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Numerical homogenisation of micromorphic media

R. FAnicke, S. Diebels

Due to their underlying microtopology, cellular materiage known to show a complex mechanical behaviour. For
the material modelling, the heterogeneous microcontinisioommonly replaced by a homogeneous macrocon-
tinuum involving extended kinematics. An appropriate hgendsation methodology will be introduced in order
to replace a heterogeneous Cauchy microcontinuum by a hensays micromorphic macrocontinuum. For an
artificial 2-D periodic microstructure, the present coitimition draws a comparison between extended two-scale
calculations on the one hand, and a reference solution akase first-order FE calculation on the other hand.

1 Introduction

The mechanics of cellular materials is well-known to be ragitp dominated by the underlying microtopology.
In literature, there exists a wide range of contributionsoamting for size dependent stiff or soft boundary
layer effects inducing size dependent effective mateniaperties, cf., beyond many others, e. g. Diebels and
Steeb (2002); Tekglu and Onck (2005). Various approaches replace the heteemgis microcontinuum by a
homogeneous macrocontinuum enriched by additional degrereedom. Many of those approaches go back
to the seminal considerations of the brothers Cosserat asdetat (1909), which were later on generalised by
Eringen (1999). Different approaches introduce secondignd media, e. g. Germain (1973a); Maugin (1979);
Kouznetsova (2002). Otherwise, numerical methods of teadesmodelling have been developed by usage of the
so-called two-level FEM or FEmethod, e. g., beyond many others, Feyel and Chaboche (2d@8)e and Koch
(2002).

1.1 Scope of thiswork

In the present contribution we derive a consistent methaggoto replace a heterogeneous microcontinuum of
the Cauchy type, representing a cellular network, by a h@megus micromorphic macrocontinuum. In order to
bridge the scales, the extended kinematic quantities afnifieroscale will be expressed in terms of a polynomial
mean field and a periodic fluctuation on a microvolume attd¢be¢he macroscopic material point. Further inves-
tigations will be carried out to perform homogenisatioresufor the extended macroscopic stress quantities based
on an extended formulation of the Hill-Mandel condition. dactions 3 and 4, the presented methodology will
be applied to a macroscopic shear test with one underlyiifgcel microstructure. We will restrict the extended
character of the macrocontinuum as far as possible and Wevavify the result in comparison to a reference
calculation with microscopic resolution.

1.2 Notations

Throughout this manuscript, differential operators aringel as

T P,
T GRADP = 0Pk

dvT = 2k OrkK
ox, F X,

ey, Ve Ve,

where small operators and indices refer to the spatialtaagperators and indices to the material frame. Tensor
products read

A-B = AyBine;®@epn, A:B = AyBy

3 . . .
E :Cé - 5k’lkalm7 CéA (Aa B) - CklmAlano er ®¥e, ®e,.
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Furthermore, the following permutation and identity tensswill be used:

I= e, ®e, where ;= { (1): zlse.l,
5 1, klm =123, 231, 312,
E=cumer ® e ® ey, where e = —1, klm = 321213, 132,
0, else
4 1, k=1l=m=n,
E= cpimner @€ e, @e,, Where cppmn = -1, k=I1Am=nAl+# mand permutations
0, else.

Besides the permutation tensors, tensors of grade 3 andrragh denoted with underlined indices. The material
time rate of a spatially represented quantity is defined as

po_ dle) _ 0(0) /
(b, 1)) = =7 = 5 +grad(e) x
and throughout this manuscript, indgx) ; refers to macroscopic quantities wheréay,, refers to microscopic
quantities.

2 Homogenisation of micromorphic media
2.1 Thephysical picture

In contrast to classical continuum theories, the microrirpontinuum theory assumes each physical bB8gly

to consist of an infinitesimal set of material points whiclpttae a small but finite spad8,,, cf. fig. 1. Further-
more, provided the material points to be deformable, thepact for additional degrees of freedom, i. e. for the
microrotation and for the microdeformation, besides tlssical translational degrees of freedom. This concept
goes back to the brothers Cosserat and Cosserat (1909) antht@non generalised in a systematical manner
e. g. by Eringen (1999).

Xm
Oum

Figure 1. The material points of a micromorphic medium cepausmall but finite spach,, and can be
characterised by their volume centroid with the macroszppsition vectorX ; and the local
coordinate= in the material framet(= 0), andx,; and¢ in the spatial framet(> 0).

The microcontinuum’s mapping from the material to the spdtame is considered to be affine and reads

£(XM7 XM> t) = Xwm (X]W? t) : E(XM)v (1)

the second order tensgr,, defines the microdeformation. The calculation of the defmtrarc length(dx,,,)?
requires the introduction of a set of three independentrdeiion measures. Without loss of generality, we
establish the deformation gradidnj,, the microdeformatiory,, and its first gradient ®AD x,, to describe the
deformation of the physical body,; on the macroscale. In spite the obviously non-objectiveatttar of this set

of two-field quantities, the token choice is admissible,ihgin mind no macroscopic constitutive assumptions to
be met throughout this contribution.
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2.2 Balance equations

The balance equations for the micromorphic continuum thean be found making use of the principle of virtual
power, cf. Germain (1973b). In the sequel, the balance emsatire formulated for the static and isothermal
case in absence of volume forces and volume couples in thialspad the material frame. For the balance of
momentum we write

divT, = 0, DivP,y = 0O, (2)

with the Cauchy stress tensir,, and the first Piola-Kirchhoff stress tensBr, = (detFp;) T - F{{l. The
balance of moment of momentum reads

divQ3, + Ty —Sy = 0,  DIVQ3, + (Py —Suy)-Fl, =0, (3)

where the third order couplestress terér%;; and the second order hyperstress tefsgrof the Cauchy type have
been introduced, accounting for the transformat®ps= (det F ;) Sy, F1 ' andQ3, = (det Fp ) Q3,-FI L.
Finally, we find for the balance of energy

pey = T :gradxy, — (Tar — Sar) :DMJrQ%IfgradDM, 4)
pochy = Par:GRADX), — ((Par — Swr) - FL,) - oar + Q3 i GRAD iy, (5)

respectively. Eg. (5) can be resorted and we may write

_ _ . — * !
pochy = P GRADX), + QiM :GRAD Xy; + Sar : (XM) , (6)
where
xv = Xu—Fu, )
Py = P+ S, (8)
Su = (Su—Pu) -Fi -xi 'and 9
Qz;w = Q%I? (nglﬂ I) : (10)

Note that the expressiog,, is achieved only by a rearrangement of eq. (5). For the sneddirthation regime,

SEM describes the difference between the micro- and the mafonodation. However, this physical interpretation
does not hold for the finite deformation regime, where thieéhce between the micro- and the macrofield takes

the formx,; - Fas, cf. Eringen (1999); dnicke et al. (2009). In that cas,éM only covers a formal evidence
without a direct physical interpretation.

2.3 Scaletransition of the kinematic quantities

In order to characterise materials with strong inhomogéergeon the microscale, it is our intend to introduce a
consistent averaging technique replacing the heterogsn€auchy medium by a homogeneous micromorphic
medium. An appropriate methodology has been initially psgal by Forest and Sab (1998); Forest (1999). More-
over, it has been presented in detail Byigke et al. (2009). Thus, the kinematic quantities of ther@morphic
macrocontinuum can be identified in terms of a polynomial migeld and a periodic fluctuation of the hetero-
geneous Cauchy microcontinuum attached to the micromomplaterial point. To simplify matters, we assume
the attached microvolume to be a quadratic unit cell of tkae lsas depicted in fig. 2. Furthermore, we assume
the set(uys, Xx ;) to characterise the macrostate that best fits the micrascligplacement fiela,,, in the aver-
age over the attached microvolume. For the sake of simyplitie following investigations are restricted for the
twodimensional case.
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Figure 2. The 2-D microscopic volume element of the $fzattached to the macroscopic material point.
Its volume centroid is defined by the macroscopic positiottareX 5, the local coordinate is
indicated by the so-called branch vectoK (material frame, t=0).

|. e. we have to minimise the functional
Flun, Xpr) = <(um —uy — (X — 1) AX)2> (11)
with the volume averagé) = 1/V,, [, odV,,. We find

12
Au = u,, —uy = 0andy,, —I = l—2<um®AX> (12)

for the local displacements and for the micromotion, reBpely. Consequently, the particular gradients read

1
GRADuy; = (GRADu,,) and RAD x,; = —2<GRAD(um®AX)>. (13)

l2
If we furthermore assume the microscopic displacement feelie a polynomial of grade three, we may express
the microscopic displacement fiefsiu in terms of the macroscopic deformation quantities and waiob

Au = GRADuy - AX + %GRAD X (AX @ AX)

10 « 4 . )
_l72 Xm - E (AX@AX@AX) + Au. (14)

Whereas the linear deformation modes are dominated by theostapic displacement gradient, the quadratic
deformation modes depend on the gradient of the microdeftiom GRAD x;,, the cubic deformation modes
on the difference deformatiog,;= %, — Fa. At represents a fluctuation field due to the microstructural
periodicity. Having in mind the linear displacement fididi = GRAD u,; - AX + Au of a so-called first-order
FE? approach replacing a heterogeneous Cauchy microcontifyuahomogeneous Cauchy macrocontinuum,
e. g. Feyel and Chaboche (2000); Miehe and Koch (2002); Sedillet al. (2009), eq. (14) is pointing out the
extended character of the introduced projection rule.

Special attention should be paid to the interaction betwieemigher order deformation modes and the size of the
attached microvolume. Let us rewrite eq. (14) in a dimeris&s1manner,

Au AX 1 - AX AX
— = GRADup; - —— + | IGRAD X/ |: | — ® ——
l l 2 l l

Thus, we find the quadratic polynomial expansion to trarsier size of the microvolume from the micro- to
the macroscale by the expressicBRAD x,,. Comparable results have been found e. g. by Kouznetso@2)20
Larsson and Diebels (2006)dicke and Diebels (2009). By contrast, the cubic exparisisn per division by?,

a size-independent character which enriches the linearmetion modes and allows the system to describe more
complex but size-independent deformation mechanisms.

The projection rules egs. (14) and (15), respectively, especified for any micromorphic subcontinuum with any

restricted microdeformation, e. g. micropolar, microtdifet or microshear deformation, cf. Forest (200@)idke
et al. (2009).
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2.4 Hill-Mandel condition and homogenisation of stresses

After having derived appropriate projection rules defininBirichlet boundary value problem at the boundary of
the heterogeneous microvolume in terms of the extendedadeformations, we now have to find a connection
between the stress response of the Cauchy microcontinudnthanstresses, couplestresses and hyperstresses
of the micromorphic macrocontinuum. The fundamental aggiom to deduce the homogenisation rules is the
equivalence of the strain energy rate in the macroscopienaapoint and of the volume average of the microscopic
strain energy rate of the attached microvolume. This cati@ is commonly called Hill-Mandel condition, cf. Hill
(1963); Maugin (1992); Nemat-Nasser and Hori (1993). Thwesmay write

_ _ . — * 4
(P,,: GRADAU) = P, : GRAD U, + Q3  GRAD X + Sis : (XM) . (16)

Inserting eq. (14) in eq. (16) leads to the expressions

= 1
Py = v / (Pm ® AX) dA, (17)
" BB’V”

~ 1

Qv = 5 / (pm ® AX ® AX) d4, (18)
" 0B,

a 1

S%w = ev. (Pm ® AX ® AX ® AX) dA, (19)
" 0B,

wherep,, represents the microscopic surface traction vector. Gaimggthe periodic fluctuationdAa, one may
establish opposite parts of the microvolume’s boundd?y, andds3;,, in a way that the correlatioN ™ = —N~ is

m

satisfied for the outer normal vectors of correspondingtsa@ndB;;, anddB;, . Provided the existence of periodic

m*

displacements and anti-periodic tractions on opposites pdithe boundary, i. e.
At = Aa~ and p! = -p,, (20)

the periodic fluctuations do not account for the strain epdfgrthermore, the fourth order hyperstress telﬁgr
resulting from the homogenisation procedure has to befgeesl back to a second order quantity via the identity

5 60 oy - 4
S = *TQSM- E (21)

making use of egs. (14) and (16).

3 Microscopic deformation mechanisms of a periodic model-foam

After having completed the numerical homogenisation placein the sections before, we now want to implement
this second order FiEscheme. For that purpose, we introduce a perfectly peritdicture in 2-D with a cross-
like unit cell of the sizd?, representing the attached microvolume within the twdesapproach, cf. fig. 3a. The
microscale is resolved by quadrilateral volume elementh hiquartic Lagrange Ansatz functions. We assume
linear elasticity in a small deformation regime with YousighodulusY” = 200 GPa and Poisson’s ratio= 0.33.

For the microscale calculations, periodic boundary cémlithave been applied. In doing so, the fluctuatiiris
have been suppressed at the midpoints of every strut on tirelboy.

On the macroscale, a numerical shear test of an infinitely twmain with variable thicknegshas been carried
out. The experimental setup is depicted in fig. 3b. Beside®itichlet boundary conditions for the displacements,
the microdeformation on the top and the bottom boundary bas bestricted to equal the identity. The macrolevel
has been resolved by quadrilateral volume elements withaoiatic Lagrange Ansatz functions for both, the
displacement and the microdeformation field.
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u{\ﬂ = 0.01h, uf\m =0, )25\4 =1

X2 h

l
T—> Xan

7 _ I _ o <II _
< - uypr =0, upe =0, Xy =1

L

Figure 3. a) The underlying, perfectly periodic microvokirof the sizel = 20d. Linear elasticity in
a small deformation regime is assumed (Young’'s modtius: 200 GPa, Poisson’s ratio =
0.33). The struts are resolved by quadrilateral volume elemwitts quartic Lagrange Ansatz
functions. b) The experimental setup on the macroscalegidesa shear test of an infinite layer
(L — o0) of the variable thickness > [. At both, the top and the bottom boundary, the extended
degrees of freedom are prescribed to vanish, i. e. the nefooshation tensor equals the identity

X =1

Having in mind the restriction of the full micromorphic caomium to a micromorphic subcontinuum mentioned
in section 2.3, the question arises, if there is any reagenabtriction of the microdeformation subject to the
given microstructure, cf. fig. 3a. For that purpose, the qai@dldeformation modes in dependencexaf» and
Xam21 have been depicted in figs. 4 and 5 as well as their symmettiskew-symmetric counterparts. Due to the
macroscopic geometry given in fig. 3b, only derivativeisy»-direction have been taken into account.

The deformation states depicted in figs. 4 and 5 clearly aidithe skew-symmetric microdeformatign; 12 =
—X 21 to be the most natural choice which leads to the well-knoweropiolar continuum or Cosserat continuum,
respectively. For the small deformation regime, we mayewrit

XM11 = Xmze = 1 and —xuyn2 = Xwm21 = @um- (22)

It is the main issue of the following section to verify the folindication for a micropolar or Cosserat continuum.

XM12,2

XM21,2 I )

Figure 4. Several characteristic quadratic deformatiodeso
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Figure 5. Several characteristic quadratic deformatiodeso
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4  Two-scale calculation

To do so, we have accomplished several E&lculations of the above mentioned shear test, i. e., éomthcroscale,
using a Cosserat continuum on the one hand, compared toplieajon of a full micromorphic continuum on the
other hand. To furthermore demonstrate the difference dmmtvthe extended homogenisation scheme and a first
order approach, a third EEalculation deals with a Cauchy continuum on the macros&anally, to evaluate the
found results in a quantitative way, a reference calculalias been carried out, where the entire microstructure
of the macroscopic boundary value problem, cf. fig. 3b, hanbaicroscopically resolved by finite elements,

i. e. without making use of any PEnethodology. The results are given in fig. 6.

q -o-- Reference
1.2F7

\ —— Cosserat
\ --m-- Micromorphic
\ —a— First order FE

-]

|| Tar1z2]]

5 10 15 20 25 30 35 40
h/l ]

Figure 6. Effective shear stre§9',12||, normalised with respect to the constant result of the firdeio
FE? solution, over the ratia,/I.

At first, we find the reference solution to describe an indrepsffective shear stress with a decreasing rafih

i. e. the material features the well-known stiff boundaaydr effect, e. g. beyond many others Diebels and Steeb
(2002); Tek@lu and Onck (2008). Thus, the effective shear stress offleeance solution is abolit% higher for

h/l = 5 thanitis forh/l = 40. Furthermore, one may determine the effective shear siwessnverge for large
sample sizes, i. e. the stiffening effect of the boundargiaypecomes less pronounced if the sample size increases
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for a fixed microstructure. If we now consider the first ord&? Bolution, we find that, as expected, the solution
does not behave sensitive for the stiff boundary layer. Ehikie to the lack of higher order deformations, espe-
cially bending modes, which dominate the deformation ctosthe boundary. But, obviously both, the reference
and the first order FEsolution, seem to converge towards the same value for lamgele sizes.

By contrast, the Cosserat solution and, only in a slighthakeg way, the micromorphic solution, are able to
reproduce the bending effects quite well. But we still olssex certain difference between the reference and the
second order FEsolutions. E. g. fom/l = 10, the effective shear stress of the micromorphic calcutaiso
about3% weaker than the reference value. One possible explanatiothis slight difference could be found

in the choice of the microscopic Dirichlet and periodic bdary conditions, which may be chosen too weak.
Furthermore, we observe the micromorphic solution to bekerethan the Cosserat solution. This effect can be
interpreted as a consequence of the less restricted caacddhe full micromorphic medium, which allows for
deformation modes not included in the Cosserat theory. Bygeguence, the Cosserat solution only pretends to
result in a more exact result than the micromorphic soluti®ut, obviously, this effect is very small and may be
neglected in our case.

To illustrate the increasing influence of the stiff boundiayer with decreasing macroscopic sample size, the
microrotation,, has been plotted over the normalised macroscopic sampdéathieir different ratiosh /1 in
fig. 7.

ol — h/l =40 |
L ——h/l=20
T 4‘. == h/l =10
I T h/l=5
9%

—5E-3

-~ e _- —- — — =

zaz/h [

Figure 7. Microrotationp,, = —xa12 = w21 for the Cosserat calculation for different sample sizéis
over the normalised height of the sample.

Finally, we want to point out the higher order deformationd®® to be meaningful from the physical point of
view. Thus, in fig. 8, two representative microscopic defation states are depicted. To do so, the macroscopic
deformation measures have been evaluated for the micrdmeoRE® solution (sample sizé = 201) at the
positions X ;o = 107 and X2 = 20(. Afterwards, they have been projected back to the boundatiieo
attached microvolume in order to find the given visualisatiGonsidering fig. 8a, i. e. the situation far away from
the boundary, we find the microvolume under shear withoutlsmding deformation. Obviously, the situation
changes completely if we reach the boundary. Here, the bgralipersede the shear effects, cf. fig. 8b.
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a) b)

Figure 8. Two representative microscopic deformatiorestabserved in the micromorphic ¥Eolution
for the macroscopic sample size= 201 at the positions a}X ;o = 10/ and b) X, = 201.
To generate the above plots, the macroscopic deformatiantijies have been reprojected to the
microscale using eq. (14).

5 Conclusionsand ongoing wor k

To summarise the present study, we want to highlight aga&irfidhind results in a clearly arranged manner:

¢ Ithas been shown the higher order numerical homogenisagiproach, dealing with a micromorphic contin-
uum theory on the macroscale, to be able to describe théetifidary layer effect under shear deformation
for a given microstructure. This is not possible applyingst forder approach.

e A guantitative comparison to a reference calculation witbroscopical resolution has been accomplished.
The small but measurable difference in the effective shigassmay be explained by the special choice of
boundary conditions on the microlevel.

e By studying the deformation mechanisms of the proposedasiiarcture, it has been possible to restrict the
micromorphic macrocontinuum to undergo skew-symmetrirodeformations, i. e. to be of the micropolar
or Cosserat type, respectively. The results of thé &Hculations support that assumption.

Doubtless, a general disadvantage of any EBlculation might be that it requires a certain numericébref
especially if carried out for finite deformations, nonlineaaterial behaviour and for less regular microstructures.
But otherwise, a purely macroscopic extended continuumeisgpposes the identification of extended material
parameters which are, in general, hard to find in physica¢exgents. Applying the higher-order homogenisation
approach, the macroscopic constitutive modelling is stifb the well-defined microlevel. The definition of any
extended material parameter is a priori circumvented. Tthgsproposed homogenisation methodology seems to
be a helpful tool to describe microtopologically-driveryihér order effects and it may help to achieve a deeper
understanding of the interaction between microscopicgsses and the effective macroscopic material behaviour.

In the future, further efforts have to be carried out to erplie influence of the microscopic boundary conditions
on the effective macroscopic stress response. Furtheriimresent study has to be extended to a various set
of more complex microstructures in different macroscopaxding cases. Thereby, special attention has to be paid
to the general limits of the proposed mean-field theory,éfficrostructure exhibits stochastic irregularities and
imperfections (micro-fractures, cavities, dislocatiets.)

Acknowledgement: The financial support by the Deutsche Forschungsgemeifti§€iaG) under the grant DI
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