.12+ 3.16 7.32
Il 0.0134 1.1107% 0.0134 1.310°7 680 9.07+2.05 3.44+1.15 0.61+ 0.30 4.37
n 0.0131 1.32107% 0.0131 5.7107% 736 11.20+ 2.54 1.56+ 0.33 3.50+ 1.52 5.42
v 0.0132 2.91077 0.0132 9.910~7 1058 10.80+ 2.44 2.59+ 0.53 4.43+1.82 5.94

Table 5: Values of the objective functialy and the errorg using the SSRVESs shown in Figure 10.

The stress-strain curves do not show a better result comhpatke one based on the SSRVESs from the optimization
without the specific internal surface. In fact, the simpleattest shows a worse result than Fig. 8 and it seems
that the directional information provided by the spectexisity does not influence the mechanical response in any
case. The values of the objective function and of the errofi@ble 5 do not decrease with increasing degrees of
freedom for the SSRVE generation. So the application of peeific internal surface combined with the volume
fraction and the spectral density does not improve the acgwf the mechanical results with respect to the target
structure. In some cases the opposite effect can be observed

309



Stress-Strain Response Mechanical Error

Horizontal tension Horizontal tension
550 0.2 ; ;
500 Hp—
un
“\\\\\\\\\\\ 015 v .
T 450 ) g e e :
a e e [
S, 400 o e & 01/
g SN // 3
) i
S 350 \\\\ target nnnnn | [
& ”' — 0.05
300 | & 5 il 1
ff’ IV e
250 s s s 0
0 001 002 003 0.04 005 006 0.07 0.08 0 001 002 003 0.04 005 0.06 0.07 0.08
Nl /leo Al /lzo
Vertical tension Vertical tension
550 0.2 T ;
500 ||I|| —
015+ L, 7
[\ VAR
450
S, 400 ﬁrﬂ“” . & 01
S 350 MM ] target nnnnn |
W ”' — 0.05 s
300 - ITT— 8 s T T SNSES MR B S
IV e Pl e
250 . . . 0 —
0 001 002 003 0.04 005 006 0.07 0.08 0 001 002 003 004 005 0.06 0.07 0.08
. Al:i//ly,O . Aly/lyyo
Simple shear Simple shear
275 0.2 ;
250 N —
225 — ; oasf "
o 200
=) o ® 01 — =
< 175 W =
N target nunnn
150 II| 4 0.05 .....
125 ITT— 2 e et
AV e
100 ‘ ! ‘ o0 L& -
0 001 002 003 0.04 005 006 0.07 0.08 0 001 002 003 004 005 0.06 0.07 0.08
Aug/lyo Aug/lyo

Figure 11: Results of the virtual experiments using therdiszations of the SSRVESs base 6n (Figure 10).
4.2.2 Specific integral of mean curvature

Instead of the specific internal surface we now apply theativg function (29) of the specific integral of mean
curvature to the minimization problem, s&t!) = £y, £ = Lgp, £B) = £, and end up with

£5(’7) = wvﬁv(’)’) +WSD£SD('7> + wMACM(’Y) — min with wy =wsp =wpy = 1. (37)
From the optimization process we get the SSRVESs in Fig. 12ravtve consider the already mentioned four types
of parametrization through a different number of samplioonfs. There, an increasing number of elements for the

discretization of the SSRVESs together with an increasinglmer of sampling points can be observed.

Type I: naor = 2290 Type I: ngor = 2786 Type I naor = 3162 Type IV: naor = 4442

Ls = 0.2792 Ls =0.0142 Ls =0.0131 Ls =0.0122

Figure 12: Discretization of the SSRVESs resulting from thaimization of 5.
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The errors listed in Table 6 and computed by (24)-(26) shairaghat a higher level of complexity for the SSRVE

generation produces a lower deviation. This behavior i3 gdfected by the values of the objective function.

SSRVE Ls Ly Lsp Ly nele T Ty Tay To
type [] [] [] [] [] [%0] [%] [%] [%]
| 02792 0.0 00144 0.2648 540 11.802.70 1.49+-0.32 1.56+0.36  4.95
[ 0.0142 1.1107% 0.0133 850! 664 957+2.15 2.84+1.17 0.89-048  4.44
Il 0.0131 2.610°° 0.0123 8510°* 750 6.35+1.41 0.21+0.19 6.61+2.67  4.39
\Y 0.0122 2.610°° 0.0113 8510°* 1070 8.51+1.88 0.26+0.13 1.82-0.95  3.53

Table 6: Values of the objective functialy and the errorg using the SSRVEs shown in Figure 12.

But we can not observe a significantly lower deviation thandhes in Table 4 associated to the SSRVESs based
only on the volume fraction and the spectral density.
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Figure 13: Results of the virtual experiments using therdiszations of the SSRVES based 6p (Figure 12).
The overall average errors of the virtual experiments is $leiction are in a smaller range as the errors of the results
in the previous section, where we consider the volume sac8pectral density and specific internal surface. This

behavior was already recognized in sections 4.1.1 and #ylcdmparing the results of the SSRVES generated
without consideration of the spectral density.
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4.3 Combination of all four statistical measures

At least we consider all statistical measures which areudsed in this contribution. Using the objective func-
tion (18), (22), (29) and (34) we formulate the minimizatfmoblem

Lo(v) = wvlv(y)+wala(y)+wmla(y)+wspLlsp(y) — min (38)
with Wy = Wpa = WN = WsSp = ].,

for the generation of the four different types of SSRVE. Tasutts of the optimization process are depicted in
Fig. 14.

Type | ngor = 2322 Type Il: naor = 3426 Type ll: nqor = 3034 Type IV: ngor = 4690

Le = 0.2853 Le =0.0144 Le =0.0139 Le = 0.0140

Figure 14: Discretization of the SSRVES resulting from tHaimization of L.

The stress-strain curves in Fig. 15 do not show better acmg#han the results from the previous section, where
we do not consider the specific internal surface. On the apnive can observe larger error values up to negiy

in the horizontal tension test. Computing the average £itygr(24)-(26) and listing them in Table 7 we see again
the worse results. Although the value of the objective fiomchearly decreases from one complexity level to the
next one, the overall average error does not show the sanaeibeh

SSRVE Le Ly Lsp Ls L Ngle Tz Ty Ty To
type [] [-] [] [-] [-] [-] (%] [%0] [%0] [%0]
| 0.2853 0.1653 0.0160 0.0301 0.0739 548 144330 2.97+0.61 6.18+2.23 7.86
Il 0.0144 2.910~7 0.0136 2.210~® 8.510~* 824 6.924+ 1.55 0.40+0.20 0.35+-0.29 2.56
nm 0.0139 1.3:107% 0.0131 5.710°¢ 85107* 726 11.20+ 2.55 1.62+0.37 3.48+1.52 5.43
v 0.0140 0.0 0.0132 2:207% 85107* 1140 8.80+1.94 1.69+0.89 0.60+0.35 3.70

Table 7: Values of the objective functialy and the errorg using the SSRVESs shown in Figure 14.

4.4 Discussion

For a concluding discussion of the optimizations and thei&lrexperiments in the previous subsections we sum-
marize the results in Table 8. The valuésof the corresponding objective function represent thenoigttion
level of accuracy of the generated SSRVE. Whereas, the besetlage errorg, describe the accuracy of the
virtual experiments of the SSRVEs compared with those ofalget structure. At first we take a look at the over-
all behavior of the least-square functiondls In most of the cases we observe a decreasing valug;fatong
with an increasing number of sampling points and therewitiidasing morphology complexity. This behavior
was expected, as the number of sampling points representietiree-of-freedoms for the minimization problem
during the SSRVE generation.

The improvement of the mechanical error with a decreasihgevaf the minimal least-square functional is ob-
served for the objective functions, where the spectralitieisstaken into account and where the specific internal
surface is not considered’{ and £5). This indicates that the specific internal surface seenigmbe a very
suitable statistical measure. Although the specific irtegi mean curvature seems not to degrade the quality of
the mechanical error when using the spectral density, it dts® not improve the quality particularly. This can be
seen for the examined microstructures by a more or lessasitvéhavior with respect to the mechanical response
of the SSRVEs obtained from objective functiofis and £5. Comparing the overall average errors of the first
three measure combinatiods, £, and L3 we notice that a suitable improvement of the mechanicak avith
increasing complexity of the SSRVE is only obtained for thgeotive function where the spectral density is taken
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Figure 15: Results of the virtual experiments using therdiszations of the SSRVEs based 6 (Figure 14).

into account 3). In addition, also the absolute values of the mechanicatebesides SSRVE type I, in particular
for the horizontal and vertical tension tests, are lowerdgr This is somehow obvious since a macroscopically
anisotropic target structure is taken into account andplkeeific internal surface as well as the specific integral of
mean curvature are not able to cover directional infornmatio

SSRVE L1 T Lo To L3 To L4 To Ls Ty Le o
type [] [%0] [] [%0] [ [%] [l [%] [l [%] [ [%]
I 0.0188 4.89 0.2647 4.77 0.0144 7.34 0.0343 7.32 0.2792 4.95.2853 7.86
I 1.5107° 4.06 8510°* 3.48 0.0133 3.78 0.0134 4.37 0.0142 4.44 0.0144 2.56
n 15107° 532 8510°* 4.43 0.0127 497 0.0131 542 0.0131 4.39 0.0139 5.43
\Y 24107 340 85107* 4.47 0.0100 3.38 0.0132 594 0.0122 3.53 0.0140 3.70

Table 8: ValuesC; of the corresponding objective functions and the overalage errorg, of the virtual exper-
iments using the SSRVESs from all minimization problems 1-6.

5 Conclusion

In this contribution the applicability of different staiisal measures describing the microstructural morphotogy
the construction of statistically similar representatredume elements (SSRVES) were studied. The generation of
SSRVEs was based on the minimization of an ojective funatmrsidering the difference of statistical measures
computed from the “real” microstructure and the SSRVE. Foestimation of the possibility of the measures to
cover mechanical information of the microstructure we caregd the mechanical response of virtual experiments
performed for the SSRVESs with those of the target structure.
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As an important overall information of the morphology thdwne fraction was firstly combined pairwise with
the specific internal surface, the specific integral of meawature and the spectral density. Then the spectral
density turned out to be the most suitable parameter betlidegolume fraction for the SSRVE generation and
was therefore combined with each of the both others for &urstudies. However, no improvement was observed
when extending the objective function taking into accotet$pectral density and the volume fraction by one of
the other basic parameters. In fact, even worse resultseitained when using the specific internal surface.
However, the spectral density turned out to be a suitablesuredor the description of inclusion phase morphology,
although further improvements are expectable by applyiatistical measures of higher order as e.g. lineal-path
functions or three-point probability functions. In additito that, the parameterization of the SSRVESs by splines
that are generally permitted to transform arbitrarily ia #earch space needs to be investigated. Probably improved
results can be expected when constraining the splines satletg. no intersections of individual splines are
allowed.

Acknowledgement: The financial support of the “Deutsche ForschungsgemeafSctDFG), research group
on “Analysis and Computation of Microstructure in FiniteaBticity”, project no. SCHR 570-8/1, is gratefully
acknowledged.
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