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Computational modeling of gradient hardening in polycrystals

S. Bargmann, M. Ekh, B. Svendsen, K. Runesson

A gradient hardening crystal plasticity model for polydals is introduced in Ekh et al. (2007). It is formulated in
a thermodynamically consistent fashion and is capable afatiing a grain-size-dependent stress-strain response.
In this contribution we extend that model to also includessrbardening.

A free energy is stated which includes contributions froengtadient of hardening along each slip direction. This
leads to hardening stresses depending on the second deeiaitthe plastic slip. The governing equations for a
nonlinear coupled system of equations is solved numeyigéath the help of a dual-mixed finite element method.
The numerical results show that the macroscopic strengtieases with decreasing grain size as a result of gra-
dient hardening: Moreover, cross-hardening further entesithe strengthening gradient effect.

1 Introduction

Modeling and simulation of material behavior have been guoirtant part of engineering research during the last
decades. The development of innovative engineering nadg€guch as light construction materials, for examples)
as well as the development of classical materials (e.g.I®)etxuires deep knowledge on this issue. The material
behavior depends on various phenomena on different saalpslycrystals. The underlying microstructure of
the grains plays an important role. An important aspectésdé&pendence on the grain size of the macroscopic
material response arising from the interaction betweqys dnd grain boundaries. In contrast to conventional
crystal plasticity, gradient theories take this aspeat mtcount. They belong to the theories that include the
micro-effects in the macroscopic modeling by assuming apteta scale separation.

Typically, the grain modeling is based on crystal plastigifth different slip directions and slip planes in each
grain. In addition, strain gradients are induced in eaclingr@hereby, grain boundaries will act as barriers to
plastic deformation (i.e. the plastic slip). Different appches have been formulated. A simple but effective
(in the sense that it shows realistic simulation resultsyi@hds presented in Ekh et al. (2007). The model is
formulated within the framework of continuum thermodynesnand finite strains. Another model by Evers et al.
(2004) is motivated from physical dislocation densitied amolution equations for these, however, without any
thermodynamical considerations. One disadvantage ofptheach of Ekh et al. (2007) is that it does not include
cross-hardening. However, this can be added in a straggivafd way, as shown in this contribution.

Cross-hardening refers to the effect that during plastfordeation in one slip system, the hardening of other

slip systems are activated. This activation of multiplg $las two primary influences on the evolution of the

latent hardening ratios. Firstly, regardless of the forrthefself-hardening moduli, the effective latent hardening
decreases with an increase in the slip system activity.défsed by the number and intensity of active secondary
systems. Secondly, multiple slip can lead to a rapid ine@&athe rate of hardening as compared to single slip.

The paper is organized as follows: We begin with a shortnagiten of the key ideas in the modeling of gradient
crystal plasticity. Subsequently, we formulate an extendersion of the model presented in Ekh et al. (2007)
which includes cross-hardening. The numerical implententas carried out with the help of a dual-mixed finite
element method. Hereby, the displacements and the pléipsqsojected on the slip directions are the degrees of
freedom. The resulting system of equations is highly n&aimand strongly coupled. In particular, an algorithm
suitable for parallelization is introduced, where eachrgimtreated independently as a subproblem. The macro-
scopic deformation gradient is imposed on the represeatatlume element (RVE) by solving the mechanical
governing equation on the whole RVE with Dirichlet boundeoynditions. For the grain boundary conditions, mi-
croclamped boundaries are assumed. Whereas the assunoptiba deformation gradient represents an approach
with very few constraints and, thus, a very high level of pbgkrealism, the microclamped grain boundary condi-
tion is rather restrictive. However, grain boundary coindi$ represent a topic of their own and is investigated in

316



a different contribution, see e.g. Ekh et al. (2009). Here cancentrate on the influence of cross-hardening in the
model by (Ekh et al., 2007).

The modeling approach and the discretization are discussatkans of representative two-dimensional example.
The paper ends with a discussion of the presented approachid$5).

2 Mathematical model

For simplicity, attention is restricted here to isothermadcesses. As stated in the introduction, the model is ther-
modynamically based. Moreover, we postulate the existehagotential: the volume-specific free energy density
1. Following Ekh et al. (2007), it can be decomposed additiueio an elastic and a hardening contribution, i.e.
1o andiyy, respectively,

w(F7FP777vr'7) :we(EE(FvFP)) +¢h(7avr'y) . (1)

In particular, in order to include cross-hardening effeitteads
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Here, \ and . are the Lame parameters and the tensor product “:” denotesladelcontraction, e.gA : B =
Ay; By for two tensorsA, B. FurthermoreH,, ; denotes the local hardening modulus @nendi are internal
length scales. Moreover, the counterpart for the gradiemiribution, i.e HY, accounts for cross-hardening effects
as well:

[e3

H'qﬁ = [Sa . Sﬁ]haﬁHg, (3)

with H{ being a material constant, the gradient hardening modilate thatt/§ # H|, i.e. the gradient hardening
matrix is not related to the usual interaction matrix forssiaal hardeningh.z are coefficients of the matrikl ¥

- the diagonal terms are related to self-hardening of thpessistemsy, whereas the off-diagonal elements induce
latent hardening between the slip systemand . This choice is motivated by the idea that the amount of
cross-hardening is influenced by the angle between the fwsgtemsy and 5. Here, the angle between the
two slip systems refers to the smaller of the two angles whkidht between the slip directions, andsg. For

a maximum alignment of two slip directions, i.e.sf, ~ sg, the influence on the newly activated slip system
is rather large sincs,, - s3 = 1. In case of orthogonal slip directions, the other slip syste not activated:
so L sg = so-s3 =0. s, andsg are the slip direction of the active and of the newly actidegkp systems,
respectively.

Clearly, the volume-specific free energy densitis convex in all arguments, i.e. the elastic Green stigij the
slip v and the slip gradier¥,~, respectively. The elastic part of the free energy densitgepends on the elastic
Green strainEg

Eg = % [Cy — T 4)

with
Cr:=Fg - Fg (5)

being the elastic right Cauchy—Green deformation tensbie [dcal elastic deformatiof; and the rate of the
inelastic plastic deformatiofp are represented by

Fo:=F -F,' and Fp=) 408, F -na, (6)

as usual. Furthety := (4, ...,7,) represent the amount of shear deformation in the slip-systén the context

of crystal plasticity, the model formulation is based on glip-system geometry as described by two unit vectors,
i.e. the slip directions, and slip-plane normat,,. It is well known that often two or more crystallographigall
equivalent systems contribute to the plastic deformatibimerefore,a < g represent the number of active glide
systems. A glide system is referred to as being passiveantldty, = 0, and active ify,, # 0.

Since we neglect in this work the effects of any processeslving a change in or evolution of either the glide

directions,, or the glide-system orientation,, (e.g., texture development), these referential unit vecioe as-
sumed constant with respect to the reference placement.it& cpmmon idea is to consider bogy and —s,,
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as glide directions which will be pursued in this contributias well (see also Ortiz and Repetto (1999)). Conse-
quently,v, > 0 can then be interpreted as the accumulated slip-system, ah&ehich case it is always positive
and monotonically increasing, i.€, > 0 for all slip systemsy =1,...,g.

The hardening contribution to the free energy can be deceetbfurther into contributions from local and gradient
hardening, respectively. By including a dependence onlthgsadientV,~,, microscopic material lengthscale-
dependence is introduced. The corresponding hardeningjlmde]lﬁ and H a,@’ are chosen as constant and
positive semi-definite measures associated with eactsgtifema, 5. By choosing v = § 3, 5 H. 372 +
32 0g! sla loHY 515 [Viva - 8ol [Viys - s5], e induce crystallographic hardening and account forschasdening
via the Iocal hardenlng contribution as well as the gradiemtiening term.

This leads to the following dissipative hardening stressgswhich are defined in such a way that they can be
derived from the free energy via

oY o :
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see Ekh et al. (2007) for the derivation and further detaltiere, IV is the outward unit normal to the grain
boundaryodB, 4rain @and the superscripb” denotes “boundary”. The hardening stressgsare composed of local
as well as gradient contributions, whereas the gradleulnmm/s(b) on the grain boundar§ By, grain represent the

gradient effect only. In particular, for the free energydtion stated in Eq. (2) this leads to

Ra = Z b8 =DV (la Y Hsls [Virs - 8p] 8a)
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Clearly, the extension of a regular local hardening is regméed by the additional terin Zﬁ Hgﬁlg [So @ s3] :

[V, ®V,]vg. This gradient term leads to grain size dependent hardeiltigough the grain size does not enter this
term directly. The dissipative hardening stressgandn&b) exist within each grain and on each grain boundary,
respectively.

Having introduced the basic underlying modeling ideas, e turn to the governing equations. The mechanical
problem is governed by the quasi-static balance of lineanemum

0 = DiVP + pob. (10)

The first Piola—Kirchhoff stress tensér is derived from the free energy as usual, Fe= 9v/JF. Furthermore,
b represents the volume force.

The grain problem is governed by the flow rule which relatesghastic slipy, to the stresses. We assume a
(rate-dependent) viscoplastic flow rule of the type

1

Ya = ? na(q)a) . (11)

Here,¢. > 0 is the relaxation time and,(®,) are the overstress-functions of the Perzyna type (cf. Parzy
(1971)). The latter are chosen as non-negative and momaibnincreasing for all slip systems In particular, a

1Ekh et al. (2007) chosg}, = Z HLA2 + Z 12 HS [ViYa - 8a] [Veva - 8a] Which accounts for crystallographic but not for
cross-hardening. The later is a non phyS|caI smpllflcatld’ﬂne same assumption is made by Vrech and Etse (2007) in casenwdlb s
deformation theory.
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power law is chosen

<P, >

" , 1
o } with < &, >:= 3 (Do + |Po]] - (12)

(@) = |

In this model,Cy, andm are constant material parameters which are the same fdipadlystemsx. The special
case of rate-independent plasticity is retrieved in thethmnent..[Cy]™ — 0. Following Ekh et al. (2007), the
quasi-static yield functioné,, are defined as

by =70 — [Yoz + Ha]a (13)

wherer,, represents the resolved shear stress. Hence, the cuipergsistance on each slip systenis given by

Y. + ka. Yo is the initial yield stress and the dissipative hardenimgsstes:,, are of the drag-stress type. Fully
elastic behavior is characterized #y, < 0. Consequently, thefy, = 0. Summarizing, these considerations lead
to the following viscoplastic flow rule

m

. 1 [< 70— [Ya+Ea >
Yo =
ty Cy

(14)

3 Numerical approximation

Since this system cannot be integrated analytically, #iien briefly summarizes the formulation of the numerical
approximation scheme we used. For more details and a casopabout different mechanical boundary condition
assumptions, the reader is referred to Ekh et al. (2007)thedemporal discretization, a backward (implicit) Euler
integration for the evolution equations is applied. Theestdt = ¢,,_1 is assumed to be known for a given time
history of the pertinent loading. For example, this leadb#incremental, semi-discretized version of the equation
for the rate of the inelastic deformation (i.e. given in Eg)o}

I-FP,,L_l.fpn_AtZ%[sa@ma] —0, (15)

(o3

with At = t,, — t,,_1 denoting the current time step. The inverse of the plastitgfahe deformation gradient
is initialized asfp, = I. Furthermore, we assume that no plastic slip exists in tiggnbing of the deformation
process, i.ey,(t = 0) = 0.

The spatial discretization is done with a dual-mixed finleneent algorithm, whereby the primary unknowns are
the displacement and the artificial scalay,

9o = ViYa - Sa. (16)

go Can be interpreted as the directional gradient of the-gliplong the slip directios,,. Thereby, the plastic slip
v and the scalag,, are approximated independently in the reference configuré}, of the material in question
and the gradient equation

9o — ViYa - Sa =0 (17)

is a global equation in space. Such an approach is denotetlithenixed space-variational formulation, see Ekh
et al. (2007) for further details. Via such a format, it is gibfe to choose the finite element approximation of the
scalarg,, one order higher than the finite element approximation ofplastic slipy,. The slipy, is solved for
iteratively on the element level.

In total, this leads to a three-level iteration scheme.tHinsan outer iteration loop called “grain boundary itevati
loop” we solve for the displacementson the grain boundaries. Then, in the “inner grain iteratomp”, updated
values of displacements and the scalarg,, within each grain are computed. During the “inner grainati&m
loop”, the displacements on the grain boundaries are keg figiven the updated values from the “grain boundary
iteration loop”. Therefore, the resulting algorithm istabie for parallelization. In each “inner grain iteration
loop”, a monolithic Newton—Raphson solution strategy ilezal.

In order to be able to apply this separation, the underlyimi¢gefielement mesh has to respect the grain boundaries.
In addition to the two loops, a third iteration loop is cadri@eut on the element level. The purpose of this “local
iteration loop” is to find updated values for the slip in each Gauss point, given the values of the displacement
and the artificial scalay,, (as provided from the inner grain iteration loop).
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Remark:

A different numerical approximation scheme which has bgglied to the original model of Ekh et al. (2007) is
introduced in Bargmann et al. (2009). That scheme is alsaldeifor the model introduced in this contribution, i.e.
including the cross-hardening effect. The formulation wfirrcremental variational principle describing gradient
crystal plasticity in Bargmann et al. (2009) is based on fhectlexploitation of the dissipation principle to derive
all field relations and (sufficient) forms of the constitetikelations as based on the free energy densiand a
dissipation potentiaf. Due to the variational character of the problem, the ragylteration matrix is symmetric.
Moreover, only the “grain boundary iteration loop’ and tlirerier grain iteration loop” are necessary - both solving
for the displacementa and the plastic slip,, as primary unknowns. The procedure applied in Bargmann et al
(2009) is also suitable for parallelization as it is basedhensame idea of grain separation. It leads to a two-level
iteration scheme.

4  Simulations

To gain further insight into the effect of cross-hardeninghie modeling approach being pursued here, we now
look in detail at the hardening behavior of a two-dimensianelastic polycrystal with side length. This side
lengthZ does not enter the model formulation directly. Rather fluences the results via the position of the global
nodes which vary along with a variation &f In order to capture the size-dependence stress-strgonss, the
side lengthL is varied during simulations. A double slip system is asslimesach grain which leads = 4,

see Figure 1 (right). The RVE consistsZif grains and is subdivided intbl 392 finite elements, as depicted in
Figure 1 (left). Grain boundaries are respected by the ntesth of the triangular elements heodes and each
node has$ degrees of freedom (two displacements and four slips). M@ie nodes on the inner grain boundaries
have been doubled in order to allow for a separate compatafithe grains. During the simulation®)0 time
steps have been used.

Figure 1: On the left the geometry and its discretizationhef RVE is depicted. It consists @b grains which

are approximated by triangular elements. Grain boundaresespected by the mesh. A random two-slip system
is assumed. The random slip directions are illustratedreakieally on the right. The boundary conditions are
explained in the text.

Plain strain is assumed and the case of simple shear on the+sale is studied. Consequently, the macroscopic
deformation gradient readB = I + ye; ® e, Wherey is the macroscopic shear deformation. For the bound-
ary conditions of the mechanical subproblem, we preschibaltsplacementa at the whole RVE boundary, i.e.
Dirichlet boundary conditions are prescribed on the erdoendary. The constant loading rate is set constant at
0.2 [1/s]. Computations are carried out with,,x = 0.15.

For the grain subproblem, we assume micro-clamped bourdagitions, i.e.
Yo =0 on 9By grain- (18)

Whereas the mechanical boundary conditions are not venyatégt and physically meaningful, we are aware of
the fact that the grain boundary conditions are, from a gaygioint of view, too restrictive because they do not
allow slip interaction between the grains. Studying theuigrfice of the latter on the results is a topic of its own
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(see Ekh et al. (2009)) and not part of this contribution.

The material parameters used in the simulations are staffabie 1.

parameter symbol | value

Young’s modulus E 2.10° [MPa]
Poisson’s ratio v 0.3

local hardening modulus H} 500 [MPa]
gradient hardening modulus H§ 3-107  [MPa]
internal length scale lo 1072 [pm]
initial yield stress Yo 300 [MPal]
relaxation time t. 10* [s]
material constant Co 1 [MPa]
rate sensitivity parameter m 1

Table 1: Material parameters used in the simulations. Uguhk initial yield stress’, and the local hardening
modulus H, are three orders lower than the elasticity moduliis as chosen in this particular example. The
local hardening modulugZ!, is chosen in such a way that cross-hardening effects areded! H., = H}
andHlﬁ = TloHé for a # (. Thus, the self-hardening contribution within the slig®ma is larger than the
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hardening cross-hardening contribution.

In order to systematically simulate size dependent mateeizavior of the polycrystal, the side lengthhas been
varied. Moreover, simulations have been run for the modelueling and including cross-hardening. The first
option is done by choosinly,3 = d.3, Whered, g denotes the Kronecker symbol. In order to compute the stress
strain curves for the model including cross-hardening wé sg = 1 for « = g andh,g = 0.25 for a # 3. Thus,

the cross-hardening from one slip system to the next is kessthe self-hardening on the active slip system.

First, we take a look at the stress-strain responses. Irésdgiand 4, these are shown for= 5 ym, L = 10 pm,

L = 20 pm, L = 40 pm, andL = 100 pm - for both the cases without and with cross-hardening. Gletire
influence of the grain size can be seen. The smaller the R\éEstiffier its material response. From the modeling
point of view, this feature is accomplished by including adjent contribution into the free energy densitand,
consequently, into the slip law. A dependence on the gramisiseen. In Figure 3, the stress-strain curves are
plotted for our model excluding the effect of cross-hardgniThe results including cross-hardening are plotted in
Figure 4. Once more, the grain size dependent hardeningioeltan clearly be identified and is in accordance
to the experimental findings of Hall (1951) and Petch (19%8):smaller the grain size, the stiffer the polycrystals
behave. The experiments of Hall (1951) and Petch (1953)sdlew a size-dependence of the yield stress. This
feature is not captured by this basic model. However, erihgrtbis model in this direction is part of ongoing
research. Moreover, for the smaller samples the crosehangl leads to a stiffer response than in the case of
self-hardening. For larger samples, the effect is nedigib

Figure 2: Including cross-hardening. The effective haiigistrainy.s = /77 +73 +12 +77 aty = 0.05
is depicted. From left to right the accumulated plasticistfeeld for grain-structure side lengths = 5 pm,
L = 10 pm, andL = 40 um are depicted. The evolution of the slip-system sheais given in Eq. (14). The
displacement field inside the grain-structure is uncoimstch
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without crosshardening
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Figure 3: The macroscopic stress—strain respofse \(s. 7) showing the size dependence on the amount of
hardening is depicted for RVE lengtlis= 5 ym, L = 10 ym, L = 20 pym, L = 40 ym, andL = 100 ym. The
effect of cross-hardening is neglected. The larger thengriae, the softer responses the material.

including crosshardening
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Figure 4: The macroscopic stress—strain respoise {(s. 7) showing the size dependence on the amount of
hardening is depicted for RVE lengttis= 5 pym, L = 10 um, L = 20 pym, L = 40 pym, and L = 100 pm.
During these simulations, the effect of cross-hardenimgdisided. This leads to a stiffer material response than in
the case of pure self-hardening. Again, the larger the giiaiy the softer responses the material.

5 Conclusion

Motivated by the results presented in Ekh et al. (2007), waeddhe effect of cross-hardening into the gradient
crystal plasticity model. In this approach, the volumeesfiefree energy was assumed to include contributions
from local as well as non-local hardening. The latter wasigrited by the plastic slip gradient along each slip
direction. The numerical simulations showed that smalingréead to stiffer hardening responses. Unfortunately,
the effect of cross-hardening is rather small in this apgoalhe arising coupled boundary value problem was
discretized within the finite element method. We concluds the proposed model formulation and the dual-
mixed finite element algorithm are convenient for modelirmg-siependent hardening including cross-hardening
in polycrystals.
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