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Homogenization methods for multi-phase elastic composites:
Comparisons and benchmarks

B. Klusemann, B. Svendsen

Usually homogenization methods are investigated regartlie volume fraction of the inclusion. In this paper

classical homogenization methods are recalled and contpamnethe basis of the contrast in the elastic properties
of the constituents. This has a significant influence on tlveracy of the homogenization method. In addition
two relatively new approaches, the ESCS and IDD method,rdreduced and compared to more standard ho-
mogenization approaches. The analysis of these methodsghat the IDD method is an improvement due to its
simple but universally applicable structure. A number ahparisons of these and other analytical approaches
are carried out with the corresponding finite element result

1 Introduction

The prediction of the macroscopic stress-strain respohseroposite materials is related to the description of
their complex microstructural behavior exemplified by th&eraction between the constituents. In this context,
the microstructure of the material under considerationaisidally taken into account by representative volume
elements (RVE). In previous decades and especially in teeraie of computers, analytical and semi-analytical
approximations based on RVEs and mean-field homogenizatbemes were developed. Mean-field homoge-
nization methods were first developed in the framework addinelasticity and are now well-established. These
schemes provide efficient and straight forward algorithanrdtie prediction of, among other properties, the elas-
tic constants (e.g. Mori-Tanaka method, Lielens methodléns, 1999), self consistent scheme). Moreover, the
results obtained can be shown to be upper or lower boundg b solution of the underlying problem in most
cases (e.g. Woigt-Reuss, Hashin-Shtrikman bounds). (geeGross and Seelig, 2001; Nemat-Nasser and Hori,
1999; Pierard et al., 2004).

All these methods are based on two steps to predict the npiasesponse. In a first step, a local problem for a
single inclusion is solved in order to obtain approximasidor the local field behavior as outlined by Eshelby for
elastic fields of an ellipsoidal inclusion (Eshelby, 195The second step consists of averaging the local fields to
obtain the global ones (e.g. Mercier and Molinari, 2009).

In this context, the main requirements on homogenizatiothaws for predicting the effective properties, according
to Zheng and Du (2001) are

a) a simple structure which can be solved explicitly, suet ghphysical interpretations for the behavior of all
the components involved is possible;

b) avalid structure for multiphase composites with varimasusion geometries, isotropy and anisotropies;

¢) an accurate model for the influence of various inclusiatritiutions and interactions between inclusions
and their immediately surrounding matrix.

However, none of the aforementioned methods is really abfalfill these requirements completely. The major
disadvantages of these methods are exemplified by the dhtusion distributions are unaccounted for and that
the properties of the surrounding matrix material does ntgrehese methods directly.

An interesting approach was presented by Guinovéaaz®t al. (2005), namely the recursive asymptotic homog-
enization scheme (RAHS), which takes the variation of prigearound cylindrical fibers into account by using
multi-phase fibrous elastic composites, wherein the cstts exhibit transverse isotropy.
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A new micromechanical model has been proposed by Zheng anl@@1), namely the so-called effective self-
consistent scheme (ESCS), which is based on the three-piadel which corresponds to the generalized self-
consistent method (GSCS) (see Christensen, 1990). Inrde-ffhase model, the inclusion is embedded in a matrix
which itself is embedded in an unbound, initially unknowfeefive medium. This GSCS method fulfills requests
b) and c) but is still rather complicated in terms of its apafion due to its implicit structure and it is also restritte
to spherical or cylindrical inclusion. The ESCS overconfesrestriction to spherical and cylindrical inclusions.
It still fulfills the requests b) and c) but has also a compédastructure. A simplified and explicit version of the
ESCS method, which is referred to as the Interaction Dirextvative (IDD) estimate was proposed satisfying all
three requests. This method has a very simple structurectei#in physical meaning of the single constituent parts.
(Zheng and Du, 2001; Du and Zheng, 2002) show results for dislibution, although the formulation is also
valid for spherical inclusions. This encourages a firstus@n of this method regarding the inclusion as well as
its comparison to classical homogenization schemes piebénthis paper.

In many papers dealing with classical homogenization mithesults in terms of effective material properties
are presented depending upon the volume fraction of theisiani. Here, we additionally present the results
and compare different homogenization methods in terms efr#tio of stiffness of the different constituents,
respectively.

The outline of the paper is as follows: In Section 2, basicmriggld homogenization methods are briefly discussed.
Section 3 provides an overview on the ESCS and IDD approacltomparison of different homogenization
schemes with FE-results for different volume fraction of ihclusion as well as different stiffness ratios are
provided in Section 4. The paper concludes in section 5 withramary and outlook.

2 Review of some standard homogenization methods

In this section we consider linear elastic composites uis#hermal conditions. Primarily, consider a macro-
scopic material point at a positioX in a fixed Cartesian frame. In linear elasticity the macrpgcatresses
T™macre and straingg™2<*© are related via the macroscopic elasticity tergQr,,, with

Tmacro — C Emacro. (1)

Homogenization procedures are mainly based on the definifi@ local surrounding of a macroscopic material
point with volumeV” and the boundaryV’. This volumeV represents a characteristic part of the material which
is sufficient to describe its structure and behavior, retyg. This implies that the size of heterogeneities at
the microlevel has to be one scale smaller than the size ofdluene V' of the macropoint. As it was shown by
Nemat-Nasser and Hori (1999) and Gross and Seelig (2001Hithandel condition is fulfilled by applying
linear displacements, periodic boundary conditions ofaumi tractions oroV'. Therefore the average strain in the
volumeV is equal to the macro strain.

The previous explanation emphasizes that the macro étgdgasorC, ., averages out the heterogeneities on
the microlevel and characterizes a homogeneous behawioe atacroscopic level. Hence, it is also referred to as
effective elasticity tensaf*, and the stress-strain relation at the macroscale can bdteswto

(T) =C(E), 2)

for a multiphase composite consistingrophasesg,, = V,,/V denotes the volume fraction of each phaseith
respect to the total volumié of the RVE, which are subjected to the restrictipi,_, ¢, = 1.

We restrict the composite to the matrix-inclusion type vgtrfect interfacial bonds between inclusions and their
immediate surrounding matrix. The matrix phase is labeled/band the inclusion is assumed to be of type-i
and therefore labeled by The volumel” at the microlevel is subjected to linear boundary displaa@siwhich
corresponds to a macroscopic str&lf. The microscopic strain within the RVE depends upon arsilijtunknown
fourth-order tensos (x) with

E(z)= A(z)E° (3)

referred to as concentration tensor. In the followiggdescribes the volume average.4fz). As this average
is done phase-wise, this results in phase wise constanentation tensorsi,. Hence, the effective elasticity
tensor can be calculated via

n

C = oA, 4)

a=1
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For the special case of an ellipsoidal inclusion in an irdimitatrix, the Eshelby solution can be used to determine
the so far unknown concentration tensgts. As shown by many authors (e.q Gross and Seelig, 2001; Nemat-
Nasser and Hori, 1999), the strain in the inclusion can beutated by

E'= AVE° = [T 4+ 8Cy;'(C; — Cy)] ™ E° = const (5)

whereZ designates the fourth-order symmetric identity tenSgrthe elasticity tensor of the matrig; the elas-
ticity tensor of the inclusion anfl the Eshelby tensor. In general, the Eshelby tessbas both minor symmetries
but no major symmetry. Results for ellipsoidal inclusiom ¢ee found in Mura (1982). For the special case of a
spherical inclusion and isotropic material the Eshelbgdes can be calculated via

Sz%al@[—&-ﬁ(IDI—%I@I} ©)
with 1+ 2(4 5)
12 — oV

*=3a-y PTma—y 0

wherev is the Poisson’s ratio of the matrix material. Heferepresents the second order identity tensor and we
make use of the tensor produ¢t4d ® B)C := (B -C)A and(A O B)C := AC B of any second-order tensors
A B.C.

The same results as for strain boundary conditions can laénglot by applying uniform stress boundary conditions
at the boundary of the volumE which correspond to a macroscopic str@&5 The microscopic stress in the
volumeV is related by a unknown fourth-order tengdwith

T (z) = B(x)T" (8)
being the concentration tensor. In the followiigdescribes the volume average ®fx), where this results in
phase wise constant concentration tengbrsTherefore the effective elasticity tensor can be caledlaia

-1

n
=D cCiAn | - 9)
a=1
In the following subsections some well-known homogen@atchemes as well as two relatively new methods are
depicted. Schematic illustrations concerning these seBare given in Figure 1.

2.1 Mori-Tanaka method

The Mori-Tanaka method approximates the interaction betwtbe phases by assuming that each inclusien
embedded, in turn, in a infinite matrix that is remotely lohtg the average matrix straild,, or average matrix
stressT,, respectively. Therefore the strain in the single inclosian be calculated by

Ej = A},EY, (10)

where the influence tenset} ; is given by
AL = [T+ SuCy (Cr; — Cur)] - (11)
In the case of ellipsoidal inclusions, the Mori-Tanaka hgettzation approach leads 6, ; = A?(MTMEO,

whereA; .y, ; is obtained by
-1
Ay, = |6 + enm(AL) ™+ Z AL (AL . (12)
j

With this results we can calculate the effective elastitatysor
Coury =Cn + Z ¢;i(Cri — Ca) Ay - (13)

In Benveniste (1987) the method is interpreted in the sdree'¢ach inclusion behaves like an isolated inclusion
in the matrix seeind®,,; as a far-field strain”.
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Figure 1: A schematic overview on different homogenizagohemes for estimating the average stress or strain,
respectively.

2.2 Hashin-Shtrikman bounds

Following the approach of Hashin and Shtrikman (1963) ldadke equation for the upper and lower bound of
the elasticity tensor for a two-phase material:

—1 —1
Cluss) = Ci + e [(CM—CI) 1+cIsIc;1} . Clus_y = Cur + 1 | (G — Cy) 1+CMSMC1\7[1} . (14)

As can be seen the upper Hashin-Shtrikman bound correspomils Mori-Tanaka result. The upper bound can
also be obtained with the Mori-Tanaka method just by intanging matrix and inclusion material.

2.2.1 Lielensmethod

Lielens (1999) proposed the following interpolative horaoigation model for a two-phase material:
—1
* c+ CIQ x—1 o+ C% x—1

Clw) = Kl T T )C(MTl) T Couny| > (15)
inwhichC i, is the estimation for the effective elasticity from the M@&naka method” ;.. , is the effective
elasticity tensor following from the inverse Mori-Tanakapaoximation in which, for a two-phase material, the
smaller volume part becomes the matrix material and viceavetherefore the Lielens method can be seen as a
properly chosen interpolation between the Mori-Tanakaiavelse Mori-Tanaka method and between the Hashin-
Shtrikman bounds, respectively. This model is also refetoeas the Interpolative Double Inclusion model in
literature (e.g. Pierard et al. (2004)).

2.3 Sdf-consistent scheme

The self-consistent method approximates the interactawden the phases by assuming that each phase is em-
bedded in a infinite volume of an effective medium with elagtiopertiesC* of the composite. Therefore the
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effective elasticity stiffness of the material passes th®matrix stiffness,; = C*) and we obtain the influence
tensor »
Aysosyi = [L+8 CH (¢, —C)] . (16)

Due to the fact that the influence tenséf(scs) , depends on the effective elasticity tensiyy, the equation is
implicit and nonlinear.

Ciscsy =Cum + Z ¢i (Cri —Cn) Ayscs)i (17)

Algorithmically, the method requires an additional iteratoop to calculat€’¢,. In general, the self-consistent
method gives a sufficient prediction of the behavior of polgtals but it is less accurate in the case of two-phase
composites as shown by (Pierard et al., 2004, see).

3 ESCSand IDD approach
3.1 Effective self-consistent scheme (ESCS)

The effective self-consistent scheme (ESCS), proposedhbp@and Du (2001) is based on the three-phase model.
In the three-phase model the average st{&9ys over all types inclusions is estimated by that a single inclusias
embedded in a finite matrix material, the matrix atmosphehich is in turn embedded in the unbounded unknown
effective medium, shown in Figure 2 a). In the following tinelusion together with its matrix atmosphere will
be called inclusion-matrix cell and will be denoted by a suips 'D’, which implies that this cell has to be
representative for an inclusion distribution.

Shortly recall the assumptions made in order to obtain tfec®fe elasticity tensor for this method. For a more
detailed description see Du and Zheng (2002). The voluniesubjected to the uniform stress distributiBh. In

the first step it is assumed that the inclusion-matrix cely @onsists of the matrix material, leading to stress and
strain being uniform according to the Eshelby theorem akithggthe form

EP =Cy'TP, TP =(Z-QpH)"'T° (18)

where),, is the eigenstiffness tensor of the cell with respect to tilkehown effective medium, artt describes
the compliance increment, defined by
H=C"1—Cy (19)

Qp, is calculated by
Qp; =C (T - S)) (20)

whereS; denotes the Eshelby tensor for the cell embedded into theawrk effective material.

In the next step the uniform strafi® has to be incorporated in the original three-phase modél@ny by apply-
ing extra tractions-Pn, with the outward normat on the inclusion boundary. This additional stress contidiou
is calculated by

TiD = (Cl,i - CM)EP' (21)

As depicted in Figure 2 b) and c) the solution of the origimalgtem is thus obtained by the superposition of two
seperate problems. A key ingredient in order to establislHHBCS estimate is the approximation of the average
stress, denoted W¥;* within the inclusion for the decomposed problem as showrigmifé 2 ¢). In Du and Zheng
(2002) it has been shown, that this average sti&ssan be approximated by an average stress, denotdd by
which occurs in a two-phase reference problem where thetai#emedium is replaced by the matrix material as
shown in Figure 2 f). The error due to this approximation ith@ second order in

By definition, the stress and strain are uniform in the maitinosphere in Figure 2 b) and equalft§ and EP.
Therefore a two-phase model with a single inclusion embeddé¢he unbounded matrix material is considered,
which is subjected to a uniform stress filf and°n on the boundary of the inclusion. The obtained strain
field is constant and equal B8P°. Therefore the problems in Figure 2 b) and e) are completgjvalent. Next
the superposition of the two problems illustrated in FigBre) and f) leads to a much simpler problem of the
matrix-inclusion problem. The average stress over theigich results in

(7Y = (T + QM) (T — Qp,H) ' T°. (22)
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Figure 2: A schematic overview on the ESCS approach (Zheddpan2001).

As mentioned before, the substitution of the problem in Fégic) by e) leads to an error 6f(c?) compared to
(T')$** and the exact average strég3); in the inclusion for the whole estimate. Therefd¢#); can be replaced
by (T')¢5s. The average strain tens@F) can be expressed by (see Nemat-Nasser and Hori (1993))

(E) =Cy' E° + ) ci(C;7' — Cy)(T),. (23)
Adopting the strain-equivalendd&) = C*~ 1T yields to the relation
HTO :ZHz‘<E>i’ (24)
whereH, are defined as the compliance fluctuations
H, =C; ' —Cy. (25)
Using (25) together with (18) leads to an implicit equationthe compliance increment represented by
H=HN T -QpH)"" (26)

which results in an error of third order dependent of. can be interpreted as the dilute estimate and is calculated
by
HE =S e (M7 +00) . 27)

This relation can therefore be used to determine the effeetasticity tenso€*, thereby obtaining the relation
Cliscs) = (H + Cu) (28)

Zheng and Du (2001) showed that in the case thdgl| are identical, denoted by, the solution of the ESCS
method coincides with an effective stress model for theregtion of the average stress over any inclusion, which
is embedded in the unbounded matrix material which is stdjeto a modified uniform far-field stre§s° given
by

TP = (T - QpH) ' T° (29)
rather than the real stre§¥’ which is also the physical explanation for the name preffectivein the term of
ESCS.
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3.2 Interaction direct derivative (1DD)

Zheng and Du (2001) derived an explicit version for estingdi* instead of an implicit equation like (28), namely
the interaction direct derivative (IDD) estimate. First tight side of (26) is expanded to

H=H'+> HOpH, (30)

whereH?d = Y, ‘H{. This yields to an error of third order in Due to the fact tha®Y, is an approximation of
Qp, with an error of first order i, this yields to the approximate solution

-1
Hidd = (I - ZH?Q%@) H (31)

and the effective elasticity tensor
* i -1
Cliaa) = (H9+Cy) . (32)

This solution is called interactive direct derivative esdte for the effective elasticity tens@f, ;. To estimate the
average stress and strain, respectively, of any inclusidminclusion is embedded in the matrix material which is
subjected to a modified remote boundary tracflfiv. with

-1
TE = (I - ZQ%&H?) T° (33)

called the effective stress. As can be seen the IDD estiﬂf;:ggj has always an explicit structure, which only

involves physical and quantitatively well-defined quaesitdue to its derivation. The IDD method is valid for any

physically possible high concentration of inclusions amalso capable of taking any inclusion distribution into
account. If the inclusions are of the same type a much easigr ¢an be obtained (see Zheng and Du (2001)).
In this case it can also be shown that the IDD and Mori-Tanakianate coincide with each other in the sense of
energy-equivalence. Note that

-1
™ = (z -3 Q?“H;*) T° (34)
represents the analogous expression to (33) in the corftéhe dMori-Tanaka method.

4 Comparison of different homogenization approachesfor two-phase composites

Throughout this section we assume that the matrix and imociusre isotropic and only two-phase composites in
isothermal linear elasticity are considered. We compageptiediction of the macroscopic behavior of different
classical mean-field homogenization methods with FE resiitained from a RVE. Furthermore we will inves-

tigate the prediction of these methods concerning diffieséifiness ratios of the inclusion-matrix pair. Finally a

comparison is made regarding the ESCS and IDD method.

Firstly the well-known mean field homogenization methodstfeo different stiffness ratios over the inclusion
concentration are investigated. Figure 3 shows the pestlictacroscopic elastic moduliés® for a combination
of £y = 210 GPa andE; = 430 GPa, where the subscript M is the matrix material and | thiugion. In the
following the Poisson ratio is assumed tobe= 0.25 for all phases. The concentratiardescribes the volume
fraction of the inclusion. Figure 4 shows the predicted roscopic elastic modulug™ for a combination of
Ey; = 21 GPa andt; = 210 GPa.

As expected the different methods deviate distinctly fraoeother for a higher contrast in the material properties
of the matrix and inclusion. For a small contrast, as showrigure 3 for a ratio of~2, only small differences

in the prediction of the elastic modulus using the diffenaethods can be seen. In this context we would like to
emphasize the well-known fact, that the Voigt-bound regmés the maximum upper bound whereas the Reuss-
bound defines the minimum lower bound of the stiffness. Vaigd Reuss method predict in general a distinct
different Young’s modulus, which can already been seen femall stiffness ratio. Numerous narrow bounds
are provided by the Hashin-Shtrikman bounds where all gbhedictions are located. To be able to distinguish
better between the different homogenization methods, westigate the different methods on Figure 4 where the
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Figure 3: Prediction of effective Young’s modul&as Figure 4: Prediction of effective Young’s modulfag

with different homogenization methods fdf,;, =  with different homogenization methods fds,;, =
210 GPa, E; = 430 GPa andv = 0.25. (MT = 21 GPa, E; = 210 GPa andv = 0.25. (MT =
Mori-Tanaka; SCS = self-consistent; HS = Hashin- Mori-Tanaka; SCS = self-consistent; HS = Hashin-
Shtrikman bounds; LIE = Lielens methods) Shtrikman bounds; LIE = Lielens methods)

predictions are done for a stiffness ratio of 10. Here thiedihce between the methods is more clearly visible over
the volume fraction. In this case the Hashin-Shtrikman ldgware also quite far from each other. The Mori-Tanaka
method shows a jump in the predicted elastic modulus foreatnations around 50 % which results from the fact
that in the Mori-Tanaka scheme the matrix material is defia@dhe material having the higher concentration.
This shows that, depending on which material is considevdzbtthe matrix material, the Mori-Tanaka estimate
coincides with the lower (for matrix = softer material) oethpper (for matrix = harder material) Hashin-Shtrikman
bound.

For a small volume fraction of inclusions up36% the Mori-Tanaka, self-consistent and Lielens estimatelyea
coincide with each other. However,reason with increasiolgme fraction the difference in the predictions is
rather pronounced. The reason for this is the different@ppration of the effective properties which leads to
errors from the first order upwards én This leads to wrong predictions for high volume fractioRhysically it

is not possible to realize higher volume fractions tfiafh, as known for face-centered cubic crystal structure, for
equal spherical inclusions without letting the inclusigineres intersect each other. It has been proven that the
Mori-Tanaka method is generally incorrect for higher cancations of inclusions in Casiada and Willis (1995).

But it is hard to decide whether the Lielens estimate or tlifecemsistent scheme provide better results for higher
volume fractions. A comparison with the obtained FE-resaftideal spherical inclusion for volume fractions up
to 30% will be provided later in this section.

Further analyses of these homogenization methods forreliffestiffness ratios and concentrations are presented
in the following. Figure 5 to 10 provide 3D-surface plots bétprediction for the different methods for stiffness
ratios up to 20. Due to the fact that it is not possible to comphe behavior over different stiffness ratios by
plotting the surfaces above each other, in Figure 11 andd Besulting effective elastic modulus® normalized

by E,, over the stiffness ratio of inclusion and matrix materialiwn.

As can be seen from the surface plots, the behavior of the genizpation methods over different stiffness ratios is
changed for different concentrations of the inclusion wnduiractione, however, the general behavior remains the
same. The Voigt estimate shows a linear dependence of thetieéf elastic modulus with respect to the volume
fraction of the inclusion representing an upper bound agiowed before. The Reuss estimate is the lower bound
which only shows an increase of the effective elastic magliiuthe end. Afore it remains at a nearly constant
level. The same behavior can be observed for the upper aret ldashin-Shrikman bounds only at a higher or
lower level, respectively. For a relatively low volume fiiao of inclusion the Lielens and self-consistent estimate
coincide result in curves showing only small increasé’6f E\,; with respect tak,; /E,,;. For a huge amount of
inclusions ¢ = 0.8) both methods deviate from each other, where the self-stamgishows a nearly linear behavior
with increasing stiffness ratio, whereas the Lielens estitnshows a more quadratic behavior. Both are quite close
to the Hashin-Shtrikman bounds which is depicted for highcemtrationc of inclusions in Figure 4. As can be
seen by interpretation of Figure 12, the stiffness ratiodraBnmense effect on the effective properties, especially
at high volume fractions of inclusion, and therefore the bgemization methods should also be checked for their
behavior for high stiffness ratios as done here, insteadlelysinvestigating their behavior at different volume
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4.1 Comparison with FE-results

Before we compare these well-known homogenization methditisthe ESCS and IDD estimate, first the so far
obtained results are compared with Finite-Element sirariat For this purpose RVEs with randomly distributed
inclusions are generated for different volume fractioniggishe software DIGIMAT. The model is generated by
successively placing randomly distributed equally sizglteses into the matrix material until the desired volume
fraction with the desired number of spheres or voids is redchf a randomly placed sphere intersects another
already placed sphere, it is attempted to place that pé&tisphere differently using yet another random generator.
The resulting models with spherical inclusion are shownigufe 13 and with spherical voids in Figure 14. The
FE simulations were done with the software ABAQUS/Standgulying linear displacement boundary conditions
to three faces of the model such that these are fixed in thegdemive normal direction so that every degree of
freedom is fixed on one single face. The displacement isegpln another face in its normal direction.
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Figure 13: RVE with randomly distributed spherical inclu- Figure 14: RVE with randomly distributed voids of a
sion of a volume fractiom = 0.2 volume fractionc = 0.2

In Figure 15 the results of the different homogenizationhuds are compared for a stiffness ralig/ E,; = 10

with the obtained results from the FE-simulation up to ausin volume fraction of = 0.35. It can be stated
that for the case of spherical isotropic inclusion the Lislenethod shows the best agreement for higher inclusion
volume fractions which was also earlier found by Pierard.§R804). But as seen from Figure 16 with increasing
stiffness ratioE; / £, the FEM-results yields to a softer behavior as the Lieleeshod but it still predicts the
best agreement compared to the other methods.
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effective Young’s modulug€r* with FEM-results for  effective Young’s modulugs* with FEM-results for
Ey; =21 GPa,E; = 210 GPa ands = 0.25. different stiffness ratio; / E,; for ¢ = 0.3

4.2 Investigation of ESCSand IDD approach

. 0.
void porosityc [-]

Figure 17: Comparison of different homogeniza- Figure 18: Prediction of effective Young's modulus
tion results and numerical evaluation for the effective E* of ESCS method for different concentrationas
Young's modulusE™ of homogenously distributed and stiffness ratio&; / Ey,

spherical voids embedded in an isotropic matrix.

Now investigating the ESCS and IDD method, in order to vetifyimplementation of both approaches. Therefore
the effective Young’'s modulug&™* is calculated for an isotropic matrix containing sphericales, to compare
these results with results obtained by Zheng and Du (200igur& 17 shows the resulting effective Young'’s
modulusE* over the void porosity: for v = 0. For comparison, we also plot the corresponding self-cbeist
scheme, Lielens method, Hashin-Shtrikman, Voigt and Rieossds as well as the numerical results obtained from
FEM-simulations. The Reuss bound as well as the Hashirk&fdn lower bound and Lielens method provide
inappropriate results, so that they are not useful for Vangsstiffness of one phase. The self-consistent scheme
also predicts a very soft behavior, where the maximum pé&thjtorosity isc = 0.5. The ESCS method does not
predict a complete loss of stiffnessat= 1 which is of course inappropriate. Here it is clear that thettmod is
only valid for small void porosity:.

It can be seen that the IDD method agrees perfectly with the-Wamaka method or Hashin-Shtrikman upper
bound, respectively. Zheng and Du (2001) showed that therigihod provides for the most materials the best
agreement with numerical simulations, especiallydfer 1. The here presented results agree quite well with their
reported results.

Therefore in the following the behavior of the ESCS and IDDthod is investigated regarding isotropic homo-
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Figure 20: Comparison of homogenization results
for effective Young's modulus* for different
stiffness ratiog;/ £, for ¢ = 0.3

Figure 19: Comparison of homogenization results for
effective Young’s modulusz* for E,; = 21 GPa,
E; =210 GPa ands = 0.25.

geneously distributed spherical inclusion embedded irsatmapic matrix for different stiffness ratios. In Figure
19 the predicted effective Young’s modul@s is shown over the inclusion volume fractierfor a stiffness ratio
E/E\ = 10. As can be seen for the case of voids, the IDD method agrebshgtMori-Tanaka estimate. The
ESCS predicts a lower effective stiffness rafib than the IDD method. Although both methods predictfer 0.3

and a stiffness ratid; / E,; = 10 the same effective Young’s modulus, with increasing st ratio the ESCS
methods predicts a slightly lower result as shown in FigreRurthermore the ESCS method has its numerical
limits in predicting the effective behavior. Investigagithe behavior in Figure 18 shows that this limit depends on
both factors, inclusion volume fraction and stiffnessaafrherefore this method provides only good results for
low stiffness ratios and low volume fractions, moreoves timethod is more complex than the IDD method. The
results found here from numerical analysis confirm the tesnalytically done by Du and Zheng (2002) where
the effective elasticity tensor, here exemplary for thengss modulusE, fulfills the following conditions:

Egog S E" < Ejgq < Egges a8 By < By

. (35)
Egscs < Bigg S B < Egeg as By < Ey

Here it should also be mentioned that the Ponte GastaWillis (PW) estimate (cf. Castada and Willis (1995))
coincides with the IDD-method if all inclusion-matrix celhave identical shape and orientation for identical
inclusion-interaction distribution, however, the PW doesg have an explicit form in all cases which makes the
IDD estimate more favorable.

5 Summary and Outlook

In this paper, a number of standard homogenization meth@deegiewed and their behavior is compared. The
comparison was performed with regard to the inclusion veadraction, which can usually be found in the liter-
ature, but also regarding the contrast in the elastic dmestis. It was shown that the contrast has a significant
influence on the estimates of these methods and therefote hasaken into consideration. Results obtained from
FEM were compared with these predictions and it was showtre8ecially the Lielens method agrees quite well
with the FEM results.

Furthermore two relatively new approaches, the ESCS andnigihod, were recalled and compared to the clas-
sical homogenization results. The results obtained shatvaturther analysis of the IDD method especially in
comparison to the Mori-Tanaka estimate, is reasonabledlits formulation. The IDD estimate has an explicit
structure, with a physical explanation of the involved comgnts and it is valid for multiphase composites. It also
takes into account the influence of the interaction betweelusions and their surrounding matrix. Formally the
method has a universally applicable form to various induslistributions. Therefore this method fulfills the main
requirements on homogenization methods as mentionedebefaromparison with the RAHS by Guinovartdx

et al. (2005) concerning transverse isotropy, a first stdgeanleling anisotropy of the effective medium by in-
cluding concentric circular cylindrical fibers, is an irdsting point of investigation to verify the applicability o
the presented methods. Further comparisons concerniiegedtif inclusion properties as well as inclusion shapes
and including anisotropy represent work in progress anbbsireported on in future work.
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