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Elastic properties of pyrolytic carbon with axisymmetric textures

T. Bohlke, K. Hchen, R. Piat, T.-A. Langhoff, I. Tsukrov, B. Reznik

In this paper, the first-order bounds, the geometric meas, simgular approximation and the self-consistent
estimate of the linear elastic properties of pyrolytic canb(PyC) are determined numerically. The texture, i.e.
the orientation distribution of the normal direction of theaphene planes, is modeled by a Fisher distribution on
the unit sphere. Fisher distributions depend only on onéas@ncentration parameter. It is shown in detail how
the effective elasticities of PyC can be estimated baseti®@orie concentration parameter which describes the
scatter width of the orientation distribution. The numatipredictions of the different bounds and estimates are
compared.

1 Introduction

Pyrolytic carbon (PyC) is commonly used as micro constitwdrcarbon/carbon or carbon/silicon carbide com-
posites. Because of their excellent mechanical propeatidsgh temperatures, these composites find several
applications as aircraft, aerospace, car and nuclearddetomponents. Examples of such superior properties of
these materials are the increase of Young’s modulus antiénmal conductivity in the high temperature range up
to 2000 C (Fitzer and Manocha, 1998; Herbell and Eckel, 1991).

In order to understand the macroscopic material propestieshas to investigate the microstructure of PyC. This
can be performed, e.g., by coupling experimental charizetéyn methods like transmission electron microscopy
(TEM) with selected-area electron diffraction (SAED) (Riézet al., 2003). On the submicron scale the mi-

crostructure of PyC can be described as a set of coherentin®mmaving different preferred orientations or tex-

tures in relation to the fiber surface (or to the surface ofplame substrate), which are classified as: isotropic,
low-textured (LT), medium-textured (MT) and high-textdréHT), see, e.g., Fig. 1 (Reznik et al., 2001; Reznik
and Hittinger, 2002). Each domain in Fig. 1 (a, b) representswledimensional cross section of the three-

dimensional stack of graphene planes. Different degreésxtire induce different material properties. Guellali

et al. (2008a,b) provide a very accurate description (SEt microscopy) and experimental characterisation (X-
ray diffraction, three point bending tests) of differentidxtured PyCs including information about typical spacing
between graphene planes, apparent stack height, effetsistic modulus and other properties.

In this contribution, we restrict ourselves to PyC produlbga@hemical vapour infiltration. In this case, the growth
process of the PyC matrix around the fibers is uniform withgpraximate rotational symmetry in normal direction
to the fiber surface. A typical microstructure of such a cosifigas presented in Fig. 1 (c). The PyC layers are
parallel to the fiber surface. Several experimental methads been used for measuring the elastic properties of
PyC. Among them are ultrasonic pulse-echo experimentsaiRedis and Bernstein, 1963) and sharp indentation
tests (Diss et al., 2002), but due to the significant aniggtad PyC only quasi-effective properties of the material
were obtained by these tests. Alternatively, numericat@gghes for computing the elastic properties of PyC have
been reported (Piat et al., 2004; Sauder and Lamon, 2008g8atial., 2005).

Crystallographic textures can often be described by a smatiber of texture components (Bunge, 1993; Kocks
et al., 1998). A texture component is a crystal or domainnvaigon for which the orientation distribution function
(ODF) shows a (local) maximum. In the neighborhood, the OBREdcreasing in an isotropic or anisotropic
way. In the present paper, we model the orientation digichuof domains by a simple one-parameter axial
orientation distribution function. More specifically, wegtribe the microtexture in PyC by a Fisher distribution
and determine the elastic properties of PyC on the micresuamnerically by different submicron-to-mirco scale
transition schemes. The Fisher distribution describeswsSgype distribution of normal vectors, which determine
the orientation of the domains. Since on unit spheres thase o normal distributions (Schaeben, 1990, 1992),
e.g., Fisher distributions can be considered (Fisher, 1988 main result of the paper is to show, how the elastic
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Figure 1: High resolution TEM images of the typical a) meditextured (MT) and b) high textured (HT) coherent
domains; c) polarized light micrograph of a polished sectié an infiltrated carbon fiber felt with differently
textured PyC layers (1-5) and d) schematics of differergdagxtures

parameters on the microscale of PyC depend on the singlestration parameter which specifies completely

the Fisher distribution. For the homogenization of the tedgsroperties the first-order bounds, the geometric

mean, the singular approximation and the self-consistgtitate are determined. The computational procedure
is discussed in detail for the singular approximation, wh&shown to be very close to the geometric mean and
the self-consistent estimate for spherical domains. Itrashto the geometric mean the singular approximation is
based on clear mechanical assumptions. Compared to theossifstent estimate, the determination of the singular
approximation is much simpler.

The outline of the paper is as follows. In the first part of thpgr, the orientation distribution function of graphene
planes is modeled by a Fisher distribution. Then, diffefeminds and estimates for the elastic properties of
PyC on the submicron scale are discussed. In the last paregfaper, the bounds and estimates are determined
numerically for microtextures exhibiting axisymmetrixteres with different concentrations.

Notation. A direct tensor notation is preferred throughout the texttehsor components are used, then the
Einstein summation convention is applied. Vectors and @muigr tensors are denoted by lowercase and up-
percase bold letters, e.gs, and A, respectively. A linear mapping of 2nd-order tensors by laatter ten-
sor is written asA = C[B]. The scalar product and the dyadic product are denoted,®/@ - b anda ® b,
respectively. The composition of two 2nd-order or two 4tHey tensors is formulated bA B and AB. We
define(AOB)[C] = ACBVA,B,C and(a®b) - (Clla®b]]) = (a®a)- (C[b® b]) Va,b,C. Completely
symmetric and traceless tensors are designated by a prime, 4. The brackets-), e.g., (¢), indicate en-
semble averaging which for ergodic media can be identifigth wolume averages in the infinite volume limit.
The symbolx denotes the Rayleigh product, which for tensrs- 7;; ;e; ® e; ® ... ® e; of arbitrary rank
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is defined byQ x T =T}, .1(Qe;) ® (Qe;) ®...2 (Qe;). The productQ » T can be interpreted as the ro-
tation of the tensofl’ by the orthogonal tensa®. The tensorl is the identity on vectors. The identity on
symmetric 2nd-order tensors is denotedIby AT® indicates the right minor transposition &f which satisfies
A-(A[B]) = A-(A™’R[B"]) VA, B.

2 Crystallographic texture

Orientation distribution function of graphene planes. The orientation of a domain can be described approxi-
mately by a normal vectat perpendicular to the graphene planes, or equivalently bppep orthogonal tensor
Q € SO(3)

Cc= QC(]7 (1)

wherecy is an arbitrary but constant reference vector. It shoulddiedhthat for givere and fixede, the tensoiQ
is not unique since arbitrary rotations abeyior ¢ are not relevant. Hencé can be specified by two independent
parameters only. This will be taken into account by the djmesiructure of the distribution function introduced
later on. The orientation distribution function of grapkeuianesf.(c) specifies the volume fractiodv/v of

domains with the orientatioaq, i.e.,
dv
—(¢) = fe(e)de, 2

v

where dc is the surface element of the unit sphérein the three-dimensional Euclidean space. The ODF can be
described equivalently by a distribution functigfQ) specifying the volume fractionlv/v of domains with the

orientationQ, i.e.,
L@ =@ ©

Here, dQ is the volume element iSO(3) which ensures an invariant integration 07 (3). The functionf(Q)

is nonnegative and normalizq’go(g) f(Q)dQ = 1. The orientation distribution functiofi(Q) reflects both, the
material symmetry of the domains forming the aggregate hadymmetry of the microstructure. The material
symmetry of the domains implies the following symmetry tiela: f(Q) = f(QH”) VH” € 5P C 50(3),
whereS” denotes the material symmetry group. The domains are asstnhave a transversely isotropic sym-
metry. The symmetry of the microstructure implig&Q) = f(HY Q) YH" < 5™ C SO(3), whereS™ de-
notes the symmetry group of the microstructure, i.e., thesictered volume element on the submicron scale. The
functionsf and f. are related by

(@) = fe(Qco). (4)

Fisher distributions. For simplicity we model the orientation distribution of dains given by the: axes based

on a one-parameter axial orientation distribution funtti®@ased on the central limit theorem, any finite sum of
independent and identically distributed random numbeiSudlidean space can be approximated by a Gaussian
distribution. However, no simple analogue for the ceniraltitheorem for hyperspheres exists (Schaeben, 1990,
1992), but for the purpose of mathematical statistics thedogue of the Gauss normal distribution in case of
hyperspheres? are the von-Mises-Fisher distributions (and in the gase 3 the Fisher distributions) (Fisher,
1953). Thus, we can use Fisher distributions for modeliegtiientation of the unit normal vectors of the graphene
planes. Their probability function has the general form

fele) = sing(/f) exp(k¢-c), (5)

where the vectoe is the mean direction or expectation value of the distrdoutbeing rotationally symmetric
arounde whereass is the so-called concentration parameter. ket 0 the distribution is uniform. It should be
noted that the functioif. is not even, i.e.f.(c) # f.(—c). Since the considered distributions of graphene planes
are axial distributions, the ansatz is modified as follows

1 K

fele) = 2 sinh(x) (exp(rk¢-c) +exp(—ke-c)), (6)

If the function f is used instead of. one derives from (6)

1 K

1Q) = 2 sinh(k)

(exp(ke - (Qcp)) + exp(—ke - (Qcp))) - @
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The unit normale on each graphene plane can be represented by its endpoimt eptiere around the cent8r
and thus be described by spherical coordintes) }

c(p,9) = cos(p) sin(¥)e; + sin(p) sin(d)es + cos(V¥)es. 8)
Choosing ¢ = e3 and taking into account that the surface element on the uplitere is equal to
de = sin(9¥) dp dv/(47), the densityf,y of the angled is given by

fo exp (k cos(?)) sin(¥), ¥ € [0, 7].

- R

~ 2sinh(k)
Discrete Fisher distributions can be simulated based endénsity by taking into account that the anglés

uniformly distributed in the intervdD, 27) and by discretizing (2) in sets of equal-sized integralg. 2 shows
pole figures of the-vector distribution for the concentration parameters 0.1, 1, 10, 100 for 20000 single ori-
entations.

Figure 2: Stereographic projection of discrete Fisherrithistions ofc axes withx = 0.1, 1, 10, 100 (from left to
right) with 10000 single orientations

The definition of the terminology for the texture of pyrotytarbon according to Reznik andittinger (2002)

is based on SAED measurements of the orientation angle.tidddily, the correlation between the orientation
angle and the full width half maximum value (FWHM) of a distrilon is used. For the Gauss distribution, for any
value of the variance, the full width at half maximum can be defined. kFor— 0, one asymptotically obtains a
Dirac measure and the full width at half maximum is formalbt defined. In the limit case of — oo, the Gauss
distribution asymptotically approximates the uniformtdisition for which no full width at half maximum is for-
mally defined either. Using however Fisher distributiore &inds that a FWHM is only defined far> (In2)/2,

i.e. for a finite value of the concentration parameter no FWHi4ts. Nevertheless, the full range of positive
values of the concentration parameteis meaningful. Thus it is not directly possible to presertiga for the
concentration parameterfor describing HT, MT or LT pyrolytic carbon. Also a relatietweerns and the values
of the orientation angles at the boundaries, i.&0&tfor the boundary between HT and MT ab@P between MT
and LT, is not accessible.

Tensorial representation of the ODF. In the following we use the functiofi(Q) instead off.(c). Ifitis assumed
that the ODF is square integrable, then there exists a t@hBourier expansion of the ODF. The Fourier expansion
has the following general form

FQ) =14 fai(Q),  for =Vigy Fay(Q), Fioy(Q) =Q*T,, 9)
=1

with {o;} = {2,4,6,...}. TheV’@> are called tensorial Fourier coefficients or texture coieffits. The bracket in
subscript-) indicates the tensor rank. The tens’ﬁi‘(gﬂ are called reference tensors which are normalized without
loss of generality

[Ty | = 20 + 1. (10)

TheV’W> andT’<a ) are completely symmetric and traceless tensors. Therafadollowing relations hold, e.g.,

i

!/ /
for V.= Viy andV’' = V),

Vi’jzv.’

! ! _ ! _ / _ / _ / _
G Vi=0, ijkl = Vijikl = Vklij = iju = ikt = 0 (11)

The symmetry properties of the ODF imply that the refereleamcbrs’Jl“’<ai> reflect the material symmetry of the
domains, i.e.,
T, =H"*T),, VH"”¢eS”, (12)
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whereas the tensorial Fourier coefficieW(ém have the symmetry of the microstructure
Vigy=HY <V, vHY e 5" (13)

For the special case of a cubic crystal symmetry, this expargs been used by several authors (Adams et al.,
1992; Guidi et al., 1992; 8hlke, 2005, 2006).

For the homogenization of linear elastic properties, thé 2md 4th-order texture coefficients are of special inter-
est. These can be derived based on elementary algebraide@i®ns. In the case of a single component texture,
the irreducible tensors satisfj%/,,|| = 1 and [Vigyll = 1. Furthermore, the sample symmetry is equal to the
material symmetry of the domains, i.e., they have a trasslgisotropic symmetry. For these two coefficients it

can be concluded that there are only two irreducible tenshish satisfy the two restrictions

3 1 -4 0 0 0
) 0 o 3 -4 0 0 O
- V6 - /280 8 0 0 O
! / —
sym. -2
sym. -8 0
L 2 -

Here,e; is the anisotropy direction aqdB,, } represents an orthonormal basis on the space of symmetrior2ier
tensors

B, = e1®e, B, = §(62®€3+63®62),

B; = ex®exy, B; = @(631®(3:34r63<§©€1)7 (14)
_ — V2

B; = e3;®es, By = S(e1®@extex®er).

The texture coefficients of the aggregate are then givenieyntation averaging

Vip= [ 1QQ+ Vi V= [ Q@@ e (15)
50(3) 50(3)
3 Effective elastic properties

Elastic properties of the domains. It is possible to decompose the 4th-order elasticity tensbarbitrary sym-
metry into a direct sum of orthogonal subspaces on whichdtieraof SO(3) is irreducible. The action a$O(3)

on a vector space is said to be irreducible if there are nogurioppariant subspaces. For the stiffness tensor the
harmonic decomposition has the form

C=mP!+hPl+ H) @I+ 1®H,+AJ[H)) +H, (16)
with the isotropic projectors
1
Pl=cIol, Pj=IF-P 17)
and
Tr T T\ TR
4J[A] = AOI + (AOI) "+ IOA" + (IOAY) (18)

A review concerning this representation is given by Forté ¥ianello (1996).h; andh, are called the first and
second isotropic partdl; and H:, are the first and the second deviatoric parts, respecti#lys the harmonic
part. The tensor#l}, H,, andH’ are irreducible, i.e., completely symmetric and traceless

Due to the properties of the harmonic decomposition forsvarsely isotropic materials, the stiffness tensor can
be represented immediately by

C(Q)=Q+*C=Q*(hP| +hoPl + hs(V' 2y @ T+ T @ V) + 4haJ[V'p)] + hsViyy).  (19)
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It is well known that the stiffness tensor has five indepeneétastic constants in the transversely isotropic case if
the material is hyperelastic. In equation (19) the five patans are given byh,,...,hs}. hy andhs represent
the isotropic part of the stiffness tenség, h4, hs the anisotropic part. For a standard orientatipr= I, the
parametergh, ..., hs} can be identified in terms of the componeﬁt§kl of C being the reference stiffness with
anisotropy direction equal te;

hy = %(201111 +2C122 + 4C1133 + C3333), (20)
hy = T15(7é1111 — 5C1122 + 2(—2C1133 + C333 + 6Ca323)), (21)
hs = —%(61111 — 7Ch122 + 5C1133 + Cs333 — 4Co303), (22)
hy = 2*11(56'1111 — 7C1122 + 4C1133 — 2C3333 — 6Ca303), (23)
hs = 3*15(01111 — 2C1133 + Ci3ss — 4Ca303). (24)

Simple bounds. The most simple bounds are the arithmetic and harmonic me#redocal stiffness tensors,
which were first suggested by Voigt and Reuss. For isotropécastructures, where the domains differ only with
respect to their orientation, these bounds can be written as

cv = / HQC@Qde= [ F(@Q@xCdqQ (25)
SO(3)

50(3)
and

' [ jQs@de= [ f@Q+5dq (26)
JSO(3) 50(3)
Here, C andS denote the stiffness and compliance tensor of a referenceido respectively. The arithmetic
and harmonic mean correspond to the assumption of homogersd@in and stress fields, respectively. These
approaches give upper and lower bounds for the strain erdeggity. They represent the best bounds if the
orientation distribution is the only microstructural imfioation available.

As a consequence of the fact that the simple boumdsandS” are orientation averages 6fQ) andS(Q) and
that S|m|IarIyV’2 andV’,, are orientation averages &f x V’ andQ * V’<4>, the following representations are
valid (Bohlke et aI ZOOé)

CY = mP] + hoPj + ha(Vigy @ T+ T ® Vig)) + haJ[Vig)] + hs V), (27)
SH = P{ + hoP} + ha(Vig @ I + 1 & Vigy) + hal[Vig] + hs V. (28)
The quantitieghy, ..., hs} are defined similarly to (20)-(24) in terms of the componerﬁlme compliance tensor

S of areference domain. The stiffness tensors can be varieddnyging the five elastic constants of the transversely
isotropic domains and the five plus nine independent compsru# the texture coefficients of 2nd and 4th order.

Singular approximation. Since the simple bounds are generally rather inaccurateowsider in the following

a more precise estimate, the singular approximation (Fdi@ii2, 1973; Bhlke et al., 2010). Based on Green’s
function and a comparison material with stiffneéSg, the local strain field in a heterogeneous material that is
statistically homogeneous can be expressed by

e =¢g9 — PiC[e] (29)
with §C = C — Cy and the integral operator

0 i)k\ T — x’ / / / / / ’ /
(Pack), = || TR @@ v = - [ (6 o))y v, (@0

where a bracket accompanying indices denotes symmetmizadi;;, is a Green’s function in an infinite body.

This integral operator is identical to the one introducedagerichs and Zeller (1973) and by Willis (1977) for
statistically homogeneous materials. The general prgppéithe 4th-order tensdl (Dederichs and Zeller, 1973;

Torquato, 2002) is that it can be decomposed into a singathaanonlocal part

G(r) = God(r) + Gy (r). (31)
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Here,d(r) is the Dirac distributionG, is a constant tensor, i.e., microstructure independeng riimlocal part
has the propertf; (ar) = a=3G;(r). The singular approximation df is obtained by neglecting the nonlocal
part of G

G(r) = God(r). (32)

Since the nonlocal part of the integral operator is negtecterphologic anisotropies cannot be taken into account
by the singular approximation.

By eliminating the comparison stragy in (29), the strain localization relation can be derivedliexy for the

phase-average of strain
—1

e=A[], A=Y, Y=(P;!+4C) (33)

with the effective strairg, the phase average of the strain localization teds@nd Py = —G,. The effective
stiffness tenso€* of the singular approximation is given by

C% = (CA). (34)
If an isotropic comparison medium with eigenvalug®ndc, is chosen
Co = 011@{ + C2]P)£7 (35)

thenP, is given by (see, e.g., Dederichs and Zeller, 1973)

1 2 3
Py = piP{ + p2P3, p1= oLt 3

_ 7 _ 2 _ 36
c1 + 202 P2 502 c1+ 2C2 ( )

A specific property of the singular approximation is thatsitself-consistent in the sense tiiat andS® are
reciprocalS® = (C¥)~!. In the following, we specify the reference material by the isotropic geometric mean
(see, e.g., Bhlke and Bertram (2001)), i.e., fg{ Q) = 1. The isotropic geometric mean is given by

€1 = exp (1n(@) ]P’{) , Co = exp (; In(C) ]P’é) . (37)

If the non-local part of the integral operator is not negelcit is a helpful assumption that the stress polarizations
are constant within each domain (Willis, 1977). For spladrieclusions, i.e. isotropic two-point statistidd; is
given by

IP)O ((C()) = i H((C(), ’I’L) dn (38)
AT Jim)=1
with H=I5(NO(non))I5, N=K™ ' and K =Cy[[n®n]]. Based onC = (CY)(Y)"' and

Y = (P;! +6C) ' with P, = (C) a self-consistent scheme is established.

4 Numerical results

The following elastic constants are taken for the domaingh viiansversely isotropic material symmetry
Chi11 = 40.016, Cy333 = 18.185, Chi90 = 20.021, Chys3 = 12.779, Casos = 1.776 [GPa] which were deter-
mined by ultrasound phase spectroscopy for a highly tedtégC sample (Gebert and Wanner, 2009). Fig. 3
shows the directional dependence of Young's modulus of Ryi€obvious that the anisotropy is significant.

Due to the rotational symmetry of the Fisher distributiohe effective response of the micro textured volume
element is also of transversely isotropic symmetry. Figleft)(shows the five independent components of the
stiffness tensor vsA = 1/(1 + k) estimated by the singular approximation. For 0 one has a single domain
orientation. The stiffness components then corresponide@ne of the single domain stiffness tensor. ket 1

a uniform, i.e. isotropic texture, is obtained.

In Fig. 4 (right), the Frobenius norm of the two texture cchnhtsV’@) andV’<4 is shown vs.\. The norm

of the coefficients is equal to zero for uniform distributiand equal to one for single orientation distributions.
Otherwise, the norm is in the interv@l, 1). Hence, the norms are natural measures of anisotropy vaffect to
these two moment tensors. In the figure it can be seen that iharrapid decrease of anisotropy with increasing
A. Lines connecting the points are given only for better viijb
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Figure 3: Graphical representation of the directional deleace of Young’s modulus of PyC, where the vertical

axis corresponds to theaxis

Figure 4: Components of the effective elasticity tensoriietd by the singular approximation vs. the concentra-
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Figure 5: Voigt boundd), Reuss bound{), singular approximationx), geometric mean/f) and self-consistent
estimate €) of Young’s modulus in the plane of isotropy (left) and in tilieection of average-axis (right) vs.
A(R).

Fig. 5 shows the two independent values of Young’s modulug ¥sr the simple bounds, the geometric mean, the
singular approximation and the self-consistent estinfadethe single component texture, iJe= 0, all estimates
coincide.
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It is obvious that between the simple bounds there is a sigmfigap even for small values afwhich implies
that these bounds are not appropriate for estimating tleetafé properties. In the range between the bounds
morphologic aspects of the microstructure determine tkeeipe values of the effective properties. Furthermore,
it can be seen that the singular approximation is very closhé self-consistent estimate. Also the difference
between the geometric mean and the singular approximatismall. Similar conclusions can be deduced for the
values of the shear modulus given in Fig. 6.

Young’s modulus in direction of = e3 shows an interesting behavior, i.e., firstly it decreaseh imcreasing\
up to a minimum value and then it increases. This specificliehean be explained by Fig. 3, since a path on the
surface of the body of Young’s modulus from tk@xes to the isotropic plane shows a similar curve.

6.5 10

Gl = G2 [GP&]
G3 [GP&}

Figure 6: Voigt boundd), Reuss bound{), singular approximationx), geometric mean/f) and self-consistent
estimate €) of the shear modulus in the plane of isotropy (left) and i direction of average-axis (right) vs.
A(K).

Taylor et al. (2003) provided nanoindentation tests (Beidtoindenter) perpendicular to deposition direction on
HT PyC films and measured values of Young's modulus betweehdtd 26.2 GPa. These values are in good
agreement to the calculated elastic moduli for small vabfes which corresponds to highly-textured PyC (see
Fig. 5 left). Guellali et al. (2008a) determined the elagtioperties of highly textured PyC layers deposited on
plane substrates via micro indentation tests. The measwalaed of Young’s modulus is 15.5 GPa for HT PyC
and is close to the calculated values for smalising the singular approximation, the geometric mean aad th
self-consistent estimate. The comparison with the raremr@xental data shows that numerical results obtained
give reasonable estimates of the elastic properties oruthraisron scale.

5 Summary and conclusions

In the present paper, the orientation dependence of tlieesttf tensor of PyC on the micrometer scale has been
determined based on the elastic properties of the domaththarorientation distribution of the domains. A Fisher
distribution function has been used as a texture componedéhwhich is a one-parameter orientation distribution
function. The effective elastic properties on the micreenstale have been determined based on simple bounds,
the geometric mean, the singular approximation and thecsei§istent estimate.

The numerical results indicate that the strong elasticotirupy of PyC induces a large gap between the simple
bounds. Furthermore, it is found that the singular appratiom, geometric mean and the self-consistent estimate
give very similar values for the effective elasticities.uared to the geometric mean the singular approximation
is based on clear micromechanical assumptions. The detation of the singular approximation is much simpler
compared to the self-consistent estimate. It can be coedltitht for approximately spherical domains, the singular
approximation is preferable.

The bounds and the approximations of the effective elastipgrties depend only on one concentration parameter
which completely specifies the Fisher distributions. Moiieromechanical investigations have to be carried out
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in order to better understand how the concentration paemoéthe Fisher distribution of the normal vectors on

the graphene planes can be used to classify the textureedegfrpyrolytic carbon. Still Fig. 5 and 6 indicate that

there are significant gradients in the elastic propertigh®@imaterial throughout the whole domain of the values
for A and thus throughout the different texture degrees HT, MTLand
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