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Elastic properties of pyrolytic carbon with axisymmetric textures

T. Böhlke, K. J̈ochen, R. Piat, T.-A. Langhoff, I. Tsukrov, B. Reznik

In this paper, the first-order bounds, the geometric mean, the singular approximation and the self-consistent
estimate of the linear elastic properties of pyrolytic carbon (PyC) are determined numerically. The texture, i.e.
the orientation distribution of the normal direction of thegraphene planes, is modeled by a Fisher distribution on
the unit sphere. Fisher distributions depend only on one scalar concentration parameter. It is shown in detail how
the effective elasticities of PyC can be estimated based on the one concentration parameter which describes the
scatter width of the orientation distribution. The numerical predictions of the different bounds and estimates are
compared.

1 Introduction

Pyrolytic carbon (PyC) is commonly used as micro constituent of carbon/carbon or carbon/silicon carbide com-
posites. Because of their excellent mechanical propertiesat high temperatures, these composites find several
applications as aircraft, aerospace, car and nuclear fuel rod components. Examples of such superior properties of
these materials are the increase of Young’s modulus and the thermal conductivity in the high temperature range up
to 2000◦C (Fitzer and Manocha, 1998; Herbell and Eckel, 1991).

In order to understand the macroscopic material propertiesone has to investigate the microstructure of PyC. This
can be performed, e.g., by coupling experimental characterization methods like transmission electron microscopy
(TEM) with selected-area electron diffraction (SAED) (Reznik et al., 2003). On the submicron scale the mi-
crostructure of PyC can be described as a set of coherent domains having different preferred orientations or tex-
tures in relation to the fiber surface (or to the surface of theplane substrate), which are classified as: isotropic,
low-textured (LT), medium-textured (MT) and high-textured (HT), see, e.g., Fig. 1 (Reznik et al., 2001; Reznik
and Ḧuttinger, 2002). Each domain in Fig. 1 (a, b) represents the two-dimensional cross section of the three-
dimensional stack of graphene planes. Different degrees oftexture induce different material properties. Guellali
et al. (2008a,b) provide a very accurate description (SEM, light microscopy) and experimental characterisation (X-
ray diffraction, three point bending tests) of differentlytextured PyCs including information about typical spacing
between graphene planes, apparent stack height, effectiveelastic modulus and other properties.

In this contribution, we restrict ourselves to PyC producedby chemical vapour infiltration. In this case, the growth
process of the PyC matrix around the fibers is uniform with an approximate rotational symmetry in normal direction
to the fiber surface. A typical microstructure of such a composite is presented in Fig. 1 (c). The PyC layers are
parallel to the fiber surface. Several experimental methodshave been used for measuring the elastic properties of
PyC. Among them are ultrasonic pulse-echo experiments (Papadakis and Bernstein, 1963) and sharp indentation
tests (Diss et al., 2002), but due to the significant anisotropy of PyC only quasi-effective properties of the material
were obtained by these tests. Alternatively, numerical approaches for computing the elastic properties of PyC have
been reported (Piat et al., 2004; Sauder and Lamon, 2005; Sauder et al., 2005).

Crystallographic textures can often be described by a smallnumber of texture components (Bunge, 1993; Kocks
et al., 1998). A texture component is a crystal or domain orientation for which the orientation distribution function
(ODF) shows a (local) maximum. In the neighborhood, the ODF is decreasing in an isotropic or anisotropic
way. In the present paper, we model the orientation distribution of domains by a simple one-parameter axial
orientation distribution function. More specifically, we describe the microtexture in PyC by a Fisher distribution
and determine the elastic properties of PyC on the microscale numerically by different submicron-to-mirco scale
transition schemes. The Fisher distribution describes a Gauss type distribution of normal vectors, which determine
the orientation of the domains. Since on unit spheres there exist no normal distributions (Schaeben, 1990, 1992),
e.g., Fisher distributions can be considered (Fisher, 1953). The main result of the paper is to show, how the elastic
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Figure 1: High resolution TEM images of the typical a) mediumtextured (MT) and b) high textured (HT) coherent
domains; c) polarized light micrograph of a polished section of an infiltrated carbon fiber felt with differently
textured PyC layers (1-5) and d) schematics of different layer textures

parameters on the microscale of PyC depend on the single concentration parameter which specifies completely
the Fisher distribution. For the homogenization of the elastic properties the first-order bounds, the geometric
mean, the singular approximation and the self-consistent estimate are determined. The computational procedure
is discussed in detail for the singular approximation, which is shown to be very close to the geometric mean and
the self-consistent estimate for spherical domains. In contrast to the geometric mean the singular approximation is
based on clear mechanical assumptions. Compared to the self-consistent estimate, the determination of the singular
approximation is much simpler.

The outline of the paper is as follows. In the first part of the paper, the orientation distribution function of graphene
planes is modeled by a Fisher distribution. Then, differentbounds and estimates for the elastic properties of
PyC on the submicron scale are discussed. In the last part of the paper, the bounds and estimates are determined
numerically for microtextures exhibiting axisymmetric textures with different concentrations.

Notation. A direct tensor notation is preferred throughout the text. If tensor components are used, then the
Einstein summation convention is applied. Vectors and 2nd-order tensors are denoted by lowercase and up-
percase bold letters, e.g.,a and A, respectively. A linear mapping of 2nd-order tensors by a 4th-order ten-
sor is written asA = C[B]. The scalar product and the dyadic product are denoted, e.g., by a · b anda ⊗ b,
respectively. The composition of two 2nd-order or two 4th-order tensors is formulated byAB and AB. We
define(A�B)[C] = ACB ∀A,B,C and(a ⊗ b) · (C[[a ⊗ b]]) = (a ⊗ a) · (C[b ⊗ b]) ∀a, b, C. Completely
symmetric and traceless tensors are designated by a prime, e.g., A′. The brackets〈·〉, e.g., 〈ε〉, indicate en-
semble averaging which for ergodic media can be identified with volume averages in the infinite volume limit.
The symbol⋆ denotes the Rayleigh product, which for tensorsT = Tij...l ei ⊗ ej ⊗ . . . ⊗ el of arbitrary rank
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is defined byQ ⋆ T = Tij...l(Qei) ⊗ (Qej) ⊗ . . . ⊗ (Qel). The productQ ⋆ T can be interpreted as the ro-
tation of the tensorT by the orthogonal tensorQ. The tensorI is the identity on vectors. The identity on
symmetric 2nd-order tensors is denoted byIS. ATR indicates the right minor transposition ofA, which satisfies
A · (A[B]) = A · (ATR [BT]) ∀A,B.

2 Crystallographic texture

Orientation distribution function of graphene planes. The orientation of a domain can be described approxi-
mately by a normal vectorc perpendicular to the graphene planes, or equivalently by a proper orthogonal tensor
Q ∈ SO(3)

c = Qc0, (1)

wherec0 is an arbitrary but constant reference vector. It should be noted that for givenc and fixedc0 the tensorQ
is not unique since arbitrary rotations aboutc0 or c are not relevant. Hence,Q can be specified by two independent
parameters only. This will be taken into account by the specific structure of the distribution function introduced
later on. The orientation distribution function of graphene planesfc(c) specifies the volume fractiondv/v of
domains with the orientationc, i.e.,

dv

v
(c) = fc(c) dc, (2)

wheredc is the surface element of the unit sphereS2 in the three-dimensional Euclidean space. The ODF can be
described equivalently by a distribution functionf(Q) specifying the volume fractiondv/v of domains with the
orientationQ, i.e.,

dv

v
(Q) = f(Q) dQ. (3)

Here, dQ is the volume element inSO(3) which ensures an invariant integration overSO(3). The functionf(Q)
is nonnegative and normalized

∫

SO(3)
f(Q) dQ = 1. The orientation distribution functionf(Q) reflects both, the

material symmetry of the domains forming the aggregate and the symmetry of the microstructure. The material
symmetry of the domains implies the following symmetry relation: f(Q) = f(QHD) ∀HD ∈ SD ⊆ SO(3),
whereSD denotes the material symmetry group. The domains are assumed to have a transversely isotropic sym-
metry. The symmetry of the microstructure impliesf(Q) = f(HMQ) ∀HM ∈ SM ⊆ SO(3), whereSM de-
notes the symmetry group of the microstructure, i.e., the considered volume element on the submicron scale. The
functionsf andfc are related by

f(Q) = fc(Qc0). (4)

Fisher distributions. For simplicity we model the orientation distribution of domains given by thec axes based
on a one-parameter axial orientation distribution function. Based on the central limit theorem, any finite sum of
independent and identically distributed random numbers inEuclidean space can be approximated by a Gaussian
distribution. However, no simple analogue for the central limit theorem for hyperspheres exists (Schaeben, 1990,
1992), but for the purpose of mathematical statistics the analogue of the Gauss normal distribution in case of
hyperspheresSp are the von-Mises-Fisher distributions (and in the casep = 3 the Fisher distributions) (Fisher,
1953). Thus, we can use Fisher distributions for modeling the orientation of the unit normal vectors of the graphene
planes. Their probability function has the general form

fc(c) =
κ

sinh(κ)
exp(κ c̄ · c), (5)

where the vector̄c is the mean direction or expectation value of the distribution being rotationally symmetric
aroundc̄ whereasκ is the so-called concentration parameter. Forκ = 0 the distribution is uniform. It should be
noted that the functionfc is not even, i.e.,fc(c) 6= fc(−c). Since the considered distributions of graphene planes
are axial distributions, the ansatz is modified as follows

fc(c) =
1

2

κ

sinh(κ)
(exp(κ c̄ · c) + exp(−κ c̄ · c)) , (6)

If the functionf is used instead offc one derives from (6)

f(Q) =
1

2

κ

sinh(κ)
(exp(κc̄ · (Qc0)) + exp(−κc̄ · (Qc0))) . (7)
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The unit normalc on each graphene plane can be represented by its endpoint on the sphere around the centerO
and thus be described by spherical coordinates{ϕ, ϑ}

c(ϕ, ϑ) = cos(ϕ) sin(ϑ)e1 + sin(ϕ) sin(ϑ)e2 + cos(ϑ)e3. (8)

Choosing c̄ = e3 and taking into account that the surface element on the unit sphere is equal to
dc = sin(ϑ) dϕdϑ/(4π), the densityfϑ of the angleϑ is given by

fϑ =
κ

2 sinh(κ)
exp (κ cos(ϑ)) sin(ϑ), ϑ ∈ [0, π].

Discrete Fisher distributions can be simulated based on this density by taking into account that the angleϕ is
uniformly distributed in the interval[0, 2π) and by discretizing (2) in sets of equal-sized integrals. Fig. 2 shows
pole figures of thec-vector distribution for the concentration parametersκ = 0.1, 1, 10, 100 for 10000 single ori-
entations.

Figure 2: Stereographic projection of discrete Fisher distributions ofc axes withκ = 0.1, 1, 10, 100 (from left to
right) with 10000 single orientations

The definition of the terminology for the texture of pyrolytic carbon according to Reznik and Hüttinger (2002)
is based on SAED measurements of the orientation angle. Additionally, the correlation between the orientation
angle and the full width half maximum value (FWHM) of a distribution is used. For the Gauss distribution, for any
value of the varianceσ, the full width at half maximum can be defined. Forσ → 0, one asymptotically obtains a
Dirac measure and the full width at half maximum is formally not defined. In the limit case ofσ → ∞, the Gauss
distribution asymptotically approximates the uniform distribution for which no full width at half maximum is for-
mally defined either. Using however Fisher distributions, one finds that a FWHM is only defined forκ ≥ (ln 2)/2,
i.e. for a finite value of the concentration parameter no FWHM exists. Nevertheless, the full range of positive
values of the concentration parameterκ is meaningful. Thus it is not directly possible to present values for the
concentration parameterκ for describing HT, MT or LT pyrolytic carbon. Also a relationbetweenκ and the values
of the orientation angles at the boundaries, i.e. at80◦ for the boundary between HT and MT and50◦ between MT
and LT, is not accessible.

Tensorial representation of the ODF. In the following we use the functionf(Q) instead offc(c). If it is assumed
that the ODF is square integrable, then there exists a tensorial Fourier expansion of the ODF. The Fourier expansion
has the following general form

f(Q) = 1 +

∞
∑

i=1

fαi
(Q), fαi

= V
′
〈αi〉 · F

′
〈αi〉(Q), F

′
〈αi〉(Q) = Q ⋆ T

′
〈αi〉 (9)

with {αi} = {2, 4, 6, . . .}. TheV′
〈αi〉 are called tensorial Fourier coefficients or texture coefficients. The bracket in

subscript〈·〉 indicates the tensor rank. The tensorsT′
〈αi〉 are called reference tensors which are normalized without

loss of generality
‖T′

〈αi〉‖ = 2α + 1. (10)

TheV′
〈αi〉 andT′

〈αi〉 are completely symmetric and traceless tensors. Therefore, the following relations hold, e.g.,

for V ′ = V ′
〈2〉 andV′ = V′

〈4〉

V ′
ij = V ′

ji, V ′
ii = 0, V ′

ijkl = V ′
jikl = V ′

klij = V ′
kjil = . . . , V ′

iikl = 0. (11)

The symmetry properties of the ODF imply that the reference tensorsT′
〈αi〉 reflect the material symmetry of the

domains, i.e.,
T
′
〈αi〉 = HD ⋆ T

′
〈αi〉 ∀HD ∈ S

D , (12)
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whereas the tensorial Fourier coefficientsV′
〈αi〉 have the symmetry of the microstructure

V
′
〈αi〉 = HM ⋆ V

′
〈αi〉 ∀HM ∈ S

M . (13)

For the special case of a cubic crystal symmetry, this expansion has been used by several authors (Adams et al.,
1992; Guidi et al., 1992; B̈ohlke, 2005, 2006).

For the homogenization of linear elastic properties, the 2nd- and 4th-order texture coefficients are of special inter-
est. These can be derived based on elementary algebraic considerations. In the case of a single component texture,
the irreducible tensors satisfy‖V ′

〈2〉‖ = 1 and‖V′
〈4〉‖ = 1. Furthermore, the sample symmetry is equal to the

material symmetry of the domains, i.e., they have a transversely isotropic symmetry. For these two coefficients it
can be concluded that there are only two irreducible tensorswhich satisfy the two restrictions

Ṽ ′
〈2〉 =

√
6

6









1 0 0

1 0

sym. −2









ei ⊗ ej , Ṽ
′
〈4〉 =

√
280

280



























3 1 −4 0 0 0

3 −4 0 0 0

8 0 0 0

−8 0 0

sym. −8 0

2



























Bα ⊗ Bβ .

Here,e3 is the anisotropy direction and{Bα} represents an orthonormal basis on the space of symmetric 2nd-order
tensors

B1 = e1 ⊗ e1, B4 =
√

2
2 (e2 ⊗ e3 + e3 ⊗ e2) ,

B2 = e2 ⊗ e2, B5 =
√

2
2 (e1 ⊗ e3 + e3 ⊗ e1) ,

B3 = e3 ⊗ e3, B6 =
√

2
2 (e1 ⊗ e2 + e2 ⊗ e1) .

(14)

The texture coefficients of the aggregate are then given by orientation averaging

V ′
〈2〉 =

∫

SO(3)

f(Q)Q ⋆ Ṽ ′
〈2〉 dQ, V

′
〈4〉 =

∫

SO(3)

f(Q)Q ⋆ Ṽ
′
〈4〉 dQ. (15)

3 Effective elastic properties

Elastic properties of the domains. It is possible to decompose the 4th-order elasticity tensors of arbitrary sym-
metry into a direct sum of orthogonal subspaces on which the action ofSO(3) is irreducible. The action ofSO(3)
on a vector space is said to be irreducible if there are no proper invariant subspaces. For the stiffness tensor the
harmonic decomposition has the form

C = h1P
I
1 + h2P

I
2 + H ′

1 ⊗ I + I ⊗ H ′
1 + 4J[H ′

2] + H
′, (16)

with the isotropic projectors

P
I
1 =

1

3
I ⊗ I, P

I
2 = I

S − P
I
1, (17)

and
4J[A] = A�I + (A�I)

TR + I�AT + (I�AT)
TR

(18)

A review concerning this representation is given by Forte and Vianello (1996).h1 andh2 are called the first and
second isotropic parts;H ′

1 andH ′
2 are the first and the second deviatoric parts, respectively;H′ is the harmonic

part. The tensorsH ′
1, H ′

2, andH′ are irreducible, i.e., completely symmetric and traceless.

Due to the properties of the harmonic decomposition for transversely isotropic materials, the stiffness tensor can
be represented immediately by

C(Q) = Q ⋆ C̃ = Q ⋆ (h1P
I
1 + h2P

I
2 + h3(Ṽ

′
〈2〉 ⊗ I + I ⊗ Ṽ ′

〈2〉) + 4h4J[Ṽ ′
〈2〉] + h5Ṽ

′
〈4〉). (19)
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It is well known that the stiffness tensor has five independent elastic constants in the transversely isotropic case if
the material is hyperelastic. In equation (19) the five parameters are given by{h1, . . . , h5}. h1 andh2 represent
the isotropic part of the stiffness tensor,h3, h4, h5 the anisotropic part. For a standard orientationQ = I, the
parameters{h1, . . . , h5} can be identified in terms of the componentsC̃ijkl of C̃ being the reference stiffness with
anisotropy direction equal toe3

h1 =
1

3
(2C̃1111 + 2C̃1122 + 4C̃1133 + C̃3333), (20)

h2 =
1

15
(7C̃1111 − 5C̃1122 + 2(−2C̃1133 + C̃3333 + 6C̃2323)), (21)

h3 = − 1

21
(C̃1111 − 7C̃1122 + 5C̃1133 + C̃3333 − 4C̃2323), (22)

h4 =
1

21
(5C̃1111 − 7C̃1122 + 4C̃1133 − 2C̃3333 − 6C̃2323), (23)

h5 =
1

35
(C̃1111 − 2C̃1133 + C̃3333 − 4C̃2323). (24)

Simple bounds. The most simple bounds are the arithmetic and harmonic mean of the local stiffness tensors,
which were first suggested by Voigt and Reuss. For isotropic microstructures, where the domains differ only with
respect to their orientation, these bounds can be written as

C
V =

∫

SO(3)

f(Q)C(Q) dQ =

∫

SO(3)

f(Q)Q ⋆ C̃ dQ (25)

and

S
R =

∫

SO(3)

f(Q)S(Q) dQ =

∫

SO(3)

f(Q)Q ⋆ S̃ dQ. (26)

Here, C̃ and S̃ denote the stiffness and compliance tensor of a reference domain, respectively. The arithmetic
and harmonic mean correspond to the assumption of homogeneous strain and stress fields, respectively. These
approaches give upper and lower bounds for the strain energydensity. They represent the best bounds if the
orientation distribution is the only microstructural information available.

As a consequence of the fact that the simple boundsCV andSR are orientation averages ofC(Q) andS(Q) and
that similarlyV ′

〈2〉 andV′
〈4〉 are orientation averages ofQ ⋆ Ṽ ′

〈2〉 andQ ⋆ Ṽ′
〈4〉, the following representations are

valid (Böhlke et al., 2009)

C
V = h1P

I
1 + h2P

I
2 + h3(V

′
〈2〉 ⊗ I + I ⊗ V ′

〈2〉) + h4J[V ′
〈2〉] + h5V

′
〈4〉, (27)

S
R = h̃1P

I
1 + h̃2P

I
2 + h̃3(V

′
〈2〉 ⊗ I + I ⊗ V ′

〈2〉) + h̃4J[V ′
〈2〉] + h̃5V

′
〈4〉. (28)

The quantities{h̃1, . . . , h̃5} are defined similarly to (20)-(24) in terms of the componentsof the compliance tensor
S̃ of a reference domain. The stiffness tensors can be varied bychanging the five elastic constants of the transversely
isotropic domains and the five plus nine independent components of the texture coefficients of 2nd and 4th order.

Singular approximation. Since the simple bounds are generally rather inaccurate, weconsider in the following
a more precise estimate, the singular approximation (Fokin, 1972, 1973; B̈ohlke et al., 2010). Based on Green’s
function and a comparison material with stiffnessC0, the local strain field in a heterogeneous material that is
statistically homogeneous can be expressed by

ε = ε0 − PδC[ε] (29)

with δC = C − C0 and the integral operator

(PδC[ε])ij =

∫

V ′

∂2Gi)k(x − x′)

∂x′
l∂x(j

(δC(x′)[ε(x′)])kl dV ′ = −
∫

V ′

(G(x′ − x)δC(x′)[ε(x′)])ij dV ′, (30)

where a bracket accompanying indices denotes symmetrization. Gik is a Green’s function in an infinite body.
This integral operator is identical to the one introduced byDederichs and Zeller (1973) and by Willis (1977) for
statistically homogeneous materials. The general property of the 4th-order tensorG (Dederichs and Zeller, 1973;
Torquato, 2002) is that it can be decomposed into a singular and a nonlocal part

G(r) = G0δ(r) + G1(r). (31)
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Here,δ(r) is the Dirac distribution.G0 is a constant tensor, i.e., microstructure independent. The nonlocal part
has the propertyG1(αr) = α−3G1(r). The singular approximation ofG is obtained by neglecting the nonlocal
part ofG

G(r) ≈ G0δ(r). (32)

Since the nonlocal part of the integral operator is neglected, morphologic anisotropies cannot be taken into account
by the singular approximation.

By eliminating the comparison strainε0 in (29), the strain localization relation can be derived explicitly for the
phase-average of strain

ε = A[ε̄], A = Y〈Y〉−1
, Y = (P−1

0 + δC)
−1

(33)

with the effective strain̄ε, the phase average of the strain localization tensorA andP0 = −G0. The effective
stiffness tensorCS of the singular approximation is given by

C
S = 〈CA〉. (34)

If an isotropic comparison medium with eigenvaluesc1 andc2 is chosen

C0 = c1P
I
1 + c2P

I
2, (35)

thenP0 is given by (see, e.g., Dederichs and Zeller, 1973)

P0 = p1P
I
1 + p2P

I
2, p1 =

1

c1 + 2c2
, p2 =

2

5c2

c1 + 3c2

c1 + 2c2
. (36)

A specific property of the singular approximation is that it is self-consistent in the sense thatCS and SS are
reciprocalSS = (CS)−1. In the following, we specify the reference materialC0 by the isotropic geometric mean
(see, e.g., B̈ohlke and Bertram (2001)), i.e., forf(Q) = 1. The isotropic geometric mean is given by

c1 = exp
(

ln(C̃) · P
I
1

)

, c2 = exp

(

1

5
ln(C̃) · P

I
2

)

. (37)

If the non-local part of the integral operator is not neglected, it is a helpful assumption that the stress polarizations
are constant within each domain (Willis, 1977). For spherical inclusions, i.e. isotropic two-point statistics,P0 is
given by

P0(C0) =
1

4π

∫

‖n‖=1

H(C0,n) dn (38)

with H = IS(N�(n ⊗ n))IS , N = K−1 and K = C0[[n ⊗ n]]. Based on C̄ = 〈CY〉〈Y〉−1 and

Y = (P−1
0 + δC)

−1
with P0 = P0(C̄) a self-consistent scheme is established.

4 Numerical results

The following elastic constants are taken for the domains with transversely isotropic material symmetry
C̃1111 = 40.016, C̃3333 = 18.185, C̃1122 = 20.021, C̃1133 = 12.779, C̃2323 = 1.776 [GPa] which were deter-
mined by ultrasound phase spectroscopy for a highly textured PyC sample (Gebert and Wanner, 2009). Fig. 3
shows the directional dependence of Young’s modulus of PyC.It is obvious that the anisotropy is significant.

Due to the rotational symmetry of the Fisher distributions,the effective response of the micro textured volume
element is also of transversely isotropic symmetry. Fig. 4 (left) shows the five independent components of the
stiffness tensor vs.λ = 1/(1 + κ) estimated by the singular approximation. Forλ = 0 one has a single domain
orientation. The stiffness components then correspond to the one of the single domain stiffness tensor. Forλ = 1
a uniform, i.e. isotropic texture, is obtained.

In Fig. 4 (right), the Frobenius norm of the two texture coefficientsV ′
〈2〉 andV′

〈4〉 is shown vs.λ. The norm
of the coefficients is equal to zero for uniform distributionand equal to one for single orientation distributions.
Otherwise, the norm is in the interval(0, 1). Hence, the norms are natural measures of anisotropy with respect to
these two moment tensors. In the figure it can be seen that there is a rapid decrease of anisotropy with increasing
λ. Lines connecting the points are given only for better visibility.
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Figure 3: Graphical representation of the directional dependence of Young’s modulus of PyC, where the vertical
axis corresponds to thec-axis
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Fig. 5 shows the two independent values of Young’s modulus vs. λ for the simple bounds, the geometric mean, the
singular approximation and the self-consistent estimate.For the single component texture, i.e.λ = 0, all estimates
coincide.
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It is obvious that between the simple bounds there is a significant gap even for small values ofλ which implies
that these bounds are not appropriate for estimating the effective properties. In the range between the bounds
morphologic aspects of the microstructure determine the precise values of the effective properties. Furthermore,
it can be seen that the singular approximation is very close to the self-consistent estimate. Also the difference
between the geometric mean and the singular approximation is small. Similar conclusions can be deduced for the
values of the shear modulus given in Fig. 6.

Young’s modulus in direction of̄c = e3 shows an interesting behavior, i.e., firstly it decreases with increasingλ
up to a minimum value and then it increases. This specific behavior can be explained by Fig. 3, since a path on the
surface of the body of Young’s modulus from thec-axes to the isotropic plane shows a similar curve.
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Figure 6: Voigt bound (◦), Reuss bound (�), singular approximation (×), geometric mean (△) and self-consistent
estimate (⋄) of the shear modulus in the plane of isotropy (left) and in the direction of averagec-axis (right) vs.
λ(κ).

Taylor et al. (2003) provided nanoindentation tests (Berkovich indenter) perpendicular to deposition direction on
HT PyC films and measured values of Young’s modulus between 16.1 and 26.2 GPa. These values are in good
agreement to the calculated elastic moduli for small valuesof λ which corresponds to highly-textured PyC (see
Fig. 5 left). Guellali et al. (2008a) determined the elasticproperties of highly textured PyC layers deposited on
plane substrates via micro indentation tests. The measuredvalue of Young’s modulus is 15.5 GPa for HT PyC
and is close to the calculated values for smallλ using the singular approximation, the geometric mean and the
self-consistent estimate. The comparison with the rare experimental data shows that numerical results obtained
give reasonable estimates of the elastic properties on the submicron scale.

5 Summary and conclusions

In the present paper, the orientation dependence of the stiffness tensor of PyC on the micrometer scale has been
determined based on the elastic properties of the domains and the orientation distribution of the domains. A Fisher
distribution function has been used as a texture component model, which is a one-parameter orientation distribution
function. The effective elastic properties on the micrometer scale have been determined based on simple bounds,
the geometric mean, the singular approximation and the self-consistent estimate.

The numerical results indicate that the strong elastic anisotropy of PyC induces a large gap between the simple
bounds. Furthermore, it is found that the singular approximation, geometric mean and the self-consistent estimate
give very similar values for the effective elasticities. Compared to the geometric mean the singular approximation
is based on clear micromechanical assumptions. The determination of the singular approximation is much simpler
compared to the self-consistent estimate. It can be concluded that for approximately spherical domains, the singular
approximation is preferable.

The bounds and the approximations of the effective elastic properties depend only on one concentration parameter
which completely specifies the Fisher distributions. More micromechanical investigations have to be carried out
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in order to better understand how the concentration parameter of the Fisher distribution of the normal vectors on
the graphene planes can be used to classify the texture degrees of pyrolytic carbon. Still Fig. 5 and 6 indicate that
there are significant gradients in the elastic properties ofthe material throughout the whole domain of the values
for λ and thus throughout the different texture degrees HT, MT andLT.
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Addresses: T. Böhlke, K. J̈ochen, R. Piat, T.-A. Langhoff, Chair for Continuum Mechanics, Institute
of Engineering Mechanics, Karlsruhe Institute of Technology (KIT), POB 6980, D-76128 Karlsruhe, Ger-
many, email: {boehlke,joechen,piat,langhoff}@itm.uni-karlsruhe.de, I. Tsukrov, Me-
chanical Engineering Department, University of New Hampshire, email: Igor.Tsukrov@unh.edu,
B. Reznik, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT),
Reznik@ict.uni-karlsruhe.de

353


