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Influence of the type of boundary conditions on the numerical properties
of unit cell problems

F. Fritzen, T. B̈ohlke

Aspects of the numerical solution of the systems of equations resulting from the computational homogenization
of unit cell problems using the finite element method are discussed. Different kinematic boundary conditions and
solution techniques are examined and compared, both, theoretically and numerically. It is found that the combina-
tion of boundary conditions and solver significantly influences the computational cost in terms of memory and cpu
time. Examples for model and real world problems are presented.

1 Introduction

The homogenization of microstructured materials is a subject of continuous interest for many years. A wide vari-
ety of semi-analytical and numerical methods has been developed (Nemat-Nasser and Hori, 1999; Kanoute et al.,
2009). The computational homogenization of the propertiesof microheterogeneous materials has become an in-
dispensible tool (Barbe et al. (2001); Fish and Qing (2001);Fritzen et al. (2009); B̈ohlke et al. (2009)). Often the
finite element method (e.g., Zienkiewicz et al. (2006)) is used to compute the linear or non-linear properties of ma-
terials with microstructure applying the concept of volumeelements (e.g., Ostoja-Starzewski (2006)). It has been
found by many authors (e.g., Miehe (2002); Kanit (2003); Ostoja-Starzewski (2006)) that periodic displacement
andantiperiodic traction boundary conditions are often preferable with respect to the size of the unit cell problem,
which can then be chosen to be smaller. Unfortunately one is restricted to non-periodic materials in many cases,
e.g., when experimental (usually non-periodic) data is used, so that periodic displacement fluctuations cannot be
applied.

After choosing the type of boundary conditions some sort of numerical approximation of the exact solution is com-
puted. When looking at the individual contributions to the total computational cost it is found that the solution of
large, sparse and (often) symmetric linear systems of equations accounts for most of the overall solution time. The
solution of the linear equations can be conducted using different methods where a subdivision into direct, iterative
and domain decomposition algorithms makes sense.

In this paper the effects induced by different kinematic boundary conditions on the solution time of the linear
system with respect to the applied solution method are examined. Section 2 is devoted to a classification of the
considered kinematic boundary conditions. In section 3two-dimensionalmodel problems are examined in order
to motivate some of the findings for the three-dimensional examples presented in section 4. In the closing section
a brief summary and a guide for the selection of the appropriate solver is presented.

2 Boundary conditions

2.1 Classification of kinematic boundary conditions

By Ω we denote the domain of the unit cell and byΓ = ∂Ω its boundary. In this paper we focus on mechanical
problems in the displacement fieldu with kinematic boundary conditions. This is equivalent to strain driven pro-
cesses, where for a given macroscopic strain tensorε̄ the local displacementsu, stressesσ and internal variables
ξ have to be computed.
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When kinematic boundary conditions are to be classified, it makes sense to introduce the additive decomposition

u = ū + ũ (1)

into a homogeneous deformation and a fluctuation fieldũ which has to satisfy

1

|Ω|

∫

Γ

(ũ ⊗ n + n ⊗ ũ) dA = 0, (2)

with n the outward normal toΓ . Then it is possible to classify the type of kinematic boundary conditions in terms
of the function space for the fluctuation part.Here, the function spaces allowing for a solution of the weakform of
the boundary value problem are considered as a subspace of the Sobolev spaceW1,2. A typical classification with
descending restrictiveness is as follows:

• uniform kinematic boundary conditions UKBC
The displacement on the entire boundary of the unit cellΓu = Γ is prescribed to be homogeneous, i.e. no
fluctuations are feasible

ũ = 0 (onΓ ), ũ ∈ VUKBC = {v ∈ W1,2 : v = 0 onΓ} (3)

• periodic displacement fluctuation boundary conditions PKBC
The fluctuation field has the same value on opposing pointsX+,X− of the unit cell

ũ+ = ũ− (onΓ ), ũ ∈ VPKBC = {v ∈ W1,2 : v(X+) = v(X−) onΓ} ) VUKBC (4)
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y

Figure 1: Uniform/periodic/weakly imposed boundary conditions (from left to right)

2.2 Numerical enforcement of boundary conditions

The linear systems of equations resulting from the finite element analysis are assumed to be of the form

Ku = f , (5)

with real, sparse, symmetric and semi-positive definiteK. The right hand side vectorf denotes the nodal forces
prescribed by external loading, e.g., due to a gravitational field. By the incorporation of kinematic boundary con-
ditions the semi-positive definiteness of the system is replaced by the favorable positive definiteness. There exist
various ways for the numerical implementation of boundary conditions. In this paper a method based on anexact
enforcement of the boundary conditions by modification of the system of equations is used. More precisely, if the
degree of freedom (DOF) with indexi is prescribed, then thei-th column and row of the initial stiffness matrix are
removed and a reduced vector of free variables is considered. If the boundary condition for the considered DOF
is non-zero then the right-hand side has to be updated accordingly. For UKBC the described procedure is used in
order to impose the boundary conditions and, thus, positivedefiniteness of the resulting matrixKu is attained.
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For periodic displacement fluctuation conditions the following method is used: Letum,us,ui denote the vectors
of unknowns associated with master/slave/internal1 degrees of freedom and assume the entries ofum andus are
related by

us = um + y, (6)

for a constant vectory. Then the vector of unknowns can be written as




um

ui

us



 =





I 0

0 I

I 0





︸ ︷︷ ︸

P

(
um

ui

)

︸ ︷︷ ︸

v

+





0

0

y





︸ ︷︷ ︸

=z

= Pv + z. (7)

Assuming the same ordering for the stiffness matrix yields the stiffness matrix of the periodic system

Kp,0 = P TKP =

(
I 0 I

0 I 0

)




Kmm Kmi Kms

KT

mi K ii K is

KT

ms KT

is Kss









I 0

0 I

I 0





=

(
Kmm + Kms + KT

ms + Kss Kmi + KT

is

KT

mi + K is K ii

)

. (8)

The right hand side of the system transforms according to

fp,0 = P T (f − Kz) . (9)

Finally, the resulting system of equations becomes

Kp,0v = fp,0. (10)

The matrixKp,0 is still only semi-positive definite. In order to get positive definiteness, the motion of the corner
points of the unit cell is prescribed by using the previouslydescribed row and column elimination which eventually
yields the positive matrixKp and the right hand side vectorfp.

3 Model problem

3.1 Problem setting

Before three-dimensional mechanical problems are considered, the influence of the boundary conditions onto two-
dimensional model problems is investigated. The domain examined in the following is assumed to consist of a
regular partitioning of the domain[0, 1] × [0, 1] (Fig. 2). For simplicity the following considerations are based on
row-wise increasingordering of the nodes and linear nodal basis functions. The different material parameters were
considered at the integration points of the element only.
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Figure 2: Discretization of the model problem

A homogeneous Poisson-like problem in a scalar field variableu(x) is considered

div (κ(x) grad(u(x))) = 0 (in Ω), (11)

1Master nodes are assumed atX+ ∈ Γ , slave nodes at the opposing pointX
−

. All remaining nodes are referred to as internal. The corner
points of the unit cell are treated seperately by imposing Dirichlet conditions (see below).
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where the heterogeneity of the material is introduced by thenon-constant symmetric positive definite tensor
κ(x) = κ(x)I. An example for (11) is given by heat conductivity obeying Fourier’s law. While the problem
is not equivalent to mechanical problems, it can, however, serve to yield predictions on the numerical performance
of these. It is noteworthy that (11) and all convex elasto-plastic problems denote elliptic partial differential equa-
tions, i.e., belong to the same problem class.The stiffness matrix of the resulting finite element system then has
the penta-diagonal structure illustrated in Fig. 3. Below we examine the mathematical properties of the system ma-
trices resulting from the two different kinematic boundaryconditions. Different solution techniques are applied in
order to investigate the numerical performance in dependency of the number of nodes and the chosen constraints.

Figure 3: Schematic band structure of the global stiffness matrix of the system for the two-dimensional model
problem

3.2 Properties of the global stiffness matrix

Based on the initial semi-positive definite stiffness matrix, uniform displacement boundary conditions UKBC
(Ku) and periodic displacement fluctuation boundary conditionsPKBC (Kp) are considered.The phase contrast
κ2/κ1 = 2 was chosen.The structure of the resulting system matrices and of their Cholesky factorizationsLu/p

with Ku/p = Lu/pLTu/p are illustrated in Fig. 4. The major difference in the periodic stiffness matrix is high-
lighted for better visibility.

(a) uniform kinematic boundary conditions

(b) periodic discplacement fluctuation boundary conditions

Figure 4: Comparison of modified stiffness matrix (left) andCholesky factorization (right) (20×20=400 nodes)

Despite the small differences in the structures of the stiffness matrix, the fill-in of the Cholesky factorization in-
duced by the periodicity condition is massive. The number ofnon-zero entriesnnz in the stiffness matrix and its
factorization and an estimate of the condition numberk are given in Tab. 1 for different resolutions of the spatial
discretization. All values are normalized to those of the matrix obtained for UKBC . As the number of boundary

357



nodes decreases with respect to the total number of nodes, the number of unknowns in the problem with full bound-
ary data and periodic fluctuation field is comparable for finerdiscretizations (columns two and threein Tab. 1).
While the number of non-zero entries in the corresponding linear system is almost identical, the number of non-
zero entries in the Cholesky factorization is approximately four times as large leading to a significant reduction of
the spatial resolution that can be considered for a given amount of memory.

In order to reduce the fill-in, a permutation of the system matrices is advisable. Theamd (approximate minimum
degree) ordering algorithm was applied toKp andKu. A significant reduction of the number of non-zero entries
n∗

nz in the resulting (permuted) Cholesky factorization could be observed. Interestingly, the reduction is more
pronounced for PKBC (last column in Tab. 1). It can be concluded that for theconsidered modelproblem on very
fine discretizations, the number of non-zero entries in the factorization will be independent of the type of boundary
condition. It can, however, rarely be realized in practice to achieve such fine discretizations due to the excessive
memory requirement when three-dimensional unit cell problems are considered.

total #nodes #DOFukbc #DOFpkbc
nnz(Kp)
nnz(K)

nnz(Lp)
nnz(L)

kpkbc

kukbc

n∗

nz(Lp)
n∗

nz(L)

102=100 9.604103 9.800103 1.523 4.228 14.064 2.917
202=400 1.584105 1.592105 1.214 4.132 17.179 2.283
502=2500 6.240106 6.245106 1.077 4.057 21.879 1.760

2002=40000 1.600109 1.600109 1.018 4.015 28.602 1.524
3002=90000 8.100109 8.100109 1.012 4.010 30.057 1.323
4002=160000 2.5601010 2.5601010 1.009 4.007 31.960 1.142

Table 1: Comparison of the properties of the system matrices(κ2/κ1 = 2; ∗: with preordering)

3.3 Implications for iterative solution techniques

In addition to the large number of non-zero entries in the factorization, the condition number of the periodic
problem was found to be significantly higher than the one of the problem with uniform boundary data. An increased
condition number usually leads to increased computationalcosts when using numerical solution methods such as
the conjugate gradient (CG) method (e.g., Shewchuk (1994)). For the latter, the a priori estimate for the residual
e(i) of thei-th iteration

‖e(i)‖ <

(√
k − 1√
k + 1

)i

‖e(0)‖ (12)

holds. However, not only the condition number but also the clustering of the eigenvalues has a strong impact on
the convergence of the CG method. In order to evaluate the effect of the boundary conditions onto the approximate
solution, a series of random right hand side vectors was generated and a diagonally preconditioned CG algorithm
was used for solving the resulting linear system. A selection of the obtained results is listed in Tab. 2 for a problem
containing 40000 nodes and for the two different phase contrastsκ2/κ1 = 2 and 10, respectively. Here,NCG,ukbc

andNCG,pkbc denote the number of iterations required until convergenceandNFLOP is an estimate of the total
number of floating point operations in the solution process.The phase contrast was varied since the condition
number of the stiffness matrix does strongly depend on it. Noinvestigations with respect to the size or shape of
the inclusion were performed for the model problem.

From further numerical testing it was found that the computational effort for the solution of the system of equations
is almost independentof the number of nodes and, thus, of the number of boundary nodes (Fig. 5) since

nbc−nodes ≈ 4
√

nnodes. (13)

Only for problems involving few internal degrees of freedomthe increase in the number of floating point operations
of the periodic problem is more pronounced.

3.4 Discussion of the results for the model problem

The results presented in Tab. 1 show that the memory requiredfor a full Cholesky factorization of the stiffness ma-
trix of the modelproblem shows a strong dependency on the type of kinematic boundary condition. In particular,
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κ2/κ1 = 2 κ2/κ1 = 10

# test vector NCG,ukbc NCG,pkbc
NFLOP,pkbc

NFLOP,ukbc
NCG,ukbc NCG,pkbc

NFLOP,pkbc

NFLOP,ukbc

1 452 798 1.798 467 851 1.856
2 453 797 1.792 452 851 1.917
3 454 797 1.788 467 850 1.853
4 452 798 1.798 467 850 1.853
5 452 794 1.789 478 838 1.785
6 452 800 1.802 468 847 1.843
7 456 805 1.798 471 856 1.851
8 451 762 1.720 475 857 1.837
9 453 795 1.787 471 859 1.857
10 450 802 1.815 450 854 1.932

Table 2: Comparison of the numerical performance of the CG method (2002=40000nodes,κ2/κ1 = 2 and10)
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Figure 5: Relative computational cost of PKBC over UKBC for the preconditioned CG method (κ2/κ1 = 10)

the ratio of the number of boundary associated degrees of freedom with respect to the number of internal degrees of
freedom influences the memory requirements. It was found that a preordering algorithm is basically inevitable for
large scale periodic problems in order to achieve acceptable computational efficiency, particularly with respect to
memory requirements. If rectangular unit cells are to be considered this ratio is optimal for quadratic unit cells (in
two dimensions) and for a cube (in three dimensions). Theamd algorithm (Amestoy et al., 2004, 1996) showed a
good performance and helped to dramatically reduce the observed fill-in. However, the number of non-zero entries
in the factorization is still larger for PKBCthan for UKBC.

Numerical tests based on the conjugate gradient method withdiagonal preconditioning have shown that the in-
creased condition number of the periodic system negativelyinfluences the solution time. However, (almost) no
additional memory was required in order to apply the CG method since the number of non-zero entries in the
stiffness matrix is approximately independent of the type of boundary conditions. For many practical applications
this observation can be exploited in order to treat large scale problems without having to account for the massive
memory requirement of direct solution techniques.

4 Analysis of the stiffness matrices

4.1 Solvers

In this paper we compare the following four different solution techniques which are applied to three-dimensional
elastic unit cell problems:
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• ABAQUS/STANDARD: direct sparse solver,

• ABAQUS/STANDARD: domain decomposition solver (DDM) basedon the FETI method (Finite Element
Tearing Appart and Interconnecting),

• Sparse Cholesky factorization (CHOLMOD (Chen et al., 2008)),

• Preconditioned conjugate gradient (PCG) method (own implementation) (see, e.g., Shewchuk (1994)).

The displacements are approximated based on a nodal basis with quadratic ansatz function. This leads to an in-
crease in the bandwith of the system matrix in comparison to linear displacement elements.

The commercial finite element program ABAQUS/STANDARD is used to compute results in an environment
accessible to many people using the finite element method with the CPU time and the memory requirement being
the measurable factors. The self-written implementation using either the CHOLMOD package or the conjugate
gradient method helps to highlighten some specific aspects of direct and sparse solvers when used in combination
with the different kinematic boundary conditions. The program uses the same shape functions as the commercial
software and consistency of the results with ABAQUS/STANDARD has been validated. In ABAQUS/STANDARD
the periodic boundary fluctuation conditions have been implemented using so-calledequation constraints. This
leads to matrix operations similar to the ones described in section 3.

4.2 Problem setting

The numerical properties of the stiffness matrix of a unit cell representing an aggregate of crystals are examined.
A discretization technique developed by the authors (Fritzen et al., 2009) is used to discretize the periodic unit cell
based on the Voronoi tessellation and using different mesh densities. In this study meshes containing 20 grains and
7173 to 119265 nodes are considered (Fig. 6). The constitutive behaviour of the material was modeled as linear
elasticity with cubic material symmetry. The elastic constants of copper(C1111 = 168 GPa,C1122 = 121 GPa,
C1212 = 75 GPa) are used (Beran et al., 1996).

Figure 6: Finite element mesh of the crystalline structure:coarsest (left) and finest (right) discretization

The number of non-zero entries and an approximation of the memory required for the storage of the Cholesky
factorization of the global stiffness matrix are presentedin table 3 for our own implementation. The memory
required for the storage of the stiffness matrices is almostidentical for both problems. However, a Cholesky
decomposition of the stiffness matrix requires significantly more memory for PKBC than for UKBC . Although an
amd based preordering algorithm is employed, the periodicity of the field variables still implies a massive fill-in.
Unfortunately the memory requirement for the factorization using thecholmod algorithm are not satisfying, i.e.
the memory usage is prohibitively large.

In ABAQUS/STANDARD the memory requirement for the periodicunit cell problem shows the same qualitative
behaviour as in the implementation based oncholmod. However, the employed matrix storage and preorder-
ing algorithm seems to be very efficient. The total memory requirement is dramatically reduced compared to the
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mesh # 1 2 3 4

# nodes 7173 13590 48237 119265
nDOF,ukbc 15873 31956 125001 322821
nDOF,pkbc 18519 36162 134559 339939
nnz,ukbc 5.763105 1.220106 5.067106 1.345107

nnz,pkbc 8.127105 1.591106 5.931106 1.500107

Cholmodnnz,ukbc 5.637106 2.203107 2.047108 9.958108

Cholmodnnz,pkbc 1.766107 6.168107 5.927108 2.533109

Memory estimateLukbc 64.6 MB 252 MB 2343 MB 11400 MB
Memory estimateLpkbc 202 MB 706 MB 6783 MB 28990 MB

Table 3: Comparison of the different matrix properties

cholmod based approach.

In the sequel an elastic homogenization problem is considered, i.e., the effective stiffness matrix of the micro-
heterogeneous material is computed. Therefore, six linearsystems with the same stiffness matrix but different
right hand sides have to be solved. Due to the unfortunate memory requirements, thecholmod based approach
was not traced. The results of the numerical tests are summarized in Tab. 4. While the direct methods require only
one factorization in order to solve the system for the six right hand sides, the CG based ansatz and the ABAQUS
DDM solver, both, need to be run individually on each of the six right hand side vectors.Rows entitled ’max. DOF
wavefront’ represent the maximum bandwith of the reorderedsparse stiffness matrix.

mesh density # 1 2 3 4
# nodes 7173 13590 48237 119265

precon. CG UKBC 8 s (34 MB) 15 s (54 MB) 109 s (155 MB) 346 s (367 MB)
precon. CG PKBC 21 s (37 MB) 41 s (59 MB) 208 s (167 MB) 764 s (384 MB)

ABAQUS direct UKBC 4 s (31 MB) 13 s (68 MB) 95 s (334 MB) 527 s (1040 MB)
max. DOF wavefront UKBC 1479 2496 6105 11577

ABAQUS direct PKBC 9 s (65.7 MB) 29 s (195 MB) 348 s (1002 MB) 2087 s (3540 MB)
max. DOF wavefront PKBC 2751 4977 12723 22920

ABAQUS DDM UKBC 36 s (129 MB) 41 s (219 MB) 171 s (781 MB) 415 s (1960 MB)
max. DOF wavefront UKBC 882 876 954 1068

ABAQUS DDM PKBC 72 s (206 MB) 138 s (340 MB) 401 s (986 MB) 1080 s (2260 MB)
max. DOF wavefront PKBC 1371 1365 1083 1116

Table 4: Comparison of the total solution time and memory required for the computation of the effective stiffness
of the volume element

In Fig. 7 the solution time normalized with respect to the number of nodes is compared for UKBC (left) and
PKBC (right). It can be observed from the linearity oftsol./#nnodes with respect tonnodes that the solution time
of the direct solver in ABAQUS shows almost exactly quadratic dependency of the solution time with respect
to the number of nodes.The ABAQUS DDM solver was found to have almost constant solution time per node.
However, for a small number of nodes the solution of the interface equations between the different regions and the
communication overhead is significant. It can thus be recommended to use the DDM solver for large scale problems
only, particularly when UKBC are considered. The preconditioned CG method showed good performance for small
and large systems. The solution time was smaller than for theDDM solver in all cases considered in this work.
For many problems the solution time of the CG method was the same or smaller than for the direct solver.

5 Summary and conclusions

The numerical aspects of unit cell problems arising from computational homogenization are investigated. Two
different sets of problems subjected to Dirichlet boundaryconditions were examined. First, a two-dimensional
heat conductivity type problem acting as a model problem to capture some of the important aspects of the different
boundary conditions is considered. Second, a three-dimensional elastic homogenization problem is used to con-
firm the findings formechanical real-worldproblems. An important outcome of the current investigation is the
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Figure 7: Comparison of normalized solution time for UKBC (left) and PKBC (right) (blue/solid: PCG,
green/dashed: ABQ (direct), red/dash-dotted: ABQ (DDM)

considerable increase in the solution time induced by the use of periodic fluctuation boundary conditions which
is independent of the applied solution technique. The reason for the increase in the solution time is (i) the large
amount of fill-inmainly induced by the increased bandwith of the system matrix (for direct solvers) and (ii) the
worse conditioning of the system matrix (for iterative solvers). Additionally, direct solvers suffer severly from an
increase in the memory required for a full factorization of the occuring matrices.The amount of fill-in can be
reduced by reordering of the system. However, the observed fill-in for the periodic problems was still larger than
for UKBC.

Based on the current investigation the following conclusions are drawn:

• For materials with small/moderate phase contrast(e.g., less than one order of difference in the physical
properties)the preconditioned CG method is recommended for medium or large problems independent of
the type of kinematic boundary conditions. For small problems, it can however be sensible to use direct
solution methods. This is particularly true, if the same linear system with a large number of different right
hand sides has to be solvedor if very large phase contrasts are considered (e.g., pairing of very soft and
almost rigid materials).

• We recommend the use of a preconditioned CG (PCG) method or a domain decomposition technique (e.g.,
ABAQUS DDM solver) for problems containing a large number ofdegrees of freedom and containing ma-
terials with a large phase contrast, i.e., for inelastic materials. For inelasticity or pronounced phase contrasts
the efficiency of the PCG method is largely depending on the quality of the preconditioner. Small or mod-
erate numbers of degrees of freedom can efficiently be treated using sparse direct methods which have the
advantage of being applicable to an arbitrary number of right hand sides with barely any additional com-
putational cost. These methods are applicable for badly conditioned problems with barely any additional
computational cost.

• For all problem sizes the preordering of the equations can yield a dramatic decrease of the amount of ad-
ditional fill-in due to periodic boundary conditions (see, e.g., Tab. 1, last column). Then for very large
problems the difference in the number of non-zeros in the Cholesky factor is (almost) identical for UKBC
and PKBC. However, the absolute number of non-zeros and, thus, the memory required for the factorization
are often inacceptable, if this large problems are considered (e.g., 4003=64 Mio. nodes in 3d).

• For PKBC the resolution of the mesh is restricted for many methodsdue to excessive memory requirements
(direct methods; ABAQUS DDM solver). For these methods the preconditioned CG method shows good
performs without the need for additional memory over UKBC .The reduced memory requirement is partic-
ularly advantageous for problems involving very fine discretizations, which can otherwise not be solved due
to limited amounts of memory or only by resorting to supercomputers.

• If the number of boundary nodes is large with respect to the number of inner nodes, i.e., for elongated
cuboidal cells, direct solution techniques are not recommended for PKBC due to massive fill-in. The pre-
conditioned CG method is expected to suffer from the bad conditioning of the system matrix, but can,
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however, be used without particular consideration of memory requirements. The ABAQUS DDM solver is
partially applicable to these problems, i.e. it is recommended, if two dimensions of the three-dimensional
unit cell are small compared to the third.

• The results of section 3.3 are intended to give a first impression of the influence of the phase contrast on
the CG method. Noteably, the choice of the preconditioner, the actual geometry and the physical properties
form a complex ensemble. However, the results state that variations of the physical properties in the range
of one magnitude lead to almost constant computational cost.
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