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Homogenization methods for multi-phase elastic composites:
Comparisons and benchmarks

B. Klusemann, B. Svendsen

Usually homogenization methods are investigated regarding the volume fraction of the inclusion. In this paper
classical homogenization methods are recalled and compared on the basis of the contrast in the elastic properties
of the constituents. This has a significant influence on the accuracy of the homogenization method. In addition
two relatively new approaches, the ESCS and IDD method, are introduced and compared to more standard ho-
mogenization approaches. The analysis of these methods shows that the IDD method is an improvement due to its
simple but universally applicable structure. A number of comparisons of these and other analytical approaches
are carried out with the corresponding finite element results.

1 Introduction

The prediction of the macroscopic stress-strain response of composite materials is related to the description of
their complex microstructural behavior exemplified by the interaction between the constituents. In this context,
the microstructure of the material under consideration is basically taken into account by representative volume
elements (RVE). In previous decades and especially in the absence of computers, analytical and semi-analytical
approximations based on RVEs and mean-field homogenizationschemes were developed. Mean-field homoge-
nization methods were first developed in the framework of linear elasticity and are now well-established. These
schemes provide efficient and straight forward algorithms for the prediction of, among other properties, the elas-
tic constants (e.g. Mori-Tanaka method, Lielens method (Lielens, 1999), self consistent scheme). Moreover, the
results obtained can be shown to be upper or lower bounds to the true solution of the underlying problem in most
cases (e.g. Voigt-Reuss, Hashin-Shtrikman bounds). (see e.g., Gross and Seelig, 2001; Nemat-Nasser and Hori,
1999; Pierard et al., 2004).

All these methods are based on two steps to predict the macroscopic response. In a first step, a local problem for a
single inclusion is solved in order to obtain approximations for the local field behavior as outlined by Eshelby for
elastic fields of an ellipsoidal inclusion (Eshelby, 1957).The second step consists of averaging the local fields to
obtain the global ones (e.g. Mercier and Molinari, 2009).

In this context, the main requirements on homogenization methods for predicting the effective properties, according
to Zheng and Du (2001) are

a) a simple structure which can be solved explicitly, such that a physical interpretations for the behavior of all
the components involved is possible;

b) a valid structure for multiphase composites with variousinclusion geometries, isotropy and anisotropies;

c) an accurate model for the influence of various inclusion distributions and interactions between inclusions
and their immediately surrounding matrix.

However, none of the aforementioned methods is really able to fulfill these requirements completely. The major
disadvantages of these methods are exemplified by the fact that inclusion distributions are unaccounted for and that
the properties of the surrounding matrix material does not enter these methods directly.
An interesting approach was presented by Guinovart-Dı́az et al. (2005), namely the recursive asymptotic homog-
enization scheme (RAHS), which takes the variation of properties around cylindrical fibers into account by using
multi-phase fibrous elastic composites, wherein the constituents exhibit transverse isotropy.
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A new micromechanical model has been proposed by Zheng and Du(2001), namely the so-called effective self-
consistent scheme (ESCS), which is based on the three-phasemodel which corresponds to the generalized self-
consistent method (GSCS) (see Christensen, 1990). In the three-phase model, the inclusion is embedded in a matrix
which itself is embedded in an unbound, initially unknown effective medium. This GSCS method fulfills requests
b) and c) but is still rather complicated in terms of its application due to its implicit structure and it is also restricted
to spherical or cylindrical inclusion. The ESCS overcomes the restriction to spherical and cylindrical inclusions.
It still fulfills the requests b) and c) but has also a complicated structure. A simplified and explicit version of the
ESCS method, which is referred to as the Interaction Direct Derivative (IDD) estimate was proposed satisfying all
three requests. This method has a very simple structure withclear physical meaning of the single constituent parts.
(Zheng and Du, 2001; Du and Zheng, 2002) show results for voiddistribution, although the formulation is also
valid for spherical inclusions. This encourages a first discussion of this method regarding the inclusion as well as
its comparison to classical homogenization schemes presented in this paper.

In many papers dealing with classical homogenization methods results in terms of effective material properties
are presented depending upon the volume fraction of the inclusion. Here, we additionally present the results
and compare different homogenization methods in terms of the ratio of stiffness of the different constituents,
respectively.

The outline of the paper is as follows: In Section 2, basic mean-field homogenization methods are briefly discussed.
Section 3 provides an overview on the ESCS and IDD approach. Acomparison of different homogenization
schemes with FE-results for different volume fraction of the inclusion as well as different stiffness ratios are
provided in Section 4. The paper concludes in section 5 with asummary and outlook.

2 Review of some standard homogenization methods

In this section we consider linear elastic composites underisothermal conditions. Primarily, consider a macro-
scopic material point at a positionX in a fixed Cartesian frame. In linear elasticity the macroscopic stresses
T macro and strainsEmacro are related via the macroscopic elasticity tensorCmacro with

T
macro = CmacroE

macro. (1)

Homogenization procedures are mainly based on the definition of a local surrounding of a macroscopic material
point with volumeV and the boundary∂V . This volumeV represents a characteristic part of the material which
is sufficient to describe its structure and behavior, respectively. This implies that the size of heterogeneities at
the microlevel has to be one scale smaller than the size of thevolumeV of the macropoint. As it was shown by
Nemat-Nasser and Hori (1999) and Gross and Seelig (2001) theHill-Mandel condition is fulfilled by applying
linear displacements, periodic boundary conditions or uniform tractions on∂V . Therefore the average strain in the
volumeV is equal to the macro strain.

The previous explanation emphasizes that the macro elasticity tensorCmacro averages out the heterogeneities on
the microlevel and characterizes a homogeneous behavior atthe macroscopic level. Hence, it is also referred to as
effective elasticity tensorC∗, and the stress-strain relation at the macroscale can be rewritten to

〈T 〉 = C∗〈E〉, (2)

for a multiphase composite consisting ofn phases,cα = Vα/V denotes the volume fraction of each phaseα with
respect to the total volumeV of the RVE, which are subjected to the restriction

∑n

α=1 cα = 1.

We restrict the composite to the matrix-inclusion type withperfect interfacial bonds between inclusions and their
immediate surrounding matrix. The matrix phase is labeled by M and the inclusion is assumed to be of type-i
and therefore labeled byi. The volumeV at the microlevel is subjected to linear boundary displacements which
corresponds to a macroscopic strainE0. The microscopic strain within the RVE depends upon an initially unknown
fourth-order tensorA(x) with

E(x) = A(x)E0 (3)

referred to as concentration tensor. In the following,A describes the volume average ofA(x). As this average
is done phase-wise, this results in phase wise constant concentration tensorsAα. Hence, the effective elasticity
tensor can be calculated via

C∗ =

n
∑

α=1

cαCαAα. (4)
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For the special case of an ellipsoidal inclusion in an infinite matrix, the Eshelby solution can be used to determine
the so far unknown concentration tensorsAα. As shown by many authors (e.q Gross and Seelig, 2001; Nemat-
Nasser and Hori, 1999), the strain in the inclusion can be calculated by

E
I = A0

I E
0 =

[

I + SC−1
M (CI − CM)

]

−1
E

0 = const (5)

whereI designates the fourth-order symmetric identity tensor,CM the elasticity tensor of the matrix,CI the elas-
ticity tensor of the inclusion andS the Eshelby tensor. In general, the Eshelby tensorS has both minor symmetries
but no major symmetry. Results for ellipsoidal inclusion can be found in Mura (1982). For the special case of a
spherical inclusion and isotropic material the Eshelby tensorS can be calculated via

S =
1

3
αI ⊗ I + β(I � I −

1

3
I ⊗ I ) (6)

with

α =
1 + ν

3(1 − ν)
β =

2(4 − 5ν)

15(1 − ν)
(7)

whereν is the Poisson’s ratio of the matrix material. Here,I represents the second order identity tensor and we
make use of the tensor products(A⊗B)C := (B ·C )A and(A � B)C := ACB of any second-order tensors
A,B ,C .

The same results as for strain boundary conditions can be obtained by applying uniform stress boundary conditions
at the boundary of the volumeV which correspond to a macroscopic stressT 0. The microscopic stress in the
volumeV is related by a unknown fourth-order tensorB with

T (x) = B(x)T 0 (8)

being the concentration tensor. In the followingB describes the volume average ofB(x), where this results in
phase wise constant concentration tensorsBα. Therefore the effective elasticity tensor can be calculated via

C∗ =





n
∑

α=1

cαCαAα





−1

. (9)

In the following subsections some well-known homogenization schemes as well as two relatively new methods are
depicted. Schematic illustrations concerning these schemes are given in Figure 1.

2.1 Mori-Tanaka method

The Mori-Tanaka method approximates the interaction between the phases by assuming that each inclusioni is
embedded, in turn, in a infinite matrix that is remotely loaded by the average matrix strainEM or average matrix
stressTM, respectively. Therefore the strain in the single inclusion can be calculated by

E
I
i = A0

I,iE
M, (10)

where the influence tensorA0
I,i is given by

A0
I,i =

[

I + SMC−1
M (CI,i − CM)

]

−1
. (11)

In the case of ellipsoidal inclusions, the Mori-Tanaka homogenization approach leads toEI,i = A0
I(MT),iE

0,
whereAI(MT),i is obtained by

AI(MT),i =



ciI + cM(A0
I,i)

−1 +
∑

j

cjA
0
I,j(A

0
I,i)

−1





−1

. (12)

With this results we can calculate the effective elasticitytensor

C∗

(MT) = CM +
∑

i

ci(CI,i − CM)AI(MT),i. (13)

In Benveniste (1987) the method is interpreted in the sense that ”each inclusion behaves like an isolated inclusion
in the matrix seeingEM as a far-field strain”.
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Figure 1: A schematic overview on different homogenizationschemes for estimating the average stress or strain,
respectively.

2.2 Hashin-Shtrikman bounds

Following the approach of Hashin and Shtrikman (1963) leadsto the equation for the upper and lower bound of
the elasticity tensor for a two-phase material:

C∗

(HS+) = CI + cM

[

(CM − CI)
−1

+ cISIC
−1
I

]

−1

; C∗

(HS−) = CM + cI

[

(CI − CM)
−1

+ cMSMC−1
M

]

−1

. (14)

As can be seen the upper Hashin-Shtrikman bound correspondsto the Mori-Tanaka result. The upper bound can
also be obtained with the Mori-Tanaka method just by interchanging matrix and inclusion material.

2.2.1 Lielens method

Lielens (1999) proposed the following interpolative homogenization model for a two-phase material:

C∗

(LIL) =

[(

1 −
cI + c2

I

2

)

C∗−1
(MT−1) +

cI + c2
I

2
C∗−1
(MT)

]

−1

, (15)

in whichC(MT) is the estimation for the effective elasticity from the Mori-Tanaka method.C(MT−1) is the effective
elasticity tensor following from the inverse Mori-Tanaka approximation in which, for a two-phase material, the
smaller volume part becomes the matrix material and vice versa. Therefore the Lielens method can be seen as a
properly chosen interpolation between the Mori-Tanaka andinverse Mori-Tanaka method and between the Hashin-
Shtrikman bounds, respectively. This model is also referred to as the Interpolative Double Inclusion model in
literature (e.g. Pierard et al. (2004)).

2.3 Self-consistent scheme

The self-consistent method approximates the interaction between the phases by assuming that each phase is em-
bedded in a infinite volume of an effective medium with elastic propertiesC∗ of the composite. Therefore the
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effective elasticity stiffness of the material passes intothe matrix stiffness (CM = C∗) and we obtain the influence
tensor

AI(SCS),i =
[

I + S∗ C∗−1
(

CI,i − C∗
)]

−1
. (16)

Due to the fact that the influence tensorAI(SCS),i depends on the effective elasticity tensorC∗

E, the equation is
implicit and nonlinear.

C∗

(SCS) = CM +
∑

i

ci

(

CI,i − CM

)

AI(SCS),i (17)

Algorithmically, the method requires an additional iterative loop to calculateC∗

(SCS). In general, the self-consistent
method gives a sufficient prediction of the behavior of polycrystals but it is less accurate in the case of two-phase
composites as shown by (Pierard et al., 2004, see).

3 ESCS and IDD approach

3.1 Effective self-consistent scheme (ESCS)

The effective self-consistent scheme (ESCS), proposed by Zheng and Du (2001) is based on the three-phase model.
In the three-phase model the average stress〈T 〉i over all type-i inclusions is estimated by that a single inclusioni is
embedded in a finite matrix material, the matrix atmosphere,which is in turn embedded in the unbounded unknown
effective medium, shown in Figure 2 a). In the following the inclusion together with its matrix atmosphere will
be called inclusion-matrix cell and will be denoted by a subscript ’D’, which implies that this cell has to be
representative for an inclusion distribution.

Shortly recall the assumptions made in order to obtain the effective elasticity tensor for this method. For a more
detailed description see Du and Zheng (2002). The volumeV is subjected to the uniform stress distributionT 0. In
the first step it is assumed that the inclusion-matrix cell only consists of the matrix material, leading to stress and
strain being uniform according to the Eshelby theorem and taking the form

E
D
i = C−1

M T
D
i , T

D
i = (I − ΩDiH)

−1
T

0 (18)

whereΩDi is the eigenstiffness tensor of the cell with respect to the unknown effective medium, andH describes
the compliance increment, defined by

H = C∗−1 − C−1
M . (19)

ΩDi is calculated by
ΩDi = C∗(I − S∗

i ) (20)

whereS∗

i denotes the Eshelby tensor for the cell embedded into the unknown effective material.

In the next step the uniform strainED
i has to be incorporated in the original three-phase model problem, by apply-

ing extra tractionsτD
i n, with the outward normaln on the inclusion boundary. This additional stress contribution

is calculated by
τ

D
i = (CI,i − CM)ED

i . (21)

As depicted in Figure 2 b) and c) the solution of the original problem is thus obtained by the superposition of two
seperate problems. A key ingredient in order to establish the ESCS estimate is the approximation of the average
stress, denoted byT ∗

i within the inclusion for the decomposed problem as shown in Figure 2 c). In Du and Zheng
(2002) it has been shown, that this average stressT ∗

i can be approximated by an average stress, denoted byT
′

i ,
which occurs in a two-phase reference problem where the effective medium is replaced by the matrix material as
shown in Figure 2 f). The error due to this approximation is inthe second order inc.
By definition, the stress and strain are uniform in the matrixatmosphere in Figure 2 b) and equal toT D

i andED
i .

Therefore a two-phase model with a single inclusion embedded in the unbounded matrix material is considered,
which is subjected to a uniform stress fieldT D

i andτD
i n on the boundary of the inclusion. The obtained strain

field is constant and equal toED
i . Therefore the problems in Figure 2 b) and e) are completely equivalent. Next

the superposition of the two problems illustrated in Figure2 e) and f) leads to a much simpler problem of the
matrix-inclusion problem. The average stress over the inclusion results in

〈T 〉escsi =
(

I + ΩM
i Hi

)

−1
(I − ΩDiH)

−1
T

0. (22)
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Figure 2: A schematic overview on the ESCS approach (Zheng and Du, 2001).

As mentioned before, the substitution of the problem in Figure 2 c) by e) leads to an error ofO(c2) compared to
〈T 〉escsi and the exact average stress〈T 〉i in the inclusion for the whole estimate. Therefore〈T 〉i can be replaced
by 〈T 〉escsi . The average strain tensor〈E〉 can be expressed by (see Nemat-Nasser and Hori (1993))

〈E〉 = C−1
M E

0 +
∑

i

ci(C
−1
i − CM)〈T 〉i. (23)

Adopting the strain-equivalence〈E〉 = C∗−1T 0 yields to the relation

HT
0 =

∑

i

Hi〈E〉i, (24)

whereHi are defined as the compliance fluctuations

Hi = C−1
i − CM. (25)

Using (25) together with (18) leads to an implicit equation for the compliance increment represented by

H = Hd
i (I − ΩDiH)

−1 (26)

which results in an error of third order dependent of c.Hd
i can be interpreted as the dilute estimate and is calculated

by

Hd
i =

∑

i

ci

(

H−1
i + Ω0

i

)

−1
. (27)

This relation can therefore be used to determine the effective elasticity tensorC∗, thereby obtaining the relation

C∗

(ESCS) = (H + CM)
−1

. (28)

Zheng and Du (2001) showed that in the case that allΩD,i are identical, denoted byΩD, the solution of the ESCS
method coincides with an effective stress model for the estimation of the average stress over any inclusion, which
is embedded in the unbounded matrix material which is subjected to a modified uniform far-field stressT D given
by

T
D = (I − ΩDH)−1

T
0 (29)

rather than the real stressT 0 which is also the physical explanation for the name prefixeffectivein the term of
ESCS.
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3.2 Interaction direct derivative (IDD)

Zheng and Du (2001) derived an explicit version for estimatingC∗ instead of an implicit equation like (28), namely
the interaction direct derivative (IDD) estimate. First the right side of (26) is expanded to

H = Hd +
∑

i

Hd
i ΩDiH, (30)

whereHd =
∑

i H
d
i . This yields to an error of third order inc. Due to the fact thatΩM

Di is an approximation of
ΩDi with an error of first order inc, this yields to the approximate solution

Hidd =

(

I −
∑

i

Hd
i ΩM

Di

)

−1

Hd (31)

and the effective elasticity tensor

C∗

(idd) =
(

Hidd + CM

)−1
. (32)

This solution is called interactive direct derivative estimate for the effective elasticity tensorC∗

(idd). To estimate the
average stress and strain, respectively, of any inclusion,this inclusion is embedded in the matrix material which is
subjected to a modified remote boundary tractionT En with

T
E =

(

I −
∑

i

ΩM
DiH

d
i

)

−1

T
0 (33)

called the effective stress. As can be seen the IDD estimateC∗

(idd) has always an explicit structure, which only
involves physical and quantitatively well-defined quantities due to its derivation. The IDD method is valid for any
physically possible high concentration of inclusions and is also capable of taking any inclusion distribution into
account. If the inclusions are of the same type a much easier form can be obtained (see Zheng and Du (2001)).
In this case it can also be shown that the IDD and Mori-Tanaka estimate coincide with each other in the sense of
energy-equivalence. Note that

T
M =

(

I −
∑

i

ΩM
i Hd

i

)

−1

T
0 (34)

represents the analogous expression to (33) in the context of the Mori-Tanaka method.

4 Comparison of different homogenization approaches for two-phase composites

Throughout this section we assume that the matrix and inclusion are isotropic and only two-phase composites in
isothermal linear elasticity are considered. We compare the prediction of the macroscopic behavior of different
classical mean-field homogenization methods with FE results obtained from a RVE. Furthermore we will inves-
tigate the prediction of these methods concerning different stiffness ratios of the inclusion-matrix pair. Finally a
comparison is made regarding the ESCS and IDD method.

Firstly the well-known mean field homogenization methods for two different stiffness ratios over the inclusion
concentration are investigated. Figure 3 shows the predicted macroscopic elastic modulusE∗ for a combination
of EM = 210 GPa andEI = 430 GPa, where the subscript M is the matrix material and I the inclusion. In the
following the Poisson ratio is assumed to beν = 0.25 for all phases. The concentrationc describes the volume
fraction of the inclusion. Figure 4 shows the predicted macroscopic elastic modulusE∗ for a combination of
EM = 21 GPa andEI = 210 GPa.

As expected the different methods deviate distinctly from each other for a higher contrast in the material properties
of the matrix and inclusion. For a small contrast, as shown inFigure 3 for a ratio of∼2, only small differences
in the prediction of the elastic modulus using the differentmethods can be seen. In this context we would like to
emphasize the well-known fact, that the Voigt-bound represents the maximum upper bound whereas the Reuss-
bound defines the minimum lower bound of the stiffness. Voigtand Reuss method predict in general a distinct
different Young’s modulus, which can already been seen for asmall stiffness ratio. Numerous narrow bounds
are provided by the Hashin-Shtrikman bounds where all otherpredictions are located. To be able to distinguish
better between the different homogenization methods, we investigate the different methods on Figure 4 where the
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Figure 3: Prediction of effective Young’s modulusE∗
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Figure 4: Prediction of effective Young’s modulusE∗

with different homogenization methods forEM =
21 GPa, EI = 210 GPa andν = 0.25. (MT =
Mori-Tanaka; SCS = self-consistent; HS = Hashin-
Shtrikman bounds; LIE = Lielens methods)

predictions are done for a stiffness ratio of 10. Here the difference between the methods is more clearly visible over
the volume fraction. In this case the Hashin-Shtrikman bounds are also quite far from each other. The Mori-Tanaka
method shows a jump in the predicted elastic modulus for concentrations around 50 % which results from the fact
that in the Mori-Tanaka scheme the matrix material is definedas the material having the higher concentration.
This shows that, depending on which material is considered to be the matrix material, the Mori-Tanaka estimate
coincides with the lower (for matrix = softer material) or the upper (for matrix = harder material) Hashin-Shtrikman
bound.

For a small volume fraction of inclusions up to30% the Mori-Tanaka, self-consistent and Lielens estimate nearly
coincide with each other. However,reason with increasing volume fraction the difference in the predictions is
rather pronounced. The reason for this is the different approximation of the effective properties which leads to
errors from the first order upwards inc. This leads to wrong predictions for high volume fractions.Physically it
is not possible to realize higher volume fractions than74%, as known for face-centered cubic crystal structure, for
equal spherical inclusions without letting the inclusion spheres intersect each other. It has been proven that the
Mori-Tanaka method is generally incorrect for higher concentrations of inclusions in Castañeda and Willis (1995).
But it is hard to decide whether the Lielens estimate or the self-consistent scheme provide better results for higher
volume fractions. A comparison with the obtained FE-results of ideal spherical inclusion for volume fractions up
to 30% will be provided later in this section.

Further analyses of these homogenization methods for different stiffness ratios and concentrations are presented
in the following. Figure 5 to 10 provide 3D-surface plots of the prediction for the different methods for stiffness
ratios up to 20. Due to the fact that it is not possible to compare the behavior over different stiffness ratios by
plotting the surfaces above each other, in Figure 11 and 12 the resulting effective elastic modulusE∗ normalized
by EM over the stiffness ratio of inclusion and matrix material isshown.

As can be seen from the surface plots, the behavior of the homogenization methods over different stiffness ratios is
changed for different concentrations of the inclusion volume fractionc, however, the general behavior remains the
same. The Voigt estimate shows a linear dependence of the effective elastic modulus with respect to the volume
fraction of the inclusion representing an upper bound as mentioned before. The Reuss estimate is the lower bound
which only shows an increase of the effective elastic modulus in the end. Afore it remains at a nearly constant
level. The same behavior can be observed for the upper and lower Hashin-Shrikman bounds only at a higher or
lower level, respectively. For a relatively low volume fraction of inclusion the Lielens and self-consistent estimate
coincide result in curves showing only small increase ofE∗/EM with respect toEI/EM. For a huge amount of
inclusions (c = 0.8) both methods deviate from each other, where the self-consistent shows a nearly linear behavior
with increasing stiffness ratio, whereas the Lielens estimate shows a more quadratic behavior. Both are quite close
to the Hashin-Shtrikman bounds which is depicted for high concentrationc of inclusions in Figure 4. As can be
seen by interpretation of Figure 12, the stiffness ratio hasan immense effect on the effective properties, especially
at high volume fractions of inclusion, and therefore the homogenization methods should also be checked for their
behavior for high stiffness ratios as done here, instead of solely investigating their behavior at different volume

381



0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

5

10

15

20

c [-]EI/EM

E
∗
/E

M

Figure 5: Prediction of effective Young’s modulusE∗

of Voigt method for different concentrationsc and stiff-
ness ratiosEI/EM

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

5

10

15

20

c [-]EI/EM

E
∗
/E

M

Figure 6: Prediction of effective Young’s modulusE∗

of Reuss method for different concentrationsc and
stiffness ratiosEI/EM

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

5

10

15

20

c [-]EI/EM

E
∗
/E

M

Figure 7: Prediction of effective Young’s modulusE∗

of Hashin-Shtrikman upper bound for different concen-
trationsc and stiffness ratiosEI/EM

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

5

10

15

20

c [-]EI/EM

E
∗
/E

M

Figure 8: Prediction of effective Young’s modulusE∗

of Hashin-Shtrikman lower bound and Mori-Tanaka es-
timate, respectively, for different concentrationsc and
stiffness ratiosEI/EM

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

5

10

15

20

c [-]EI/EM

E
∗
/E

M

Figure 9: Prediction of effective Young’s modulusE∗

of self-consistent method for different concentrationsc
and stiffness ratiosEI/EM

0
0.2

0.4
0.6

0.8
1

0

5

10

15

20
0

5

10

15

20

c [-]EI/EM

E
∗
/E

M

Figure 10: Prediction of effective Young’s modulusE∗

of Lielens method for different concentrationsc and
stiffness ratiosEI/EM

fractions.

382



EI/EM[−]

5

5 10 15 20

1

2

3

4

00

6

7
E

∗
/E

M
[−

]
Voigt
Reuss
MT
SCS
HS
LIE

Figure 11: Prediction of effective Young’s modulus
E∗ with different homogenization methods for differ-
ent stiffness ratiosEI/EM for c = 0.3

EI/EM[−]

5

5

10

10

15

15

20

2000

E
∗
/E

M
[−

]

Voigt
Reuss
MT
SCS
HS
LIE

Figure 12: Prediction of effective Young’s modulus
E∗ with different homogenization methods for differ-
ent stiffness ratiosEI/EM for c = 0.8

4.1 Comparison with FE-results

Before we compare these well-known homogenization methodswith the ESCS and IDD estimate, first the so far
obtained results are compared with Finite-Element simulations. For this purpose RVEs with randomly distributed
inclusions are generated for different volume fractions using the software DIGIMAT. The model is generated by
successively placing randomly distributed equally sized spheres into the matrix material until the desired volume
fraction with the desired number of spheres or voids is reached. If a randomly placed sphere intersects another
already placed sphere, it is attempted to place that particular sphere differently using yet another random generator.
The resulting models with spherical inclusion are shown in Figure 13 and with spherical voids in Figure 14. The
FE simulations were done with the software ABAQUS/Standardapplying linear displacement boundary conditions
to three faces of the model such that these are fixed in their respective normal direction so that every degree of
freedom is fixed on one single face. The displacement is applied on another face in its normal direction.

Figure 13: RVE with randomly distributed spherical inclu-
sion of a volume fractionc = 0.2

Figure 14: RVE with randomly distributed voids of a
volume fractionc = 0.2

In Figure 15 the results of the different homogenization methods are compared for a stiffness ratioEI/EM = 10
with the obtained results from the FE-simulation up to a inclusion volume fraction ofc = 0.35. It can be stated
that for the case of spherical isotropic inclusion the Lielens method shows the best agreement for higher inclusion
volume fractions which was also earlier found by Pierard et al. (2004). But as seen from Figure 16 with increasing
stiffness ratioEI/EM, the FEM-results yields to a softer behavior as the Lielens method but it still predicts the
best agreement compared to the other methods.
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Figure 15: Comparison of homogenization results for
effective Young’s modulusE∗ with FEM-results for
EM = 21 GPa,EI = 210 GPa andν = 0.25.
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Figure 16: Comparison of homogenization results for
effective Young’s modulusE∗ with FEM-results for
different stiffness ratiosEI/EM for c = 0.3

4.2 Investigation of ESCS and IDD approach
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Figure 17: Comparison of different homogeniza-
tion results and numerical evaluation for the effective
Young’s modulusE∗ of homogenously distributed
spherical voids embedded in an isotropic matrix.
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Figure 18: Prediction of effective Young’s modulus
E∗ of ESCS method for different concentrationsc
and stiffness ratiosEI/EM

Now investigating the ESCS and IDD method, in order to verifythe implementation of both approaches. Therefore
the effective Young’s modulusE∗ is calculated for an isotropic matrix containing sphericalholes, to compare
these results with results obtained by Zheng and Du (2001). Figure 17 shows the resulting effective Young’s
modulusE∗ over the void porosityc for ν = 0. For comparison, we also plot the corresponding self-consistent
scheme, Lielens method, Hashin-Shtrikman, Voigt and Reussbounds as well as the numerical results obtained from
FEM-simulations. The Reuss bound as well as the Hashin-Shtrikman lower bound and Lielens method provide
inappropriate results, so that they are not useful for vanishing stiffness of one phase. The self-consistent scheme
also predicts a very soft behavior, where the maximum permitted porosity isc = 0.5. The ESCS method does not
predict a complete loss of stiffness atc = 1 which is of course inappropriate. Here it is clear that this method is
only valid for small void porosityc.
It can be seen that the IDD method agrees perfectly with the Mori-Tanaka method or Hashin-Shtrikman upper
bound, respectively. Zheng and Du (2001) showed that the IDDmethod provides for the most materials the best
agreement with numerical simulations, especially forc → 1. The here presented results agree quite well with their
reported results.

Therefore in the following the behavior of the ESCS and IDD method is investigated regarding isotropic homo-
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Figure 19: Comparison of homogenization results for
effective Young’s modulusE∗ for EM = 21 GPa,
EI = 210 GPa andν = 0.25.
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Figure 20: Comparison of homogenization results
for effective Young’s modulusE∗ for different
stiffness ratiosEI/EM for c = 0.3

geneously distributed spherical inclusion embedded in an isotropic matrix for different stiffness ratios. In Figure
19 the predicted effective Young’s modulusE∗ is shown over the inclusion volume fractionc for a stiffness ratio
EI/EM = 10. As can be seen for the case of voids, the IDD method agrees with the Mori-Tanaka estimate. The
ESCS predicts a lower effective stiffness ratioE∗ than the IDD method. Although both methods predict forc = 0.3
and a stiffness ratioEI/EM = 10 the same effective Young’s modulus, with increasing stiffness ratio the ESCS
methods predicts a slightly lower result as shown in Figure 20. Furthermore the ESCS method has its numerical
limits in predicting the effective behavior. Investigating the behavior in Figure 18 shows that this limit depends on
both factors, inclusion volume fraction and stiffness ratio. Therefore this method provides only good results for
low stiffness ratios and low volume fractions, moreover this method is more complex than the IDD method. The
results found here from numerical analysis confirm the results analytically done by Du and Zheng (2002) where
the effective elasticity tensor, here exemplary for the Young’s modulusE, fulfills the following conditions:

ESCS ≤ E∗ ≤ Eidd ≤ EESCS as EI ≤ EM

EESCS ≤ Eidd ≤ E∗ ≤ ESCS as EM ≤ EI

(35)

Here it should also be mentioned that the Ponte Castañeda-Willis (PW) estimate (cf. Castañeda and Willis (1995))
coincides with the IDD-method if all inclusion-matrix cells have identical shape and orientation for identical
inclusion-interaction distribution, however, the PW doesnot have an explicit form in all cases which makes the
IDD estimate more favorable.

5 Summary and Outlook

In this paper, a number of standard homogenization methods are reviewed and their behavior is compared. The
comparison was performed with regard to the inclusion volume fraction, which can usually be found in the liter-
ature, but also regarding the contrast in the elastic constituents. It was shown that the contrast has a significant
influence on the estimates of these methods and therefore hasto be taken into consideration. Results obtained from
FEM were compared with these predictions and it was shown that especially the Lielens method agrees quite well
with the FEM results.
Furthermore two relatively new approaches, the ESCS and IDDmethod, were recalled and compared to the clas-
sical homogenization results. The results obtained show that a further analysis of the IDD method especially in
comparison to the Mori-Tanaka estimate, is reasonable due to its formulation. The IDD estimate has an explicit
structure, with a physical explanation of the involved components and it is valid for multiphase composites. It also
takes into account the influence of the interaction between inclusions and their surrounding matrix. Formally the
method has a universally applicable form to various inclusion distributions. Therefore this method fulfills the main
requirements on homogenization methods as mentioned before. A comparison with the RAHS by Guinovart-Dı́az
et al. (2005) concerning transverse isotropy, a first stage of modeling anisotropy of the effective medium by in-
cluding concentric circular cylindrical fibers, is an interesting point of investigation to verify the applicability of
the presented methods. Further comparisons concerning different inclusion properties as well as inclusion shapes
and including anisotropy represent work in progress and will be reported on in future work.
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