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Influence of the type of boundary conditions on the numerical properties
of unit cell problems

F. Fritzen, T. Bhlke

Aspects of the numerical solution of the systems of equat&sulting from the computational homogenization
of unit cell problems using the finite element method areudised. Different kinematic boundary conditions and
solution techniques are examined and compared, both, ¢tieally and numerically. It is found that the combina-
tion of boundary conditions and solver significantly infloesthe computational cost in terms of memory and cpu
time. Examples for model and real world problems are pressknt

1 Introduction

The homogenization of microstructured materials is a sulgjfecontinuous interest for many years. A wide vari-
ety of semi-analytical and numerical methods has been deedl(Nemat-Nasser and Hori, 1999; Kanoute et al.,
2009). The computational homogenization of the propedfanicroheterogeneous materials has become an in-
dispensible tool (Barbe et al. (2001); Fish and Qing (20Btijzen et al. (2009); Bhlke et al. (2009)). Often the
finite element method (e.qg., Zienkiewicz et al. (2006)) isdi compute the linear or non-linear properties of ma-
terials with microstructure applying the concept of voluebements (e.g., Ostoja-Starzewski (2006)). It has been
found by many authors (e.g., Miehe (2002); Kanit (2003);0fas6tarzewski (2006)) that periodic displacement
andantiperiodic traction boundary conditions are often piahée with respect to the size of the unit cell problem,
which can then be chosen to be smaller. Unfortunately onesisicted to non-periodic materials in many cases,
e.g., when experimental (usually non-periodic) data igluse that periodic displacement fluctuations cannot be
applied.

After choosing the type of boundary conditions some soruoherical approximation of the exact solution is com-

puted. When looking at the individual contributions to theat@omputational cost it is found that the solution of

large, sparse and (often) symmetric linear systems of @msa&ccounts for most of the overall solution time. The
solution of the linear equations can be conducted usingraifit methods where a subdivision into direct, iterative
and domain decomposition algorithms makes sense.

In this paper the effects induced by different kinematic rimary conditions on the solution time of the linear
system with respect to the applied solution method are exaai Section 2 is devoted to a classification of the
considered kinematic boundary conditions. In sectidw@-dimensionamodel problems are examined in order
to motivate some of the findings for the three-dimensionahgxes presented in section 4. In the closing section
a brief summary and a guide for the selection of the apprapsia@lver is presented.

2 Boundary conditions
2.1 Classification of kinematic boundary conditions

By 2 we denote the domain of the unit cell and by= 92 its boundary. In this paper we focus on mechanical
problems in the displacement fieldwith kinematic boundary conditions. This is equivalentti@is driven pro-
cesses, where for a given macroscopic strain teaisbe local displacements, stresses and internal variables

£ have to be computed.
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When kinematic boundary conditions are to be classified, kewaense to introduce the additive decomposition
u=u-+1u N}

into a homogeneous deformation and a fluctuation fielhich has to satisfy

1
ﬁ/(&®n+n®ﬁ)dA:O, 2
T

with n the outward normal té@". Then it is possible to classify the type of kinematic bougdamditions in terms
of the function space for the fluctuation patere, the function spaces allowing for a solution of the wieak of
the boundary value problem are considered as a subspace $bbvolev spack)!-2. A typical classification with
descending restrictiveness is as follows:

e uniform kinematic boundary conditions UKBC
The displacement on the entire boundary of the unit Egl= I is prescribed to be homogeneous, i.e. no
fluctuations are feasible

w=0 (onl), @€ Vygkpec={vewh? . v=0o0nl} 3)

e periodic displacement fluctuation boundary conditions KB
The fluctuation field has the same value on opposing pdthts X _ of the unit cell

wy =u_ (onl), @€ Vpkpo={veW?  v(X )=v(X_)onT} 2 Vyxpe (4)
Ay
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Figure 1: Uniform/periodic/weakly imposed boundary cdiais (from left to right)

2.2 Numerical enforcement of boundary conditions

The linear systems of equations resulting from the finitenelet analysis are assumed to be of the form
Ku=f, (%)

with real, sparse, symmetric and semi-positive defihiteThe right hand side vectgf denotes the nodal forces
prescribed by external loading, e.g., due to a gravitatifiela. By the incorporation of kinematic boundary con-
ditions the semi-positive definiteness of the system isaegal by the favorable positive definiteness. There exist
various ways for the numerical implementation of boundamyditions. In this paper a method based oregact
enforcement of the boundary conditions by modification efgiistem of equations is used. More precisely, if the
degree of freedom (DOF) with indeéxs prescribed, then thieth column and row of the initial stiffness matrix are
removed and a reduced vector of free variables is considéféte boundary condition for the considered DOF
is non-zero then the right-hand side has to be updated angbrdrFor UKBC the described procedure is used in
order to impose the boundary conditions and, thus, posigfimiteness of the resulting mattk , is attained.
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For periodic displacement fluctuation conditions the felltg method is used: Lat,,, us, u; denote the vectors
of unknowns associated with master/slave/intérdagrees of freedom and assume the entrias,phindu, are
related by

Us = Unm + Y, (6)

for a constant vectay. Then the vector of unknowns can be written as

U, I 0 0
w | =0 I (”‘?>+ 0 | =Pv+tz @
Us I 0 w Y
v
P =z

Assuming the same ordering for the stiffness matrix yietasdtiffness matrix of the periodic system

I 0 I Kmm Kmi Kms I 0O
K,o=P'KP = ( 0o I o ) K!. K; K 0 I
K!. K! K, I o0
o Kmm+K1ns+K-rl;15+Kss Kmi"'_K;I; (8)
B K.+ Ki K '
The right hand side of the system transforms according to
foo=P (f - Kz). ©)
Finally, the resulting system of equations becomes
Ky ov=f,, (20)

The matrix K, o is still only semi-positive definite. In order to get positidefiniteness, the motion of the corner
points of the unit cell is prescribed by using the previou#gcribed row and column elimination which eventually
yields the positive matri¥,, and the right hand side vectd,.

3 Model problem
3.1 Problem setting

Before three-dimensional mechanical problems are coresigdéhe influence of the boundary conditions onto two-
dimensional model problems is investigated. The domaiméxed in the following is assumed to consist of a
regular partitioning of the domaii, 1] x [0, 1] (Fig. 2). For simplicity the following considerations araded on
row-wise increasingrdering of the nodes and linear nodal basis functions. Tifereint material parameters were
considered at the integration points of the element only.

R1

K2

L%

L

Figure 2: Discretization of the model problem
A homogeneous Poissdike problem in a scalar field variabtgx) is considered

div (k(x) grad(u(x))) =0 (in £2), (11)

IMaster nodes are assumedXt, € I', slave nodes at the opposing paiit_. All remaining nodes are referred to as internal. The corner
points of the unit cell are treated seperately by imposingcbliet conditions (see below).
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where the heterogeneity of the material is introduced byrnbe-constant symmetric positive definite tensor
k(x) = k(x)I. An example for (11) is given by heat conductivity obeying fets law. While the problem

is not equivalent to mechanical problems, it can, howewsvesto yield predictions on the numerical performance
of these. It is noteworthy that (11) and all convex elastsfit problems denote elliptic partial differential equa-
tions, i.e., belong to the same problem clagke stiffness matrix of the resulting finite element systbenthas

the penta-diagonal structure illustrated in Fig. 3. Belosvaxamine the mathematical properties of the system ma-
trices resulting from the two different kinematic boundaonditions. Different solution techniques are applied in
order to investigate the numerical performance in deperydefthe number of nodes and the chosen constraints.

Figure 3: Schematic band structure of the global stiffneatrimnof the system for the two-dimensional model
problem

3.2 Properties of the global stiffness matrix

Based on the initial semi-positive definite stiffness mattiniform displacement boundary conditions UKBC
(K ) and periodic displacement fluctuation boundary conditPKBC (K ) are consideredThe phase contrast
k2/k1 = 2 was chosenThe structure of the resulting system matrices and of theol€sky factorizationd.,,
with K/, = Lu/pLTu/p are illustrated in Fig. 4. The major difference in the peidostiffness matrix is high-
lighted for better visibility.

(a) uniform kinematic boundary conditions

H

1S
(b) periodic discplacement fluctuation boundary condgion
Figure 4: Comparison of modified stiffness matrix (left) algolesky factorization (right)20x 20=400 nodes)
Despite the small differences in the structures of thers#s matrix, the fill-in of the Cholesky factorization in-
duced by the periodicity condition is massive. The numberarf-zero entries,,, in the stiffness matrix and its

factorization and an estimate of the condition numbare given in Tab. 1 for different resolutions of the spatial
discretization. All values are normalized to those of thérimabtained for UKBC . As the number of boundary
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nodes decreases with respect to the total number of nodes,thber of unknowns in the problem with full bound-
ary data and periodic fluctuation field is comparable for fitiecretizations ¢olumns two and threm Tab. 1).
While the number of non-zero entries in the correspondingglirsystem is almost identical, the number of non-
zero entries in the Cholesky factorization is approximatelr times as large leading to a significant reduction of
the spatial resolution that can be considered for a giveruaitmaf memory.

In order to reduce the fill-in, a permutation of the systemrioas is advisable. Thand (approximate minimum
degree) ordering algorithm was appliedAq, and K ,,. A significant reduction of the number of non-zero entries
n’, in the resulting (permuted) Cholesky factorization couéddibserved. Interestingly, the reduction is more
pronounced for PKBC (last column in Tab. 1). It can be conetlthat for theconsidered modedroblem on very
fine discretizations, the number of non-zero entries inaleeofization will be independent of the type of boundary
condition. It can, however, rarely be realized in practm@thieve such fine discretizations due to the excessive
memory requirement when three-dimensional unit cell protd are considered.

Nz K Nnyz L k kbc n:;z L
total#nodes | #DOFe | #DOF,kbe nnz(( Kp)> nnz(( Lp)) kikbc n::z(( Lp))
10°=100 9.60410° | 9.800103 1.523 4,228 14.064| 2.917
20%=400 1.58410° 1.59210° 1.214 4,132 17.179 2.283
50°=2500 6.24010% | 6.24510° 1.077 4.057 | 21.879| 1.760
200°P=40000 | 1.60010° | 1.60010° 1.018 4.015 | 28.602| 1.524
300°P=90000 | 8.10010° | 8.10010° 1.012 4.010 | 30.057| 1.323

40(0P=160000| 2.56010'° | 2.56010'° 1.009 4.007 | 31.960| 1.142

Table 1: Comparison of the properties of the system mat(iegs:; = 2; *: with preordering)

3.3 Implications for iterative solution techniques

In addition to the large number of non-zero entries in thedidzation, the condition number of the periodic
problem was found to be significantly higher than the one ®fitoblem with uniform boundary data. An increased
condition number usually leads to increased computatioostis when using numerical solution methods such as
the conjugate gradient (CG) method (e.g., Shewchuk (19%4)) the latter, the a priori estimate for the residual

e of thei-th iteration
(i) \/% - ]. (O)
e < | —= e 12

holds. However, not only the condition number but also thistelring of the eigenvalues has a strong impact on
the convergence of the CG method. In order to evaluate tbeteadf the boundary conditions onto the approximate
solution, a series of random right hand side vectors wasrgerttand a diagonally preconditioned CG algorithm
was used for solving the resulting linear system. A seleatithe obtained results is listed in Tab. 2 for a problem
containing 40000 nodes and for the two different phase aetstt, /<, = 2 and 10, respectively. Her&/c ukbe

and Nce pkbe denote the number of iterations required until convergemmeNyr,op iS an estimate of the total
number of floating point operations in the solution proceBke phase contrast was varied since the condition
number of the stiffness matrix does strongly depend on it.ifdestigations with respect to the size or shape of
the inclusion were performed for the model problem.

From further numerical testing it was found that the comoral effort for the solution of the system of equations
is almost independeiatf the number of nodes and, thus, of the number of boundargs(fg. 5) since

Nbc—nodes ~ 4\/@~ (13)

Only for problems involving few internal degrees of freedibmincrease in the number of floating point operations
of the periodic problem is more pronounced.

3.4 Discussion of the results for the model problem

The results presented in Tab. 1 show that the memory regfgiredfull Cholesky factorization of the stiffness ma-
trix of the modelproblem shows a strong dependency on the type of kinematiedary condition. In particular,
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I£2/I€1:2 Hg/lililo
#test vector| Nog,ukbe | Noa,pkbe 7%38;?;2 Ncag,ukbe | Nea,pkbe 7%?58?322
1 452 798 1.798 467 851 1.856
2 453 797 1.792 452 851 1.917
3 454 797 1.788 467 850 1.853
4 452 798 1.798 467 850 1.853
5 452 794 1.789 478 838 1.785
6 452 800 1.802 468 847 1.843
7 456 805 1.798 471 856 1.851
8 451 762 1.720 475 857 1.837
9 453 795 1.787 471 859 1.857
10 450 802 1.815 450 854 1.932

Table 2: Comparison of the numerical performance of the C@&ate00*=40000nodes k- /x; = 2 and10)

2.4+t

- 2.0t

NFLOP, pkbe
NFLOP, ukbe

1.2¢

6 8 10 12
10g10 (nnodes)

Figure 5: Relative computational cost of PKBC over UKBC foe preconditioned CG methofy/x; = 10)

the ratio of the number of boundary associated degreeseaxfdra with respect to the number of internal degrees of
freedom influences the memory requirements. It was fourichtpaeordering algorithm is basically inevitable for
large scale periodic problems in order to achieve acceptaishputational efficiency, particularly with respect to
memory requirements. If rectangular unit cells are to besittared this ratio is optimal for quadratic unit cells (in
two dimensions) and for a cube (in three dimensions). g algorithm (Amestoy et al., 2004, 1996) showed a
good performance and helped to dramatically reduce thenadaséll-in. However, the number of non-zero entries
in the factorization is still larger for PKB&an for UKBC

Numerical tests based on the conjugate gradient methoddiational preconditioning have shown that the in-
creased condition number of the periodic system negatinéliyences the solution time. However, (almost) no
additional memory was required in order to apply the CG metthioce the number of non-zero entries in the
stiffness matrix is approximately independent of the typeaundary conditions. For many practical applications
this observation can be exploited in order to treat largéegmanblems without having to account for the massive
memory requirement of direct solution techniques.

4 Analysis of the stiffness matrices
4.1 Solvers

In this paper we compare the following four different sabatitechniques which are applied to three-dimensional
elastic unit cell problems:
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ABAQUS/STANDARD: direct sparse solver,

ABAQUS/STANDARD: domain decomposition solver (DDM) basadl the FETI method (Finite Element
Tearing Appart and Interconnecting),

Sparse Cholesky factorization (CHOLMOD (Chen et al., 2D08)

Preconditioned conjugate gradient (PCG) method (own implgation) (see, e.g., Shewchuk (1994)).

The displacements are approximated based on a nodal bakigwedratic ansatz function. This leads to an in-
crease in the bandwith of the system matrix in comparisoméat displacement elements.

The commercial finite element program ABAQUS/STANDARD isdgo compute results in an environment
accessible to many people using the finite element methddtiaét CPU time and the memory requirement being
the measurable factors. The self-written implementatisingieither the CHOLMOD package or the conjugate
gradient method helps to highlighten some specific aspéclisext and sparse solvers when used in combination
with the different kinematic boundary conditions. The peog uses the same shape functions as the commercial
software and consistency of the results with ABAQUS/STANRIAhas been validated. In ABAQUS/STANDARD
the periodic boundary fluctuation conditions have been@émgnted using so-callexfjuat i on constraints. This
leads to matrix operations similar to the ones describeddtian 3.

4.2 Problem setting

The numerical properties of the stiffness matrix of a unit @presenting an aggregate of crystals are examined.
A discretization technique developed by the authors (Enitzt al., 2009) is used to discretize the periodic unit cell
based on the Voronoi tessellation and using different meskitles. In this study meshes containing 20 grains and
7173 to 119265 nodes are considered (Fig. 6). The consétbghaviour of the material was modeled as linear
elasticity with cubic material symmetry. The elastic camés of coppefC111 = 168 GPa, (120 = 121 GPa
C1212 = 75 GP3 are used (Beran et al., 1996).

Figure 6: Finite element mesh of the crystalline structaoarsest (left) and finest (right) discretization

The number of non-zero entries and an approximation of theang required for the storage of the Cholesky
factorization of the global stiffness matrix are preseritetable 3 for our own implementation. The memory
required for the storage of the stiffness matrices is alnuesttical for both problems. However, a Cholesky
decomposition of the stiffness matrix requires signifisamtore memory for PKBC than for UKBC . Although an
and based preordering algorithm is employed, the periodiditthe field variables still implies a massive fill-in.
Unfortunately the memory requirement for the factorizatising thechol nod algorithm are not satisfying, i.e.
the memory usage is prohibitively large.

In ABAQUS/STANDARD the memory requirement for the periodiait cell problem shows the same qualitative

behaviour as in the implementation basedodrol nod. However, the employed matrix storage and preorder-
ing algorithm seems to be very efficient. The total memoryiregnent is dramatically reduced compared to the
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mesh # \ 1 \ 2 \ 3 \ 4

# nodes 7173 13590 48237 119265
NDOF ukbe 15873 31956 125001 322821
NDOF pkbe 18519 36162 134559 339939

Nz, ukbe 5.76310° | 1.22010° | 5.06710° | 1.345107

Tz, pkbe 8.12710° | 1.591106 | 5.93110° | 1.500107

Cholmodn,, ykbe 5.63710° | 2.203107 | 2.04710% | 9.95810%

Cholmodny, pkbe 1.766107 | 6.168107 | 5.92710% | 2.53310°
Memory estimatel,x,. | 64.6 MB | 252 MB | 2343 MB | 11400 MB
Memory estimatd i, | 202MB | 706 MB | 6783 MB | 28990 MB

Table 3: Comparison of the different matrix properties

chol nod based approach.

In the sequel an elastic homogenization problem is consitjare., the effective stiffness matrix of the micro-
heterogeneous material is computed. Therefore, six lisgstems with the same stiffness matrix but different
right hand sides have to be solved. Due to the unfortunateanerequirements, thehol nod based approach
was not traced. The results of the numerical tests are suiedan Tab. 4. While the direct methods require only
one factorization in order to solve the system for the siktrizand sides, the CG based ansatz and the ABAQUS
DDM solver, both, need to be run individually on each of thergjht hand side vector&ows entitled 'max. DOF
wavefront’ represent the maximum bandwith of the reordepadse stiffness matrix.

mesh density # 1 2 3 4
# nodes 7173 13590 48237 119265
precon. CG UKBC 8 s (34 MB) 15 s (54 MB) 109 s (155 MB) | 346 s (367 MB)
precon. CG PKBC 21s(37MB) | 41s (59 MB) 208 s (167 MB) | 764 s (384 MB)
ABAQUS direct UKBC 4 s (31 MB) 13 s (68 MB) 955 (334 MB) | 527 s (1040 MB)
max. DOF wavefront UKBC 1479 2496 6105 11577
ABAQUS direct PKBC 9s(65.7MB) | 29s (195 MB) | 348 s (1002 MB)| 2087 s (3540 MB)
max. DOF wavefront PKBC 2751 4977 12723 22920
ABAQUS DDM UKBC 36s (129 MB)| 41s(219MB) | 171s (781 MB) | 415 s (1960 MB)
max. DOF wavefront UKBC 882 876 954 1068
ABAQUS DDM PKBC 72 s (206 MB)| 138 s (340 MB)| 401 s (986 MB) | 1080 s (2260 MB)
max. DOF wavefront PKBC 1371 1365 1083 1116

Table 4: Comparison of the total solution time and memoryiregl for the computation of the effective stiffness
of the volume element

In Fig. 7 the solution time normalized with respect to the bemof nodes is compared for UKBC (left) and
PKBC (right). It can be observed from the linearity Qf,. /#nnodes With respect tou,.qes that the solution time

of the direct solver in ABAQUS shows almost exactly quadralitpendency of the solution time with respect
to the number of nodesThe ABAQUS DDM solver was found to have almost constant smtutime per node.
However, for a small number of nodes the solution of the fater equations between the different regions and the
communication overhead is significant. It can thus be recend®ad to use the DDM solver for large scale problems
only, particularly when UKBC are considered. The precaodéd CG method showed good performance for small
and large systems. The solution time was smaller than fobfl! solver in all cases considered in this work.
For many problems the solution time of the CG method was theesa smaller than for the direct solver.

5 Summary and conclusions

The numerical aspects of unit cell problems arising from potational homogenization are investigated. Two
different sets of problems subjected to Dirichlet boundaoyditions were examined. First, a two-dimensional
heat conductivity type problem acting as a model problenafiilre some of the important aspects of the different
boundary conditions is considered. Second, a three-diomalselastic homogenization problem is used to con-
firm the findings formechanical real-worlghroblems. An important outcome of the current investigai®othe
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Figure 7: Comparison of normalized solution time for UKB@f{} and PKBC (right) (blue/solid: PCG,
green/dashed: ABQ (direct), red/dash-dotted: ABQ (DDM)

considerable increase in the solution time induced by tleeofigeriodic fluctuation boundary conditions which
is independent of the applied solution technique. The re&sothe increase in the solution time is (i) the large
amount of fill-in mainly induced by the increased bandwith of the system matrix (fi@ctisolvers) and (ii) the
worse conditioning of the system matrix (for iterative ®b). Additionally, direct solvers suffer severly from an
increase in the memory required for a full factorization e bccuring matricesThe amount of fill-in can be
reduced by reordering of the system. However, the obserltéd for the periodic problems was still larger than
for UKBC.

Based on the current investigation the following conclasiare drawn:

e For materials with small/moderate phase cont(ady., less than one order of difference in the physical
propertiesithe preconditioned CG method is recommended for mediumrge lproblems independent of
the type of kinematic boundary conditions. For small proidgit can however be sensible to use direct
solution methods. This is particularly true, if the samed#insystem with a large number of different right
hand sides has to be solved if very large phase contrasts are considered (e.g.,ngadf very soft and
almost rigid materials)

We recommend the use of a preconditioned CG (PCG) method @maid decomposition technique (e.g.,
ABAQUS DDM solver) for problems containing a large numbedefjrees of freedom and containing ma-
terials with a large phase contrast, i.e., for inelasticamals. For inelasticity or pronounced phase contrasts
the efficiency of the PCG method is largely depending on ttadityuof the preconditioner. Small or mod-
erate numbers of degrees of freedom can efficiently be ttastig sparse direct methods which have the
advantage of being applicable to an arbitrary number oftriigind sides with barely any additional com-
putational cost. These methods are applicable for badlgitoned problems with barely any additional
computational cost.

For all problem sizes the preordering of the equations caluyd dramatic decrease of the amount of ad-
ditional fill-in due to periodic boundary conditions (seeg.e Tab. 1, last column). Then for very large
problems the difference in the number of non-zeros in thel&dky factor is (almost) identical for UKBC
and PKBC. However, the absolute number of non-zeros and, the memory required for the factorization
are often inacceptable, if this large problems are consitiég.g., 408=64 Mio. nodes in 3d).

For PKBC the resolution of the mesh is restricted for manyhoeé$due to excessive memory requirements
(direct methods; ABAQUS DDM solver). For these methods trecpnditioned CG method shows good
performs without the need for additional memory over UKBIhe reduced memory requirement is partic-
ularly advantageous for problems involving very fine diseaegions, which can otherwise not be solved due
to limited amounts of memory or only by resorting to superpaters.

If the number of boundary nodes is large with respect to thmbar of inner nodes, i.e., for elongated
cuboidal cells, direct solution techniques are not reconted for PKBC due to massive fill-in. The pre-
conditioned CG method is expected to suffer from the bad itionihg of the system matrix, but can,
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however, be used without particular consideration of mgmequirements. The ABAQUS DDM solver is
partially applicable to these problems, i.e. it is recomdssh if two dimensions of the three-dimensional
unit cell are small compared to the third.

e The results of section 3.3 are intended to give a first imjwassf the influence of the phase contrast on
the CG method. Noteably, the choice of the preconditioheraictual geometry and the physical properties
form a complex ensemble. However, the results state thatticars of the physical properties in the range
of one magnitude lead to almost constant computational cost
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