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Influence of hardening on the cyclic behavior of laminate microstructues
in finite crystal plasticity

D. M. Kochmann, K. Hackl

We investigate the cyclic behavior of laminate microstutes in finite-strain crystal plasticity and the resulting
stress-strain response, based on a variational, increalafgscription of the microstructure evolution. The non-
convex free energy density in multiplicative single- andtirslip plasticity gives rise to the formation of fine-seal
deformation structures, experimentally observed as cexplaterial microstructures. Here, we treat first-order
laminate microstructures and model their origin and thaibsequent evolution. Interestingly, the cyclic behav-
ior of such microstructures has been reported to exhibitadgal degeneration of the laminate as well as of the
stress-strain hysteresis loop, leading to an elastic stlake. However, previous results have predicted the oc-
currence of this final, steady state within a few load cycldsich has appeared physically doubtful. Therefore,
we analyze here the influence of work hardening in singfeesid of latent hardening in double-slip plasticity on
the laminate microstructures and the corresponding stetssn responses during cyclic loading. Results indicate
that the amount of hardening considerably affects the ratetdch the stress-strain hysteresis and the laminate
degenerate.

1 Introduction

The mechanical properties of materials in science and erging are essentially linked to their microstructures.
The occurrence of ordered, hierarchical, or randomly ithisted arrangements of dislocations and other lattice
defects to form a complex network on the microscale resultsdistinct overall, effective response of the material
body deforming elastoplastically under the action of exdéforces. Experiments indicate that very often the as-
sembly of the microstructural components are not complesgildom but rather form specific patterns and regular
arrays. Simple examples include laminate-type structofedternating deformation domains (Dmitrieva et al.,
2009), as can also be found e.g. in shear bands or deforntatiios (Christian and Mahajan, 1995), or labyrinth-
type structures (Jin and Winter, 1984). In all of these eXamgislocations align along preferred crystallographic
orientations, thus forming complex systems of dislocati@lls (Ortiz and Repetto, 1999). In opposition to the
enormous variety of such observed microstructures stémggistantamount influence on the macroscopic material
behavior. Therefore, the development of patterns andtsies on the microscale is of crucial importance, which
requires careful investigation not only in order to analgme comprehend the experimentally observed geometri-
cal specifics of prevalent microstructures but also to ptetie arising macroscopic response and thus to design
material properties by demand.

The accommodation of plastic deformation by complex irttoas of the dislocation network is governed by the
concepts of free energy and dissipation. A deformed saticestenergy both in the elastically strained lattice as
well as in the long-range distortion fields of dislocationhpse motion transforms energy into heat (i.e., dissipates
stored energy). Based on the thermodynamic concept of grmangmization, the origin of microstructural patterns
has been understood as the realization of energy-minim@&guences for non-convex energy landscapes (Ball,
1977; Ball and James, 1987; Truskinovsky and Zanzotto, ]1@@fvindjee et al., 2003). Ericksen (1975) was
among the first to conclude microstructural patterns as ectiesult of energy minimum principles applied to
multi-welled strain-energy densities, whose idea wassfamed later into a more complex theory predominantly
for the treatment of phase transformations (Govindjee .e28D3) and problems in elasto-plasticity (Ortiz and
Repetto, 1999; Carstensen et al., 2002). As a consequeritbe abn-(quasi)convex energy, the material body,
aiming to reduce its energy, does not respond by means of admmous deformation state but breaks up into
multiple deformation domains at local energy minima in otdefurther reduce the overall stored energy in such a
way which is compatible with the overall imposed deformafiield. Solutions to describe these domain mixtures
have been developed by employing the theory of relaxatifindathe quasiconvex hull of the free energy (Morrey,
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1952). By considering associated potentials in a timeeimamtal setting, several authors have investigated the
initiation of microstructures via relaxation (Ortiz and ge¢to, 1999; Lambrecht et al., 2003; Dolzmann, 2003;
Mielke, 2004; Bartels et al., 2004; Conti and Theil, 2005ysTansen et al., 2008), using a condensed energy
functional. This method has been applied successfully éoetfolution of inelastic materials, see (Mielke and
Ortiz, 2007; Conti and Ortiz, 2008). An incremental energgimization strategy has been outlined by Miehe et
al. (2004) and applied to the evolution of first-order lanésan single-slip plasticity.

Modeling the macroscopic material behavior during migrestire formation not only involves knowledge about
the origin of such structures but also requires a physieedj-reasoned concept to treat the subsequent evolution
of an existing microstructure. This has often been adddeBsé¢he literature by employing condensed energy
functionals to approximate the evolution of such structunetime, which, however, faces several difficulties. On
the one hand, the use of a condensed energy functional imgke sime step can only be an approximate solution
since it does not account for all microstructral changesndueach small time increment with already existing
microstructure at the beginning. On the other hand, thei@dn of a condensed energy functional requires an
explicit expression of the dissipation distance, whiclenftloes not appear feasible already when more than one
slip system is active (Hackl et al., 2003). Also, non-momnoigs load conditions (e.g. cyclic loading) requires
an incremental modeling strategy, which can be achievegiordn approximated manner when using condensed
functionals. To overcome these problems, we have develapattremental formulation based on the iterative so-
lution of the evolution equations for the internal variab¥ehich capture the microstructural characteristics (Hack
and Kochmann, 2008; Kochmann and Hackl, 2009a). This inentah method has been applied successfully to
monotonous (Hackl and Kochmann, 2008) and cyclic loadinac{inann and Hackl, 2009a) of single-slip single-
crystals. In particular, results from single-slip cyclests have demonstrated the interesting feature of a rapidly
decaying stress-strain hysteresis within a few cycles emially lead to an almost steady microstructure with
hardly changing characteristics (Hackl and Kochmann, P00#, it comes to an elastic shakedown. Although
observed experimentally e.g. for copper single crysthks predicted cyclic behavior from the present model has
appeared unrealistic, since the steady state is reacherdadftw load cycles only and the changes between subse-
guent cycles appear too abrupt. It has been theorized (burtvestigated yet) that the influence of work hardening
as well as the activation of multiple slip systems and theetated latent hardening play an important role with
considerable impact on the cyclic behavior.

Here, we briefly review the mathematical and numerical pebluthe incremental, variational formulation of
laminate microstructures in crystal plasticity, whichisid employed to scrutinize the influence of hardening on the
cyclic performance of laminate patterns. We thereforeudisthe incorporation of hardening into the constitutive
framework and the implementation of several active sligesys. Then, we present numerical examples of single-
and double-slip plasticity of cyclically-loaded singlg/stals to illustrate the importance of work hardening.

2 Variational constitutive formulation

Following (Hackl and Kochmann, 2008), we describe the isottal state of an inelastic solid by its deformation
gradientF’ = V ¢, resulting from the displacement fiefe{ X ), and a collection of internal variable$X ), which
capture all microstructural specifics. The specific Helrtthfsee energy densitf (F, z) is introduced, resulting
in the thermodynamically conjugate stresses

ov ov
p=2= -7 1
3 P 1)
with P being the first Piola-Kirchhoff stress tensor. The evolutid the internal variables is governed either by
an inelastic potential (z, Q) (plasticity models commonly use an indicator function &dko the yield surface)
or its Legendre-transform (Carstensen et al., 2002), tsshition functional

Alzz) =sup{2:Q - J(2.Q) | Q}, @

where the dot denotes differentiation with respect to tiffilee evolution equations for the internal variables are
then given in either of the two equivalent forms

oQ’ 0z’
from which the latter differential inclusion constitutesephrasal of the well-known Biot equation of standard gen-
eralized materials (Biot, 1965; Germain, 1973; Ziegler Wehrli, 1987; Nguyen, 2000). The complete evolution
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problem can now be described in terms of two minimum prirepihere we follow ideas presented by Ortiz and
Repetto (1999), Carstensen et al. (2002) and Mielke (2002)denote the total free energy of the body by

I(t,¢,z) = /Q\If(qu,z)dv—f(t,qb) 4

wherel(t, ¢) represents the potential of external forces, &rid the body’s volume. The actual displacement field
then follows from the principle of minimum potential energy

¢ = argmin { Z(t, ¢, 2) | ¢ = ¢ on Ty }, ©)
with boundary conditiong, prescribed on the subskt, of the body’s boundarg<).

It is convenient to introduce a Lagrange functional coirgisbf the sum of the energy rate and the dissipation
potential (sometimes referred to as the total power)

d

L 2)=— VU

(6,2.2) = &

The evolution of the internal variables is then governed hey iinimum principle (Ortiz and Repetto, 1999;
Carstensen et al., 2002)

(Vo,z) + Az, 2). (6)

% =argmin { L(¢,2,%) | 2 }, )
It has been shown (Hackl and Fischer, 2007) that for digsip@iotentials which are homogeneous of degréas
e.g. in rate-independent plasticity) the above princif@leig equivalent to the principle of maximum dissipation
(i.e., of maximum entropy production). The above two minimprinciples can be applied in order to compute the
time-continuous evolution of both the elastic and plastidables.

Unfortunately, typical problems of elastoplasticity aslivees of phase-transforming materials encounter energy
densities which are not (quasi-)convex so that no minimiizéerms of a homogeneous deformation state exists.
Instead, those materials can accommodate a lowest-entgyly breaking up into multiple domains at local
energy minima, forming characteristic structures andepastto reduce the crystal’s energy. The description and
simulation of these microstructures requires knowledgriathe quasiconvex envelope of the free energy density,
which is defined by

Q\II(F):inf{ﬁ/\IJ(F+Vgo)dV‘cp:go:00n8w} (8)

for arbitrary bounded sets Here i denotes a small-scale fluctuation field which describesrbegg-minimizing
microstructure. Replacing the non-convex energy densithé above variational framework by its quasiconvex
hull renders the minimization problem well-posed while-peeounting for all admissible microstructures.

As the computation of the quasiconvex hull in general do¢sppear feasible, it has been replaced by appropriate
upper and lower bounds in terms of the rank-one-convex aadtiyconvex hull, respectively. Besides, the
rank-one-convex hulR¥ (F') allows for a neat geometrical interpretation as a lamintitecture. It is defined
recursively, beginning with the first-order laminate energ

Rl\Ij(F) :1nf{(1—/\)\II(F1)—|—)\‘I’(F2) |)\7Fi; (1—A)F1+AF2:F, ranl<(F1—F2) < 1}, (9)

which corresponds to a first-order laminate consisting ofd@mains with volume fractionsand1 — X and con-
stant deformation gradien#s,; and F'; within the domaind and2, respectively. Repeating the above construction
within each laminate domain, one arrives at higher-ordminates (see Figure 1a-d) with the corresponding hulls
Ry U = R¥W. This refinement can be performed numerically (Dolzman®89)9The rank-one-convex hull then
follows from

RV = klgrolo Ry 0. (20)

As experiments very often indicate the formation of firsder laminate structures only, see e.g. (Dmitrieva et
al., 2009), we will restrict in the sequel to this particuigrometrical type of microstructures and hence employ
R,V (F) to replace the non-(quasi)convex energy density. In pdaicwe will make use of laminated Young
measures to describe the microstructural characterisitiesnterested reader is referred to (Hackl and Kochmann,
2008; Kochmann and Hackl, 2009a).

Finally, it has proved convenient to reformulate the minimprinciple (7) in an integral setting by introducing the
dissipation distance (Mielke, 2002) for a finite time incet{t,,, ¢, 1],

1
D(zg,z1) = inf { ‘/0 A(z(s), 2(s)) ds | 2(0) = zo, z(1) = 21 }. (11)
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In rate-independent plasticity an approximate formufafior the above minimization problem is then given in
terms of the condensed energy

VEM(F) = inf { U(F, 2) + D(zn, 2) | 2 }, 42

which has been used in the literature to calculate the orfismiavostructures and to model the subsequent mi-
crostructure evolution (Ortiz and Repetto, 1999; Miehel et2802; Lambrecht et al., 2003; Bartels et al., 2004;
Conti and Theil, 2005). However, the use of the condensedygrfanctional is restricted to simple problems

where the dissipation distance is available. Also, it dagsacount for all actual microstructural changes during a
time step with already existing microstructure at the beigig of the time step, as will be discussed in the sequel.

3 Laminate microstructures in crystal plasticity

In finite elastoplasticity the deformation gradient decoses into its elastic and plastic contribution Bs=
FF,. The plastic contribution is accommodated by dislocatignadong certain active slip systems, which are
characterized by their slip directioss and the slip plane normatg; (|s;| = |m;| = 1, s; - m; = 0). For a total

of n active slip systems the plastic flow rule follows as

with plastic slip ratesy; and the initial conditions; (0) = 0. Time-integration then yields the plastic contribution

to the deformation gradient tensor, which becomes quiteptexrand hence cannot be performed analytically in
general (Hackl et al., 2003). However, if we assume e.g.dhatip directions lie within the same slip plane, i.e.

m; = m, we obtain because af - m = 0 the handy form (Carstensen et al., 2002)

n

Fyj'=1-) vs,@m. (14)

For the following model problems in crystal plasticity wdleimploy a Neo-Hookean energy density and, in order
to allow for a closed-form semi-analytical relaxation, ee incompressible material behavior, iéet Fe =
det FF = 1 (this assumption is justified when the elastic strains arallscompared to the volume-preserving
plastic strains). To account for work hardening, we intmalinternal hardening history variablgs(Carstensen

et al., 2002), one such hardening variable for each actipesgstem, abbreviated by = {p1,...,p,}. The
hardening variables are responsible for the plastic fisit) contribution to the energy and evolve with changes of
the plastic slip via the flow rulg; = |4;| with the initial conditionp;(0) = 0 (virgin initial state). With all of these
model assumptions and definitions we can formulate the fi@@alenergy density of our model:

n n
U(Fe,p) = % (trFeTFe - 3) CS il detF =1 (15)
i

The first term represents the stored elastic energy of th@rpeessible Neo-Hookean material, the second term
characterizes the intrinsically stored energy, where> 0 are the components of a hardening modulus tensor of
the material and. is commonly2 (linear hardening) ot. Self-hardening along any of the slip systems is captured
by the diagonal entries;;, whereas latent hardening (slip system interactions dweeoss-slip etc.) involves the
off-diagonal components;; (i # j). Experiments confirm that the off-diagonal entries shoulchhate.

Is has been shown (Hackl and Kochmann, 2008, 2009; KochmaahiHackl, 2009b) that the free energy den-
sity (15) is non-(quasi)convex in general so that micradtmes arise to reduce the energy. As an approximation
appropriate for many experimental findings, we assume tiredtion of a laminate of first order, which is char-
acterized byN domains with volume fractions;, separated by parallel planes with normal vedioas sketched
in Figure 1e. To each domainthere correspond values; andp;; of the internal variables for each active slip
systemj. Moreover, in every domain we have a constant deformatiadigntF'; which will for convenience be
defined by

F,=F(I+a;®Db). (16)

This formulation ensures that deformation gradients diffdy by tensors of rank one, enforcing compatibility at
laminate interfaces and hence ensuring the existence afesponding deformation field. The vectois the unit
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normal to the laminate interfaces (the orientation vecamd a; represents some deformation amplitude vector.
We impose the volume average of the deformation gradient

N N
> NFi=F & ) lNa;=0. 17)
=1 i=1
Furthermore, we must ensure incompressibility of eachriateidomain, according to the above assumption, i.e.,

Let us now introduce the semi-relaxed energy density. Wesidenthe orientation vectdr as ingrained into the
material, since changes of the orientation would requireasrangement of the microstructure, thus leading to
dissipation. The amplitudes;, on the other hand, can be changed purely elastically. Gakito account the
constraints (17) and (18) by introducing Lagrange mukigA andp;, the semi-relaxed elastic energy be defined

by
ai} s (19)

whereC = F'F denotes the right Cauchy-Green tensor @hg = FliFeﬂ- the elastic Cauchy-Green tensor in
the domain; with, following (14) and (16),

N
UEI(F, N\, yi5,b) = inf { gZ)\i [trCei — 3 —2A - a; — 2p;a; - b

Fe;=F,F,! =FI+a;2b) [1-) v;s;am|, (20)
J

Minimization in (19) with respect to the unknown quantitigscan be carried out analytically to yield

N N
H 1 AiAgb; - Cby 1
‘I’Q?I(FJ\m%j,b) =5 |[rC -3+ —x—+— ZZ Ak Oj B _
2 SN 2e (544 b bbb b-Cb
N N
bi -b bi . Cbl T 1
with
bi=b-F,[F,;. 22)

The most general case for whidfy, can be given analytically requires the assumption thafiplkystems in one
domain lie within the same glide plansy, = m), so that the above abbreviations reduce to

n n
bi :b—Z’yij(b-msij+b~sijm)+2%2jb-sij Sij,
J J
n
tr (F;Tc.F;}) ZZ(’}/?]»S]‘ 'CSj —2’}/1'3'8]‘ Cm)

J
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Figure 1: Schematic view of laminate refinement: a) homogesestate, b) first- , c) second-, d) third-order
laminate; e) first-order laminate fé¥ = 3 with interface normal vectds.
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As experiments indicate that laminate microstructuresodinly comprise two distinct laminate domains (Dmitrieva
et al., 2009), we will restrict our considerations in thewsgdo a two-domain laminate only, i.€Y, = 2, where)
will denote the volume fraction of phage

4 Dissipation potentials and evolution equations

Dissipation occurs as a result of dislocation motion anceiscke linked to changes of the plastic slip. A common
definition of the dissipation functional, with the abbrdioa v = {~;;}, is

A() =r||FpF, ], (23)

with a positive constant, the critical resolved shear stress, and the Euclidean defmed by |F||?> = tr (FT F).
Forn active slip systems we infer

n n

A =7 DD 4idssi-s;mi-my, (24)

? J

so that for the special case of only two active slip systentkisve common glide plane one concludes

A(f1,%2) =7 \/’Y% + 43 + 29172 81 - 82 (25)

and for a single active slip system
A(y) =rlyl (26)

Many approaches to model the microstructure evolution lhaen based on a condensed energy functional (12),
which makes use of the dissipation distance (11). Besides) the present, incremental approach requires the
dissipation distance to capture the dissipation due toggmof the laminate volume fractions correctly. For a time
step[t,, tn+1] the dissipation distance is obtained from

tnt1

Dvussra) =it { [ A6 at 3(0) = T sn) = v} @)
tn

For general problems with more than one active slip systemlytcal integration of (27) to yield a closed-form

expression for the dissipation distance does not appesibfeand approximations must be employed (Kochmann

and Hackl, 2009a). Only for a single active slip system tlssigation distance can easily be obtained as

D(7n+1; ’Yn) =T "VnJrl - ’Yn| (28)

One possible approximation for multiple slip systems hamhiatroduced (Kochmann and Hackl, 2009a) analo-
gously as

D(Vps1:¥n) =7 Y Mimt1 = Yiml, (29)
which is based on the assumption of non-interacting slipherdiverse active slip systems. Alternatively, one can
make use of a the following approximation which is valid fdvitrary changes of the slips as long as the time step
is kept sufficiently small

n

DV ¥n) =7 [ DD (Yimt1 = Yim) (ims1 = Vin) i - 85 - . (30)

z J

For a material with microstructure, not only the energy dgrisut also the dissipation potential must be given in
its relaxed form, which has been proposed for the first-diatemate as follows (Hackl and Kochmann, 2008)

ANy AA) =7 (1= NAGL) + AAG2) + [A| D) - (31)

The first and second term represent dissipation due to charidiee plastic slips within the two laminate domains,
and the third term characterizes the amount of dissipatierta changes of the volume fractions, i.e., the dissipated
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energy necessary to transform e.g. a small part belongipddsel into a part of phasé if \ increases. For a
single active slip system the relaxed dissipation poterg@uces to

A1, 031, 92) = 7 (L= D)l + Al + [Aon = 3))) (32)

For multiple active slip systems the above discussion epgind approximations for the dissipation distance to
account for dissipation due to volume fraction changes rhestmployed. For two active slip systems, we have
proposed, following (29),

D(v) =7 (711 —v21] + 712 — 722) - (33)

Another formulation results from (30) by making use of theuasption of an infinitesimally small time increment.
Then, one obtains the alternative formulation

D(v) =7/ (711 —712)2 + (721 — 722)2 + 2 (711 — 712) (Y21 — Y22) 81 - S (34)

Note that this approximation (34) is obtained from assunainggligibly small time increment, with no assumption
made about the slip increments, i.e. this approximatiorbeamsed also for the onset of lamination when the jump
of the plastic slip in the second laminate domain can be quitsiderable but the time increment is small.

Now that we have established representations both for faeee energy (21) and for the relaxed dissipation
potential (31) with (34), we attack the problem of modelihg tevolution of laminates by making use of an
incremental strategy. Via the principle given in (7) we abtavolution equations foA and~;; in terms of the
stationarity conditions to minimize the above Lagrangecfiomal, being

a\Ijrel OA*
— 35
0 € X + o (35)
rel rel *
0 € %tl; +68i signﬁij—&—%, foralll1<i< N, 1<j<n. (36)
1] 1) ]

To compute the evolution of plastic microstructures in tinve have proposed an incremental formulation for the
numerical treatment of (35) and (36) (Hackl and Kochman®820using specified finite deformation increments
[F,, F,+1] with known initial conditionsF',,, i;.n, An, Dij.» @and the known deformatiof’,, ., at the end of the
time step. Then, (35) and (36) can be used to compute theesfiat; = vij n+1 — Yijn, AX = A1 — Ay
andAp;; = pijn+1 — pijn for givenAF = F,; — F, in a staggered algorithm. Also, the model accounts
for laminate rotation (Hackl and Kochmann, 2009) and upi#te hardening variables due to volume fraction
changes (Hackl and Kochmann, 2008). For details of the nigaldmplementation and the exact algorithmic
realization see (Hackl and Kochmann, 2008; Kochmann andIH2@09a).

5 Results

It has been reported (Hackl and Kochmann, 2009) that theeptenodel gives rise to interesting effects when
applied to cyclic loading of single-crystals in terms of dastic shakedown, i.e. the stress-strain behavior has
been shown to rapidly reduce within a few number of cycless(kan four) to almost elastic behavior with an
almost steady laminate. However, it has been argued thrasHturt number of cycles until the steady state is
reached is rather unphysical. Therefore, we investigate the influence of work hardening on the cyclic loading
of single-crystals by computing the stress-strain behratithe material point level.

5.1 Cyclic loading in single-slip plasticity

Let us first analyze the cyclic load response of a crystal im dimensions with only a single active slip system,
whose orientation is defined by the anglethroughs = (cosp,sinp,0)T, m = (—sin¢p,cosp,0)T. The
material is subject to the homogeneous deformation

F(y) = (37)

o O =
O =2
_ o O

so that we can study the evolution of the microstructureh@fnergy and, of course, of the shear stress as functions
of the shear strain. It becomes apparent from Figure 2 that hardening does éhdearsiderably affect the cyclic
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Figure 2: Stress-strain curves for a cyclic shear test fooua hardening moduk and fixed remaining properties
(shown are the first seven complete cycles).

load behavior: Without hardening & 0) the stress-strain hysteresis remains unaltered for ellésy Note that the
nonconvexity of the free energy density for the chosen siipesn orientation op = 135° appears only foty > 0
such that we observe microstructure formation and the &miorresponding stress plateau only in that region,
whereas fory < 0 the body deforms homogeneously and no microstructure foviih an increasing amount of
hardening £ > 0) the stress-strain behavior changes essentially. Foehiglad cycles, the hysteresis becomes
narrower and the stresses increase. The final elastic shakdaecomes visible for high hardening parameters
(see e.g. the curves far = 0.01x andx = 0.02u). Here, one can clearly state that the amount of hardening
essentially affects the progressive degeneration of thesistrain hysteresis by altering the number of load sycle
required until the final steady state is reached. For modématdening it may hence take a large number of load
cycles until the elastic shakedown occurs.

The observed stress-strain behavior can be linked to ntfocdaral mechanisms by inspection of the evolving
internal variables. Figure 3 illustrates the evolutionh# plastic slips, the volume fractions and the stored energy
as functions of the applied shear strain for little hardgronly (< = 0.004u), whereas Figure 4 illustrates the
course of the same quantities for strong hardening=(0.02x). In Figure 3 the paths of the internal variables
of the first cycle considerably differ from those of subseduwsycles, but the changes between subsequent cycles
after the first cycle are relatively small. Note that the ptaslips in both phasesy; and~., show distinct cyclic
changes for the entire load path investigated here. Alsoydfume fraction\ changes cyclically betwedhand
approximatelyl0%. Hence, a laminate microstructure forms with both domaiefomining plastically, which
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Figure 3: Evolution of the internal variables (i.e., thegtiaslipsy; and~:, and the volume fraction of phase2)
and of the energy during a cyclic shear test for little haidgiix = 0.004.); shown are the first seven complete
cycles.

forms and vanishes cyclically. As a result, the stored gnergreases moderately from cycle to cycle due to
the increasing amount of intrinsically stored energy cegattin the monotonously increasing plastic hardening
variablesp;.

M .
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Figure 4: Evolution of the internal variables (i.e., thegtia slipsy; and~,, and the volume fraction of phase
2) and of the energy during a cyclic shear test for high hare@i = 0.02u); shown are the first seven complete
cycles.
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Figure 5: Evolution of the hardening variablesandp- during cyclic loading in single-slip.

In contrast, Figure 4 indicates a different behavior fogéahardening (here; = 0.02u). Again, we observe
that the evolution of the internal variables changes wittinareasing number of load cycles, and the plot of the
evolving plastic slipy, in the second laminate domain is almost identical to the drieigure 3. However, two
crucial differences become obvious: now, the plastic-glip the initial laminate domain transforms within a few
load cycles to reach a steady value of akidt which hardly changes during subsequent load cycleshiednttial
laminate domain transforms into a steady, elastic sta¢e afiew cycles only. Besides, the evolution of the volume
fraction A also indicates a drastic change. In constrast to the periddinges in Figure 3, the volume fraction
A here very soon reaches an approximately steady state withmonor changes during subsequent cycles (viz.,
A tends to change cyclically between aba0tand12% only). The laminate thus considerably deviates from the
one observed for small hardening only. Here, within a feweyan approximately steady laminate is developed
with hardly changing volume fractions, and only the smalexvly-formed domair2 exhibiting plastic flow. As a
result, the stored energy increases notably faster thameébahd the elastic shakedown is reached after fewer load
cycles.

Finally, let us complete the description of results by ufidigrg the influence of the specific hardening formulation
chosen here. To this end, we inspect the evolution of theamémgd variables, as illustrated in Figure 5, where the
evolution ofp; andp, is plotted exemplarily for a laminate loaded cyclically ingle-slip with the given set of
material parameters. The graphic highlights two particakeracteristics during the evolution of the hardening
variables, which shall be discussed briefly.

On the one hand, the impact of the update procedure for thdehirg variables becomes apparent from the
evolution ofp, upon laminate nucleation, as has been reported e.g. in (ldadkkKochmann, 2009; Kochmann
and Hackl, 2009b). During the initial positive loading oétfirst load cycle, we have, = |v;| due to the present
flow rule and the monotonically increasing load. As the sddaminate phase forms during the first load cycle, we
observe thap, first assumes the valyg,| upon laminate initiation, but then rapidly decreases frammitial value
and gradually approaches the evolvingvalue due to the evolution of the volume fractions and theesponding
updates of the hardening variables. At the end of the firsiecymth hardening variables show approximately
equal values, from where on we observe uniform hardeningtin laminate phases.

On the other hand, we can observe in Figure 5 how both hargeaiables increase with subsequent load cycles,
i.e. with repeated plastic deformation, which gives riseh® observed cyclic hardening and eventually to the
elastic shakedown of the stress-strain hysteresis. Thisriajor advantage of the present variational formulation,
which allows for the study of cyclic loading, while the lisgare approach, based on condensed energy functionals,
accounts for monotonic loading. Here, the values of thedrdand) variables gradually increase during each load
cycle, leading to higher stresses and the reported cychidelngng. Note that the orientation (characterized by
vectorb) shows hardly any changes during load cycles due to the Emgmunt of dissipation required to rear-
range the rotated laminate. Therefore, the nucleated Emmicrostructures predominantly remains in its initial
orientation, which results from the energetically optirsi@te upon laminate formation.
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5.2 Cyclic loading in double-slip plasticity

When more than one slip system is active, latent hardeningpdngeraction mechanisms (such as cross slip) plays
an essential role, increasing the amount of work harderingiderably. To illustrate this effect, we show results
for a cyclic shear test with two active slip systems withia game slip plane, so that (14) holds. For comparison
with the single-slip results, we locate the slip plane uralerangle ofp = 135° and align the two active slip
systems under angle’s and, with respect to the direction of shear, as depicted in therseltic view included

in Figure 6. The particular hardening characteristics asedbed in terms of the hardening parametgysn (15).

T/l = 0.001p
0.03 P =135°

1, = 30°

wz = 60°
0.02 Ky, = 0.0024

k,, = 0.0024
0.01 k., = 0.008p

0.04 0.05 7

Figure 6: Cyclic stress-strain response for double-sksttity with low hardening (shown are the first seven load
cycles) for non-symmetric active slip systems.

Figure 6 illustrates the stress-strain behavior for twavactlip systems with low (self- and latent) hardening.
We observe the typical stress-strain hysteresis with dttlg kyclic deviations, as has already been noted for
the single-slip problem with a low hardening parametgsee Figure 2). Here, the asymmetrically aligned slip
systemsd); # 1);) locates the resultant slip out-of-plane (and so is theraitei orientation), which gives rise to
the enormous increase of the stress even for low values dfditening parameters;.

T/HA
r = 0.001p
0.04 [ @ — 1350
0.03| b, = 30°
ﬂ)‘z: 30°
0.02 k,, = 0.004p
Ky, = 0.004p
0.017 k,, = 0.0120
_0.01// 0.0l 0.02 003 004 005
01

Figure 7: Cyclic stress-strain response for double-slgsitity with high hardening (shown are the first seven
load cycles) for symmetric active slip systems.

In contrast, Figure 7 shows the analogous stress-straie ith higher hardening parameters. Here, the stress-
strain curve shows a similar hysteresis loop, which, howeasenot completely recovered but, upon further load
cycles, deviates gradually. Within a few load cycles thedgp aforementioned elastic shakedown appears due to
the increase of energy as a consequence of work hardeningaadticular, latent hardening of the two active slip
systems. In conclusion, the presence of hardening, asda@xtamples in single-slip plasticity, considerably efect
the cyclic stress-strain behavior and determines the nuofleycles required before the laminate microstructure
degenerates to approach a close to elastic mechanicalibehav
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6 Conclusions

We have outlined an incremental, variational approach tdehie evolution of laminate microstructures in single-
and multi-slip plasticity of single crystals, and we havelaga this formulation to investigate the cyclic loading
in single- and double-slip. The influence of work hardeningtte cyclic stress-strain response has been proved
crucial to affect the degeneration of the elastoplastiddrgsis loop with an increasing number of load cycles.
For single-slip plasticity, the hardening parameter @dtrced as a scaling factor of the intrinsically stored eylerg
shows a critical impact on the number of load cycles requirgti a final, steady laminate has formed. This has
been explained by the different evolving laminate charisttes for strong work hardening vs. little hardening
only.

For double-slip plasticity, the presence of work and lateardening has been shown to yield the (qualitatively)
same impact on the stress-strain response, as hardenglgrates the degeneration of the hysteresis loop to very
quickly yield the elastic shakedown, which had been repdstfore.

In conclusion, work hardening (self-hardening as well &sriihardening in the presence of more than one active
slip system) considerably affects the cyclic load behawgrchanging the microstructural characteristics and, as
a consequence, the stress-strain hysteresis. With imcegegdluence of hardening, the laminate microstructure
more readily transforms into an almost steady final statéchwtheforms close to elastically.
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