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Computational modeling of gradient hardening in polycrystals

S. Bargmann, M. Ekh, B. Svendsen, K. Runesson

A gradient hardening crystal plasticity model for polycrystals is introduced in Ekh et al. (2007). It is formulated in
a thermodynamically consistent fashion and is capable of modeling a grain-size-dependent stress-strain response.
In this contribution we extend that model to also include cross-hardening.
A free energy is stated which includes contributions from the gradient of hardening along each slip direction. This
leads to hardening stresses depending on the second derivative of the plastic slip. The governing equations for a
nonlinear coupled system of equations is solved numerically with the help of a dual-mixed finite element method.
The numerical results show that the macroscopic strength increases with decreasing grain size as a result of gra-
dient hardening: Moreover, cross-hardening further enhances the strengthening gradient effect.

1 Introduction

Modeling and simulation of material behavior have been an important part of engineering research during the last
decades. The development of innovative engineering materials (such as light construction materials, for examples)
as well as the development of classical materials (e.g. metals) requires deep knowledge on this issue. The material
behavior depends on various phenomena on different scales in polycrystals. The underlying microstructure of
the grains plays an important role. An important aspect is the dependence on the grain size of the macroscopic
material response arising from the interaction between slips and grain boundaries. In contrast to conventional
crystal plasticity, gradient theories take this aspect into account. They belong to the theories that include the
micro-effects in the macroscopic modeling by assuming a complete scale separation.

Typically, the grain modeling is based on crystal plasticity with different slip directions and slip planes in each
grain. In addition, strain gradients are induced in each grain. Thereby, grain boundaries will act as barriers to
plastic deformation (i.e. the plastic slip). Different approaches have been formulated. A simple but effective
(in the sense that it shows realistic simulation results) model is presented in Ekh et al. (2007). The model is
formulated within the framework of continuum thermodynamics and finite strains. Another model by Evers et al.
(2004) is motivated from physical dislocation densities and evolution equations for these, however, without any
thermodynamical considerations. One disadvantage of the approach of Ekh et al. (2007) is that it does not include
cross-hardening. However, this can be added in a straight-forward way, as shown in this contribution.

Cross-hardening refers to the effect that during plastic deformation in one slip system, the hardening of other
slip systems are activated. This activation of multiple slip has two primary influences on the evolution of the
latent hardening ratios. Firstly, regardless of the form ofthe self-hardening moduli, the effective latent hardening
decreases with an increase in the slip system activity. It isdefined by the number and intensity of active secondary
systems. Secondly, multiple slip can lead to a rapid increase in the rate of hardening as compared to single slip.

The paper is organized as follows: We begin with a short reiteration of the key ideas in the modeling of gradient
crystal plasticity. Subsequently, we formulate an extended version of the model presented in Ekh et al. (2007)
which includes cross-hardening. The numerical implementation is carried out with the help of a dual-mixed finite
element method. Hereby, the displacements and the plastic slips projected on the slip directions are the degrees of
freedom. The resulting system of equations is highly nonlinear and strongly coupled. In particular, an algorithm
suitable for parallelization is introduced, where each grain is treated independently as a subproblem. The macro-
scopic deformation gradient is imposed on the representative volume element (RVE) by solving the mechanical
governing equation on the whole RVE with Dirichlet boundaryconditions. For the grain boundary conditions, mi-
croclamped boundaries are assumed. Whereas the assumption for the deformation gradient represents an approach
with very few constraints and, thus, a very high level of physical realism, the microclamped grain boundary condi-
tion is rather restrictive. However, grain boundary conditions represent a topic of their own and is investigated in
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a different contribution, see e.g. Ekh et al. (2009). Here, we concentrate on the influence of cross-hardening in the
model by (Ekh et al., 2007).

The modeling approach and the discretization are discussedby means of representative two-dimensional example.
The paper ends with a discussion of the presented approach (Section 5).

2 Mathematical model

For simplicity, attention is restricted here to isothermalprocesses. As stated in the introduction, the model is ther-
modynamically based. Moreover, we postulate the existenceof a potential: the volume-specific free energy density
ψ. Following Ekh et al. (2007), it can be decomposed additively into an elastic and a hardening contribution, i.e.
ψe andψh respectively,

ψ(F ,FP,γ,∇rγ) = ψe(EE(F ,FP)) + ψh(γ,∇rγ) . (1)

In particular, in order to include cross-hardening effects, it reads
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λ

2
[trEE]

2
+ µEE : EE
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Here,λ andµ are the Lame parameters and the tensor product “:” denotes a double contraction, e.g.,A : B =
AijBij for two tensorsA, B. Furthermore,H l

αβ denotes the local hardening modulus andlα andlβ are internal
length scales. Moreover, the counterpart for the gradient contribution, i.e.Hg, accounts for cross-hardening effects
as well:

Hg
αβ := [sα · sβ ]hαβH

g
0 , (3)

withHg
0 being a material constant, the gradient hardening modulus.Note thatHg

0 6= H l
0, i.e. the gradient hardening

matrix is not related to the usual interaction matrix for classical hardening.hαβ are coefficients of the matrixHg

- the diagonal terms are related to self-hardening of the slip systemsα, whereas the off-diagonal elements induce
latent hardening between the slip systemsα andβ. This choice is motivated by the idea that the amount of
cross-hardening is influenced by the angle between the two slip systemsα andβ. Here, the angle between the
two slip systems refers to the smaller of the two angles whichexist between the slip directionssα andsβ . For
a maximum alignment of two slip directions, i.e. ifsα ≈ sβ , the influence on the newly activated slip system
is rather large sincesα · sβ = 1. In case of orthogonal slip directions, the other slip system is not activated:
sα ⊥ sβ ⇒ sα · sβ = 0. sα andsβ are the slip direction of the active and of the newly activated slip systemβ,
respectively.

Clearly, the volume-specific free energy densityψ is convex in all arguments, i.e. the elastic Green strainEE, the
slip γ and the slip gradient∇rγ, respectively. The elastic part of the free energy densityψe depends on the elastic
Green strainEE

EE :=
1

2
[CE − I] (4)

with
CE := F T

E · FE (5)

being the elastic right Cauchy–Green deformation tensor. The local elastic deformationFE and the rate of the
inelastic plastic deformationFP are represented by

FE := F · F−1
P and ḞP =

∑

α

γ̇α sα ⊗ F T
P · nα, (6)

as usual. Further,γ := (γ1, . . . , γg
) represent the amount of shear deformation in the slip-systems. In the context

of crystal plasticity, the model formulation is based on theslip-system geometry as described by two unit vectors,
i.e. the slip directionsα and slip-plane normalnα. It is well known that often two or more crystallographically
equivalent systems contribute to the plastic deformation.Therefore,a 6 g represent the number of active glide
systems. A glide system is referred to as being passive or latent if γ̇α = 0, and active ifγ̇α 6= 0.

Since we neglect in this work the effects of any processes involving a change in or evolution of either the glide
directionsα or the glide-system orientationnα (e.g., texture development), these referential unit vectors are as-
sumed constant with respect to the reference placement. A quite common idea is to consider bothsα and−sα
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as glide directions which will be pursued in this contribution as well (see also Ortiz and Repetto (1999)). Conse-
quently,γα > 0 can then be interpreted as the accumulated slip-system shear, in which case it is always positive
and monotonically increasing, i.e.,γ̇α > 0 for all slip systemsα = 1, . . . , g.

The hardening contribution to the free energy can be decomposed further into contributions from local and gradient
hardening, respectively. By including a dependence on the slip gradient∇rγα, microscopic material lengthscale-
dependence is introduced. The corresponding hardening moduli, H l

αβ andHg
αβ , are chosen as constant and

positive semi-definite measures associated with each slip-systemα, β. By choosing1 ψh = 1
2

∑

α,β H
l
αβγ

2
α +

1
2

∑

α,β lαH
g
αβlβ [∇rγα · sα] [∇rγβ · sβ ], we induce crystallographic hardening and account for cross hardening

via the local hardening contribution as well as the gradienthardening term.

This leads to the following dissipative hardening stressesκα, which are defined in such a way that they can be
derived from the free energyψ via

κα :=
∂ψ

∂γα
− Div

(
∂ψ

∂(∇rγα)

)

in B0, grain, α = 1, 2, ..., nslip

κ(b)
α := N ·

∂ψ

∂(∇rγα)
on ∂B0, grain, α = 1, 2, ..., nslip (7)

see Ekh et al. (2007) for the derivation and further details.Here, N is the outward unit normal to the grain
boundary∂B0, grain and the superscript “b” denotes “boundary”. The hardening stressesκα are composed of local

as well as gradient contributions, whereas the gradient tractionsκ(b)
α on the grain boundary∂B0, grain represent the

gradient effect only. In particular, for the free energy function stated in Eq. (2)1, this leads to
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
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Clearly, the extension of a regular local hardening is represented by the additional termlα
∑

β H
g
αβlβ [sα ⊗ sβ ] :

[∇r⊗∇r]γβ . This gradient term leads to grain size dependent hardening- although the grain size does not enter this

term directly. The dissipative hardening stressesκα andκ(b)
α exist within each grain and on each grain boundary,

respectively.

Having introduced the basic underlying modeling ideas, we now turn to the governing equations. The mechanical
problem is governed by the quasi-static balance of linear momentum

0 = DivP + ρ0b. (10)

The first Piola–Kirchhoff stress tensorP is derived from the free energy as usual, i.e.P = ∂ψ/∂F . Furthermore,
b represents the volume force.

The grain problem is governed by the flow rule which relates the plastic slipγα to the stresses. We assume a
(rate-dependent) viscoplastic flow rule of the type

γ̇α =
1

t∗
ηα(Φα) . (11)

Here, t∗ > 0 is the relaxation time andηα(Φα) are the overstress-functions of the Perzyna type (cf. Perzyna
(1971)). The latter are chosen as non-negative and monotonically increasing for all slip systemsα. In particular, a

1Ekh et al. (2007) choseψh = 1

2

P

α
Hl

α
γ2

α
+ 1

2

P

α
l2
α
H

g

α [∇rγα · sα] [∇rγα · sα] which accounts for crystallographic but not for
cross-hardening. The later is a non-physical simplification. The same assumption is made by Vrech and Etse (2007) in case of a small
deformation theory.
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power law is chosen

ηα(Φα) =

[
< Φα >

C0

]m

with < Φα >:=
1

2
[Φα + |Φα|] . (12)

In this model,C0 andm are constant material parameters which are the same for all slip systemsα. The special
case of rate-independent plasticity is retrieved in the limit when t∗[C0]

m → 0. Following Ekh et al. (2007), the
quasi-static yield functionsΦα are defined as

Φα = τα − [Yα + κα], (13)

whereτα represents the resolved shear stress. Hence, the current slip resistance on each slip systemα is given by
Yα + κα. Yα is the initial yield stress and the dissipative hardening stressesκα are of the drag-stress type. Fully
elastic behavior is characterized byΦα < 0. Consequently, theṅγα = 0. Summarizing, these considerations lead
to the following viscoplastic flow rule

γ̇α =
1

t∗

[
< τα − [Yα + κα] >

C0

]m

. (14)

3 Numerical approximation

Since this system cannot be integrated analytically, this section briefly summarizes the formulation of the numerical
approximation scheme we used. For more details and a comparison about different mechanical boundary condition
assumptions, the reader is referred to Ekh et al. (2007). Forthe temporal discretization, a backward (implicit) Euler
integration for the evolution equations is applied. The state att = tn−1 is assumed to be known for a given time
history of the pertinent loading. For example, this leads tothe incremental, semi-discretized version of the equation
for the rate of the inelastic deformation (i.e. given in Eq. (6)2)

I − F Pn−1 · fPn − ∆t
∑

α

γαn − γαn−1

∆t
[sα ⊗ nα] = 0, (15)

with ∆t = tn − tn−1 denoting the current time step. The inverse of the plastic part of the deformation gradient
is initialized asfP 0 = I. Furthermore, we assume that no plastic slip exists in the beginning of the deformation
process, i.e.γα(t = 0) = 0.

The spatial discretization is done with a dual-mixed finite element algorithm, whereby the primary unknowns are
the displacementu and the artificial scalargα

gα := ∇rγα · sα. (16)

gα can be interpreted as the directional gradient of the slipγα along the slip directionsα. Thereby, the plastic slip
γα and the scalargα are approximated independently in the reference configuration B0 of the material in question
and the gradient equation

gα − ∇rγα · sα = 0 (17)

is a global equation in space. Such an approach is denoted thedual mixed space-variational formulation, see Ekh
et al. (2007) for further details. Via such a format, it is possible to choose the finite element approximation of the
scalargα one order higher than the finite element approximation of theplastic slipγα. The slipγα is solved for
iteratively on the element level.

In total, this leads to a three-level iteration scheme. First, in an outer iteration loop called “grain boundary iteration
loop” we solve for the displacementsu on the grain boundaries. Then, in the “inner grain iterationloop”, updated
values of displacementsu and the scalarsgα within each grain are computed. During the “inner grain iteration
loop”, the displacements on the grain boundaries are kept fixed, given the updated values from the “grain boundary
iteration loop”. Therefore, the resulting algorithm is suitable for parallelization. In each “inner grain iteration
loop”, a monolithic Newton–Raphson solution strategy is applied.
In order to be able to apply this separation, the underlying finite element mesh has to respect the grain boundaries.
In addition to the two loops, a third iteration loop is carried out on the element level. The purpose of this “local
iteration loop” is to find updated values for the slipγα in each Gauss point, given the values of the displacementu

and the artificial scalargα (as provided from the inner grain iteration loop).
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Remark:
A different numerical approximation scheme which has been applied to the original model of Ekh et al. (2007) is
introduced in Bargmann et al. (2009). That scheme is also suitable for the model introduced in this contribution, i.e.
including the cross-hardening effect. The formulation of an incremental variational principle describing gradient
crystal plasticity in Bargmann et al. (2009) is based on the direct exploitation of the dissipation principle to derive
all field relations and (sufficient) forms of the constitutive relations as based on the free energy densityψ and a
dissipation potentiald. Due to the variational character of the problem, the resulting iteration matrix is symmetric.
Moreover, only the “grain boundary iteration loop’ and the “inner grain iteration loop” are necessary - both solving
for the displacementsu and the plastic slipγα as primary unknowns. The procedure applied in Bargmann et al.
(2009) is also suitable for parallelization as it is based onthe same idea of grain separation. It leads to a two-level
iteration scheme.

4 Simulations

To gain further insight into the effect of cross-hardening in the modeling approach being pursued here, we now
look in detail at the hardening behavior of a two-dimensional inelastic polycrystal with side lengthL. This side
lengthL does not enter the model formulation directly. Rather, it influences the results via the position of the global
nodes which vary along with a variation ofL. In order to capture the size-dependence stress-strain response, the
side lengthL is varied during simulations. A double slip system is assumed in each grain which leads tog = 4,
see Figure 1 (right). The RVE consists of25 grains and is subdivided into11392 finite elements, as depicted in
Figure 1 (left). Grain boundaries are respected by the mesh.Each of the triangular elements has3 nodes and each
node has6 degrees of freedom (two displacements and four slips). Moreover, nodes on the inner grain boundaries
have been doubled in order to allow for a separate computation of the grains. During the simulations,200 time
steps have been used.

Figure 1: On the left the geometry and its discretization of the RVE is depicted. It consists of25 grains which
are approximated by triangular elements. Grain boundariesare respected by the mesh. A random two-slip system
is assumed. The random slip directions are illustrated schematically on the right. The boundary conditions are
explained in the text.

Plain strain is assumed and the case of simple shear on the macro-scale is studied. Consequently, the macroscopic
deformation gradient readsF = I + γ̄e1 ⊗ e2, whereγ̄ is the macroscopic shear deformation. For the bound-
ary conditions of the mechanical subproblem, we prescribe the displacementsu at the whole RVE boundary, i.e.
Dirichlet boundary conditions are prescribed on the entireboundary. The constant loading rate is set constant at
0.2 [1/s]. Computations are carried out with̄γmax = 0.15.

For the grain subproblem, we assume micro-clamped boundaryconditions, i.e.

γα = 0 on ∂B0,grain. (18)

Whereas the mechanical boundary conditions are not very restrictive and physically meaningful, we are aware of
the fact that the grain boundary conditions are, from a physical point of view, too restrictive because they do not
allow slip interaction between the grains. Studying the influence of the latter on the results is a topic of its own
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(see Ekh et al. (2009)) and not part of this contribution.

The material parameters used in the simulations are stated in Table 1.

parameter symbol value
Young’s modulus E 2 · 105 [MPa]
Poisson’s ratio ν 0.3
local hardening modulus H l

0 500 [MPa]
gradient hardening modulus Hg

0 3 · 107 [MPa]
internal length scale lα 10−2 [µm]
initial yield stress Yα 300 [MPa]
relaxation time t∗ 104 [s]
material constant C0 1 [MPa]
rate sensitivity parameter m 1

Table 1: Material parameters used in the simulations. Usually, the initial yield stressYα and the local hardening
modulusH l

α are three orders lower than the elasticity modulusE - as chosen in this particular example. The
local hardening modulusH l

α is chosen in such a way that cross-hardening effects are included: H l
αα = H l

0

andH l
αβ = 1

10H
l
0 for α 6= β. Thus, the self-hardening contribution within the slip-systemα is larger than the

hardening cross-hardening contribution.

In order to systematically simulate size dependent material behavior of the polycrystal, the side lengthL has been
varied. Moreover, simulations have been run for the model excluding and including cross-hardening. The first
option is done by choosinghαβ = δαβ , whereδαβ denotes the Kronecker symbol. In order to compute the stress-
strain curves for the model including cross-hardening we set hαβ = 1 for α = β andhαβ = 0.25 for α 6= β. Thus,
the cross-hardening from one slip system to the next is less than the self-hardening on the active slip system.

First, we take a look at the stress-strain responses. In Figures 3 and 4, these are shown forL = 5 µm, L = 10 µm,
L = 20 µm, L = 40 µm, andL = 100 µm - for both the cases without and with cross-hardening. Clearly, the
influence of the grain size can be seen. The smaller the RVE, the stiffer its material response. From the modeling
point of view, this feature is accomplished by including a gradient contribution into the free energy densityψ and,
consequently, into the slip law. A dependence on the grain size is seen. In Figure 3, the stress-strain curves are
plotted for our model excluding the effect of cross-hardening. The results including cross-hardening are plotted in
Figure 4. Once more, the grain size dependent hardening behavior can clearly be identified and is in accordance
to the experimental findings of Hall (1951) and Petch (1953):the smaller the grain size, the stiffer the polycrystals
behave. The experiments of Hall (1951) and Petch (1953) alsoshow a size-dependence of the yield stress. This
feature is not captured by this basic model. However, enhancing this model in this direction is part of ongoing
research. Moreover, for the smaller samples the cross-hardening leads to a stiffer response than in the case of
self-hardening. For larger samples, the effect is negligible.
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Figure 2: Including cross-hardening. The effective hardening strainγeff =
√

γ2
1 + γ2

2 + γ2
3 + γ2

4 at γ̄ = 0.05
is depicted. From left to right the accumulated plastic strain field for grain-structure side lengthsL = 5 µm,
L = 10 µm, andL = 40 µm are depicted. The evolution of the slip-system shearγα is given in Eq. (14). The
displacement field inside the grain-structure is unconstrained.
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Figure 3: The macroscopic stress–strain response (P̄12 vs. γ̄) showing the size dependence on the amount of
hardening is depicted for RVE lengthsL = 5 µm, L = 10 µm, L = 20 µm, L = 40 µm, andL = 100 µm. The
effect of cross-hardening is neglected. The larger the grain size, the softer responses the material.
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Figure 4: The macroscopic stress–strain response (P̄12 vs. γ̄) showing the size dependence on the amount of
hardening is depicted for RVE lengthsL = 5 µm, L = 10 µm, L = 20 µm, L = 40 µm, andL = 100 µm.
During these simulations, the effect of cross-hardening isincluded. This leads to a stiffer material response than in
the case of pure self-hardening. Again, the larger the grainsize, the softer responses the material.

5 Conclusion

Motivated by the results presented in Ekh et al. (2007), we added the effect of cross-hardening into the gradient
crystal plasticity model. In this approach, the volume-specific free energy was assumed to include contributions
from local as well as non-local hardening. The latter was influenced by the plastic slip gradient along each slip
direction. The numerical simulations showed that small grains lead to stiffer hardening responses. Unfortunately,
the effect of cross-hardening is rather small in this approach. The arising coupled boundary value problem was
discretized within the finite element method. We conclude that the proposed model formulation and the dual-
mixed finite element algorithm are convenient for modeling size-dependent hardening including cross-hardening
in polycrystals.
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