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Numerical homogenisation of micromorphic media

R. J̈anicke, S. Diebels

Due to their underlying microtopology, cellular materialsare known to show a complex mechanical behaviour. For
the material modelling, the heterogeneous microcontinuumis commonly replaced by a homogeneous macrocon-
tinuum involving extended kinematics. An appropriate homogenisation methodology will be introduced in order
to replace a heterogeneous Cauchy microcontinuum by a homogeneous micromorphic macrocontinuum. For an
artificial 2-D periodic microstructure, the present contribution draws a comparison between extended two-scale
calculations on the one hand, and a reference solution as well as a first-order FE2 calculation on the other hand.

1 Introduction

The mechanics of cellular materials is well-known to be strongly dominated by the underlying microtopology.
In literature, there exists a wide range of contributions accounting for size dependent stiff or soft boundary
layer effects inducing size dependent effective material properties, cf., beyond many others, e. g. Diebels and
Steeb (2002); Tekǒglu and Onck (2005). Various approaches replace the heterogeneous microcontinuum by a
homogeneous macrocontinuum enriched by additional degrees of freedom. Many of those approaches go back
to the seminal considerations of the brothers Cosserat and Cosserat (1909), which were later on generalised by
Eringen (1999). Different approaches introduce second gradient media, e. g. Germain (1973a); Maugin (1979);
Kouznetsova (2002). Otherwise, numerical methods of two-scale modelling have been developed by usage of the
so-called two-level FEM or FE2 method, e. g., beyond many others, Feyel and Chaboche (2000); Miehe and Koch
(2002).

1.1 Scope of this work

In the present contribution we derive a consistent methodology to replace a heterogeneous microcontinuum of
the Cauchy type, representing a cellular network, by a homogeneous micromorphic macrocontinuum. In order to
bridge the scales, the extended kinematic quantities of themacroscale will be expressed in terms of a polynomial
mean field and a periodic fluctuation on a microvolume attached to the macroscopic material point. Further inves-
tigations will be carried out to perform homogenisation rules for the extended macroscopic stress quantities based
on an extended formulation of the Hill-Mandel condition. Insections 3 and 4, the presented methodology will
be applied to a macroscopic shear test with one underlying artificial microstructure. We will restrict the extended
character of the macrocontinuum as far as possible and we will verify the result in comparison to a reference
calculation with microscopic resolution.

1.2 Notations

Throughout this manuscript, differential operators are defined as

div T =
∂Tkl

∂Xl

ek, GRAD P =
∂PkK

∂XL

ek ⊗ eK ⊗ eL,

where small operators and indices refer to the spatial, capital operators and indices to the material frame. Tensor
products read

A · B = AklBlm ek ⊗ em, A : B = AklBkl

3

E
...C3 = εklmCklm, C3 :̂ (A, B) = CklmAlnBmo ek ⊗ en ⊗ eo.
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Furthermore, the following permutation and identity tensors will be used:

I = δklek ⊗ el, where δkl =

{

1, k = l,
0, else.

3

E= εklmek ⊗ el ⊗ em, where εklm =







1, klm = 123, 231, 312,
−1, klm = 321 213, 132,

0, else.

4

E= εklmnek ⊗ el ⊗ em ⊗ en, where εklmn =







1, k = l = m = n,
−1, k = l ∧ m = n ∧ l 6= m and permutations,

0, else.

Besides the permutation tensors, tensors of grade 3 and higher are denoted with underlined indices. The material
time rate of a spatially represented quantity is defined as

(⋄(x, t))
′

=
d(⋄)

dt
=

∂(⋄)

∂t
+ grad(⋄) · x′

and throughout this manuscript, index(⋄)M refers to macroscopic quantities whereas(⋄)m refers to microscopic
quantities.

2 Homogenisation of micromorphic media

2.1 The physical picture

In contrast to classical continuum theories, the micromorphic continuum theory assumes each physical bodyBM

to consist of an infinitesimal set of material points which capture a small but finite spaceBm, cf. fig. 1. Further-
more, provided the material points to be deformable, they account for additional degrees of freedom, i. e. for the
microrotation and for the microdeformation, besides the classical translational degrees of freedom. This concept
goes back to the brothers Cosserat and Cosserat (1909) and was later on generalised in a systematical manner
e. g. by Eringen (1999).
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Ξ
Bm

t = 0

Figure 1. The material points of a micromorphic medium capture a small but finite spaceBm and can be
characterised by their volume centroid with the macroscopic position vectorXM and the local
coordinateΞ in the material frame (t = 0), andxM andξ in the spatial frame (t > 0).

The microcontinuum’s mapping from the material to the spatial frame is considered to be affine and reads

ξ(XM , χ̄M , t) = χ̄M (XM , t) · Ξ(XM ), (1)

the second order tensor̄χM defines the microdeformation. The calculation of the deformed arc length(dxm)2

requires the introduction of a set of three independent deformation measures. Without loss of generality, we
establish the deformation gradientFM , the microdeformation̄χM and its first gradient GRAD χ̄M to describe the
deformation of the physical bodyBM on the macroscale. In spite the obviously non-objective character of this set
of two-field quantities, the token choice is admissible, having in mind no macroscopic constitutive assumptions to
be met throughout this contribution.
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2.2 Balance equations

The balance equations for the micromorphic continuum theory can be found making use of the principle of virtual
power, cf. Germain (1973b). In the sequel, the balance equations are formulated for the static and isothermal
case in absence of volume forces and volume couples in the spatial and the material frame. For the balance of
momentum we write

div TM = 0, DIV PM = 0, (2)

with the Cauchy stress tensorTM and the first Piola-Kirchhoff stress tensorPM = (detFM )T · FT−1

M . The
balance of moment of momentum reads

div Q̆
3

M + TM − S̆M = 0, DIV Q
3

M + (PM − SM ) · FT
M = 0, (3)

where the third order couplestress tensorQ̆
3

M and the second order hyperstress tensorS̆M of the Cauchy type have
been introduced, accounting for the transformationsSM = (detFM ) S̆M ·FT−1

M andQ3

M = (detFM ) Q̆
3

M ·FT−1

M .
Finally, we find for the balance of energy

ρ ε′M = TM : gradx′

M − (TM − S̆M ) : ν̄M + Q̆
3

M

... gradν̄M , (4)

ρ0 ε′M = PM : GRAD x′

M −
(

(PM − SM ) · FT
M

)

: ν̄M + Q
3

M

... GRAD ν̄M , (5)

respectively. Eq. (5) can be resorted and we may write

ρ0 ε′M = P̄M : GRAD x′

M + Q̄
3

M

... GRAD χ̄′

M + S̄M :
(

∗

χM

)′

, (6)

where

∗

χM = χ̄M − FM , (7)

P̄M = PM + S̄M , (8)

S̄M = (SM − PM ) · FT
M · χ̄T−1

M and (9)

Q̄
3

M = Q
3

M :̂
(

χ̄T−1

M , I
)

. (10)

Note that the expression
∗

χM is achieved only by a rearrangement of eq. (5). For the small deformation regime,
∗

χM describes the difference between the micro- and the macrodeformation. However, this physical interpretation
does not hold for the finite deformation regime, where the difference between the micro- and the macrofield takes
the formχ̄−1

M · FM , cf. Eringen (1999); J̈anicke et al. (2009). In that case,
∗

χM only covers a formal evidence
without a direct physical interpretation.

2.3 Scale transition of the kinematic quantities

In order to characterise materials with strong inhomogeneities on the microscale, it is our intend to introduce a
consistent averaging technique replacing the heterogeneous Cauchy medium by a homogeneous micromorphic
medium. An appropriate methodology has been initially proposed by Forest and Sab (1998); Forest (1999). More-
over, it has been presented in detail by Jänicke et al. (2009). Thus, the kinematic quantities of the micromorphic
macrocontinuum can be identified in terms of a polynomial mean field and a periodic fluctuation of the hetero-
geneous Cauchy microcontinuum attached to the micromorphic material point. To simplify matters, we assume
the attached microvolume to be a quadratic unit cell of the size l as depicted in fig. 2. Furthermore, we assume
the set(uM , χ̄M ) to characterise the macrostate that best fits the microscopic displacement fieldum in the aver-
age over the attached microvolume. For the sake of simplicity, the following investigations are restricted for the
twodimensional case.
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Figure 2. The 2-D microscopic volume element of the sizel2 attached to the macroscopic material point.
Its volume centroid is defined by the macroscopic position vector XM , the local coordinate is
indicated by the so-called branch vector∆X (material frame, t=0).

I. e. we have to minimise the functional

F(uM , χ̄M ) =
〈

(um − uM − (χ̄M − I) · ∆X)
2
〉

(11)

with the volume average〈⋄〉 = 1/Vm

∫

Bm

⋄dVm. We find

∆u = um − uM = 0 andχ̄M − I =
12

l2
〈um ⊗ ∆X〉 (12)

for the local displacements and for the micromotion, respectively. Consequently, the particular gradients read

GRAD uM = 〈GRAD um〉 and GRAD χ̄M =
12

l2
〈GRAD (um ⊗ ∆X)〉 . (13)

If we furthermore assume the microscopic displacement fieldto be a polynomial of grade three, we may express
the microscopic displacement field∆u in terms of the macroscopic deformation quantities and we obtain

∆u = GRAD uM · ∆X +
1

2
GRAD χ̄M : (∆X ⊗ ∆X)

−
10

l2
∗

χM ·
4

E
... (∆X ⊗ ∆X ⊗ ∆X) + ∆ũ. (14)

Whereas the linear deformation modes are dominated by the macroscopic displacement gradient, the quadratic
deformation modes depend on the gradient of the microdeformation GRAD χ̄M , the cubic deformation modes

on the difference deformation
∗

χM= χ̄M − FM . ∆ũ represents a fluctuation field due to the microstructural
periodicity. Having in mind the linear displacement field∆ũ = GRAD uM · ∆X + ∆ũ of a so-called first-order
FE2 approach replacing a heterogeneous Cauchy microcontinuumby a homogeneous Cauchy macrocontinuum,
e. g. Feyel and Chaboche (2000); Miehe and Koch (2002); Sehlhorst et al. (2009), eq. (14) is pointing out the
extended character of the introduced projection rule.

Special attention should be paid to the interaction betweenthe higher order deformation modes and the size of the
attached microvolume. Let us rewrite eq. (14) in a dimensionless manner,

∆u

l
= GRAD uM ·

∆X

l
+

1

2
l GRAD χ̄M :

(

∆X

l
⊗

∆X

l

)

−10
∗

χM ·
4

E
...

(

∆X

l
⊗

∆X

l
⊗

∆X

l

)

+
∆ũ

l
. (15)

Thus, we find the quadratic polynomial expansion to transport the size of the microvolume from the micro- to
the macroscale by the expressionl GRAD χ̄M . Comparable results have been found e. g. by Kouznetsova (2002);
Larsson and Diebels (2006); Jänicke and Diebels (2009). By contrast, the cubic expansionhas, per division byl2,
a size-independent character which enriches the linear deformation modes and allows the system to describe more
complex but size-independent deformation mechanisms.

The projection rules eqs. (14) and (15), respectively, can be specified for any micromorphic subcontinuum with any
restricted microdeformation, e. g. micropolar, microdilatant or microshear deformation, cf. Forest (2006); Jänicke
et al. (2009).
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2.4 Hill-Mandel condition and homogenisation of stresses

After having derived appropriate projection rules defininga Dirichlet boundary value problem at the boundary of
the heterogeneous microvolume in terms of the extended macrodeformations, we now have to find a connection
between the stress response of the Cauchy microcontinuum and the stresses, couplestresses and hyperstresses
of the micromorphic macrocontinuum. The fundamental assumption to deduce the homogenisation rules is the
equivalence of the strain energy rate in the macroscopic material point and of the volume average of the microscopic
strain energy rate of the attached microvolume. This correlation is commonly called Hill-Mandel condition, cf. Hill
(1963); Maugin (1992); Nemat-Nasser and Hori (1993). Thus,we may write

〈Pm : GRAD ∆u′〉 = P̄M : GRAD u′

M + Q̄
3

M

... GRAD χ̄′

M + S̄M :
(

∗

χM

)′

. (16)

Inserting eq. (14) in eq. (16) leads to the expressions

P̄M =
1

Vm

∫

∂Bm

(pm ⊗ ∆X) dA, (17)

Q̄
3

M =
1

2Vm

∫

∂Bm

(pm ⊗ ∆X ⊗ ∆X) dA, (18)

S̄
4

M =
1

6Vm

∫

∂Bm

(pm ⊗ ∆X ⊗ ∆X ⊗ ∆X) dA, (19)

wherepm represents the microscopic surface traction vector. Concerning the periodic fluctuations∆ũ, one may
establish opposite parts of the microvolume’s boundary∂B+

m and∂B−
m in a way that the correlationN+ = −N− is

satisfied for the outer normal vectors of corresponding points on∂B+
m and∂B−

m. Provided the existence of periodic
displacements and anti-periodic tractions on opposite parts of the boundary, i. e.

∆ũ+ = ∆ũ− and p+
m = −p−

m, (20)

the periodic fluctuations do not account for the strain energy. Furthermore, the fourth order hyperstress tensorS̄
4

M

resulting from the homogenisation procedure has to be transferred back to a second order quantity via the identity

S̄
2

M = −
60

l2
S̄

4

M

...
4

E (21)

making use of eqs. (14) and (16).

3 Microscopic deformation mechanisms of a periodic model-foam

After having completed the numerical homogenisation procedure in the sections before, we now want to implement
this second order FE2 scheme. For that purpose, we introduce a perfectly periodicstructure in 2-D with a cross-
like unit cell of the sizel2, representing the attached microvolume within the two-scale approach, cf. fig. 3a. The
microscale is resolved by quadrilateral volume elements with biquartic Lagrange Ansatz functions. We assume
linear elasticity in a small deformation regime with Young’s modulusY = 200 GPa and Poisson’s ratioν = 0.33.
For the microscale calculations, periodic boundary conditions have been applied. In doing so, the fluctuations∆ũ

have been suppressed at the midpoints of every strut on the boundary.

On the macroscale, a numerical shear test of an infinitely long domain with variable thicknessh has been carried
out. The experimental setup is depicted in fig. 3b. Besides the Dirichlet boundary conditions for the displacements,
the microdeformation on the top and the bottom boundary has been restricted to equal the identity. The macrolevel
has been resolved by quadrilateral volume elements with biquadratic Lagrange Ansatz functions for both, the
displacement and the microdeformation field.

368
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XM2

a) b)

h

uI
M1 = 0.01h, uI

M2 = 0, χ̄I
M = I

uII
1M = 0, uII

M2 = 0, χ̄II
M = I

Figure 3. a) The underlying, perfectly periodic microvolume of the sizel = 20 d. Linear elasticity in
a small deformation regime is assumed (Young’s modulusY = 200 GPa, Poisson’s ratioν =
0.33). The struts are resolved by quadrilateral volume elementswith quartic Lagrange Ansatz
functions. b) The experimental setup on the macroscale describes a shear test of an infinite layer
(L → ∞) of the variable thicknessh > l. At both, the top and the bottom boundary, the extended
degrees of freedom are prescribed to vanish, i. e. the microdeformation tensor equals the identity
χ̄M = I.

Having in mind the restriction of the full micromorphic continuum to a micromorphic subcontinuum mentioned
in section 2.3, the question arises, if there is any reasonable restriction of the microdeformation subject to the
given microstructure, cf. fig. 3a. For that purpose, the quadratic deformation modes in dependence ofχ̄M12 and
χ̄M21 have been depicted in figs. 4 and 5 as well as their symmetric and skew-symmetric counterparts. Due to the
macroscopic geometry given in fig. 3b, only derivatives inXM2-direction have been taken into account.

The deformation states depicted in figs. 4 and 5 clearly indicate the skew-symmetric microdeformationχ̄M12 =
−χ̄M21 to be the most natural choice which leads to the well-known micropolar continuum or Cosserat continuum,
respectively. For the small deformation regime, we may write

χ̄M11 = χ̄M22 = 1 and −χ̄M12 = χ̄M21 = ϕ̄M . (22)

It is the main issue of the following section to verify the found indication for a micropolar or Cosserat continuum.

χ̄M12,2

χ̄M21,2

Figure 4. Several characteristic quadratic deformation modes.
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χ̄M21,2 + χ̄M12,2

χ̄M21,2 − χ̄M12,2

Figure 5. Several characteristic quadratic deformation modes.

4 Two-scale calculation

To do so, we have accomplished several FE2 calculations of the above mentioned shear test, i. e., for the macroscale,
using a Cosserat continuum on the one hand, compared to the application of a full micromorphic continuum on the
other hand. To furthermore demonstrate the difference between the extended homogenisation scheme and a first
order approach, a third FE2 calculation deals with a Cauchy continuum on the macroscale. Finally, to evaluate the
found results in a quantitative way, a reference calculation has been carried out, where the entire microstructure
of the macroscopic boundary value problem, cf. fig. 3b, has been microscopically resolved by finite elements,
i. e. without making use of any FE2 methodology. The results are given in fig. 6.

Reference
Cosserat
Micromorphic
First order FE2

5 10 15 20 25 30 35 40

1

1.1

1.2

||
T

M
1
2
||

[–
]

h/l [–]

Figure 6. Effective shear stress||TM12||, normalised with respect to the constant result of the first order
FE2 solution, over the ratioh/l.

At first, we find the reference solution to describe an increasing effective shear stress with a decreasing ratioh/l,
i. e. the material features the well-known stiff boundary-layer effect, e. g. beyond many others Diebels and Steeb
(2002); Tekǒglu and Onck (2008). Thus, the effective shear stress of the reference solution is about17% higher for
h/l = 5 than it is forh/l = 40. Furthermore, one may determine the effective shear stressto converge for large
sample sizes, i. e. the stiffening effect of the boundary layers becomes less pronounced if the sample size increases
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for a fixed microstructure. If we now consider the first order FE2 solution, we find that, as expected, the solution
does not behave sensitive for the stiff boundary layer. Thisis due to the lack of higher order deformations, espe-
cially bending modes, which dominate the deformation closeto the boundary. But, obviously both, the reference
and the first order FE2 solution, seem to converge towards the same value for large sample sizesh.

By contrast, the Cosserat solution and, only in a slightly weaker way, the micromorphic solution, are able to
reproduce the bending effects quite well. But we still observe a certain difference between the reference and the
second order FE2 solutions. E. g. forh/l = 10, the effective shear stress of the micromorphic calculation is
about3% weaker than the reference value. One possible explanation for this slight difference could be found
in the choice of the microscopic Dirichlet and periodic boundary conditions, which may be chosen too weak.
Furthermore, we observe the micromorphic solution to be weaker than the Cosserat solution. This effect can be
interpreted as a consequence of the less restricted character of the full micromorphic medium, which allows for
deformation modes not included in the Cosserat theory. By consequence, the Cosserat solution only pretends to
result in a more exact result than the micromorphic solution. But, obviously, this effect is very small and may be
neglected in our case.

To illustrate the increasing influence of the stiff boundarylayer with decreasing macroscopic sample size, the
microrotationϕ̄M has been plotted over the normalised macroscopic sample height for different ratiosh/l in
fig. 7.

xM2/h [–]

ϕ̄
M

[–
]

0

0 1

h/l = 5

h/l = 10

h/l = 20

h/l = 40

−5E-3

Figure 7. Microrotation̄ϕM = −χ̄M12 = χ̄M21 for the Cosserat calculation for different sample sizesh/l
over the normalised height of the sample.

Finally, we want to point out the higher order deformation modes to be meaningful from the physical point of
view. Thus, in fig. 8, two representative microscopic deformation states are depicted. To do so, the macroscopic
deformation measures have been evaluated for the micromorphic FE2 solution (sample sizeh = 20 l) at the
positionsXM2 = 10 l and XM2 = 20 l. Afterwards, they have been projected back to the boundary of the
attached microvolume in order to find the given visualisation. Considering fig. 8a, i. e. the situation far away from
the boundary, we find the microvolume under shear without anybending deformation. Obviously, the situation
changes completely if we reach the boundary. Here, the bending supersede the shear effects, cf. fig. 8b.
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a) b)

Figure 8. Two representative microscopic deformation states observed in the micromorphic FE2 solution
for the macroscopic sample sizeh = 20 l at the positions a)XM2 = 10 l and b)XM2 = 20 l.
To generate the above plots, the macroscopic deformation quantities have been reprojected to the
microscale using eq. (14).

5 Conclusions and ongoing work

To summarise the present study, we want to highlight again the found results in a clearly arranged manner:

• It has been shown the higher order numerical homogenisationapproach, dealing with a micromorphic contin-
uum theory on the macroscale, to be able to describe the stiffboundary layer effect under shear deformation
for a given microstructure. This is not possible applying a first order approach.

• A quantitative comparison to a reference calculation with microscopical resolution has been accomplished.
The small but measurable difference in the effective shear stress may be explained by the special choice of
boundary conditions on the microlevel.

• By studying the deformation mechanisms of the proposed microstructure, it has been possible to restrict the
micromorphic macrocontinuum to undergo skew-symmetric microdeformations, i. e. to be of the micropolar
or Cosserat type, respectively. The results of the FE2 calculations support that assumption.

Doubtless, a general disadvantage of any FE2 calculation might be that it requires a certain numerical effort,
especially if carried out for finite deformations, nonlinear material behaviour and for less regular microstructures.
But otherwise, a purely macroscopic extended continuum model supposes the identification of extended material
parameters which are, in general, hard to find in physical experiments. Applying the higher-order homogenisation
approach, the macroscopic constitutive modelling is shifted to the well-defined microlevel. The definition of any
extended material parameter is a priori circumvented. Thus, the proposed homogenisation methodology seems to
be a helpful tool to describe microtopologically-driven higher order effects and it may help to achieve a deeper
understanding of the interaction between microscopic processes and the effective macroscopic material behaviour.

In the future, further efforts have to be carried out to explore the influence of the microscopic boundary conditions
on the effective macroscopic stress response. Furthermore, the present study has to be extended to a various set
of more complex microstructures in different macroscopic loading cases. Thereby, special attention has to be paid
to the general limits of the proposed mean-field theory, if the microstructure exhibits stochastic irregularities and
imperfections (micro-fractures, cavities, dislocationsetc.)

Acknowledgement: The financial support by the Deutsche Forschungsgemeinschaft (DFG) under the grant DI
430/7-1 is gratefully acknowledged.
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Tekǒglu, C.; Onck, P. R.: Size effects in two-dimensional voronoi foams: A comparison between generalized
continua and discrete models.J. Mech. Phys. Solids, 56, (2008), 3541–3564.

Address:Ralf J̈anicke and Stefan Diebels,
Lehrstuhl f̈ur Technische Mechanik, Universität des Saarlandes, Campus A4 2, 66123 Saarbrücken
email:r.jaenicke@mx.uni-saarland.de; s.diebels@mx.uni-saarland.de

373


