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Conversion of EBSD data by a quaternion based algorithm to be used for
grain structure simulations

A. Melcher, A. Unser, M. Reichhardt, B. Nestler, MdtBchke, M. Selzer

Over the last decades, great progress has been made in gavgloodels to describe and simulate the time-spatial
evolution of microstructure in polycrystals. A major prebi is to find suitable initial conditions to start such a
simulation.

One possibility to solve this problem is the usage of expartal data given by Electron Back Scattering Diffrac-
tion (EBSD) measurement. These technique provides tha gtaicture of a polycrystal in terms of Eulerian
angles.

In this work, we introduce a algorithm based on quaterniangéscribe the reconstruction of a polycrystal from
the EBSD data in two and three space dimensions. We destigbERBSD measurement and the mathematical
background in detail. From this we deduce the reconstructiigorithm and give some simulation results.

1 Introduction

In material sciences it is important to characterize therositucture and texture of the material under investiga-
tion. Misorientation, grain size, grain shape, grain bargdharacter, grain orientation and texture distribution
can have significant influence on the properties of the nadtefio measure the microstructure and texture of a
material optical microscopy, Scanning Electron Microgc®EM), Transmission Electron Microscopy (TEM) or
neutron and X-ray diffraction can be used to obtain locadimfation of the microstructure.

In the last years, the automated Electron Backscatterdatffsn (EBSD), also known as Orientation Imaging Mi-
croscopy (OIM), has become increasingly important for tharditative characterization of the grains, subgrains
and microtextures. This technique is applicable for matewwvith crystallographic character like metals, minerals
semiconductors or ceramics, also most of inorganic ciyrsamnaterials (Maitland and Sitzman, 2006).

The EBSD technique allows for the automatic and direct nremsent of a large amount of orientations in terms
of Eulerian angles in a cross-section of a specimen. Thexrefloe EBSD technique is a priori a 2D measurement
of a 3D information in a specimen.

The main advantage of the EBSD technique lies in the diremsscto the local orientation of the material in a
measurement point or in the relation between the microstre@nd crystallography (K.Kunze et al., 1993). The
popularity of EBSD in connection with SEM is due to the fab@attfor the time being it gives the most reliable
spatial resolution and angular precision to describe msteugtures. It is also possible to process large data sets
and analyze them quickly due to the increasing power of ceenpyCho et al., 2005). The EBSD technique
enables the user to post process the data for a subsequérsigrike a finite element method, for considering
microstructure and texture or grain growth simulation. &@omplete review of the topic refer to (Rollett et al.,
2007).

In the sequel we describe an algorithm, where we can reecmisin average or mean orientation for the grains
and the grain structure from the EBSD measurement basedaivien lattice orientations. This algorithm can be
applied to 2D and 3D measurements.

Several attempts are proposed to solve this task in the 28 likes a nonlinear method presented by (Barton and
Dawson, 2001) or a statistical analysis of the orientatiata diven by (Krieger Lassen et al., 1994). Our approach
is based on quaternion algebra as proposed in the works oféCdl., 2005) and (Humbert et al., 1996), where in
the last work an approach based on orthogonal matricesazlunted as well.

To identify a grain from EBSD measurement, one has to deterthie grain boundary and the average orientation
inside this grain. To fulfill this task, it is useful to do theaessary computations in terms of misorientation over
the set of all measurement points inside the grain. Theréhase major types of misorientations which can be
used to determine the misorientation inside a grain. Fingt@an express the magnitude of misorientation over
all measurement points inside a grain called grain ori@rtapread (GOS). The second one is computed between
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Figure 1: Scheme of an EBSD measurement unit

each measurement point and the mean orientation callear sg@ntation spread (SOS). Within this work we use
a third possibility called grain average misorientatio\{&), whereby the misorientation is only calculated from
adjacent measurement points only, which give a neareshibeig correlation.

The aim of this work is to give a short review of the mathenatlzackground to describe orientation and ro-
tation. We will give the connection between the severalgspntations of orientation respectively rotation like
guaternions, rotation matrices and others. Based on tlelggbaund, we develop an algorithm to reconstruct the
orientation and grain structure from EBSD data in two andefspace dimensions.

This paper is organized as follows. In chapter 2 we give atdlechnical review of the EBSD measurement,
followed by an introduction of the mathematical theoriesdealuating the EBSD-measurement in chapter 3. The
conversion algorithm is given in chapter 4 followed by siatidn results in chapter 5 using phase-field simulations.
We close this paper with a summarizing conclusion and amokithf possible future works.

2 Thephysical setup of the EBSD technique

In the sequel, we give a short survey of the physical backgt@nd the function of the EBSD technique. First
we introduce the EBSD technique in 2D and then give a shorhsamyof the applications of EBSD measurement
to 3D problems. Further detailed information can be founfMaitland and Sitzman, 2006) and (Schwartz et al.,
2009).

From the historical point of view, the development of the EBt®chnique started in 1928 with the work of Kikuchi.
An electron beam 050 keV was directed on a cleavage face of calcite at a grazirigence of6°, where diffrac-
tion patterns were recorded on photographic plates behiddrafront of the crystal. The modern development
of the EBSD technique started in the mid eighties of the lastury with the work of (Dingley, 1984) and is
still under development until the present time, for exangge the works of (Khorashadizadeh et al., 2008) and
(S.Zaefferer et al., 2008).

2.1 How does EBSD work?

An EBSD measurement can be performed in a scanning elecicmasoope (see Figure 1). One need a flat highly
polished sample, that is arranged under a shallow angleriergeof10° — 20° to the incident electron beam.
The technical parameters of the electron beam are typicaficaelerating voltage afd — 30 kV and a current
betweenl — 50 nA. The working distance to the tilted sample ranges betwi®n 15 mm. The electron beam
interacts with the crystal of the sample, and the diffraetiedtrons form a pattern (Electron Backscattering Pattern
(EBSP)) on a fluorescent screen, which was betwié®n— 170 mm away. This pattern is characteristic of the
crystal structure and orientation of the sample regiormfwhich it was generated. See (Wells, 1999) for more
details of the electron-crystal interaction. The spagabitution of the technique depends on the capabilitieseof th
underlying SEM optic. In general, an EBSD measurement istla@ of all measurement points;, y;) of the
sample with distance&xz and Ay between two measurement points.

The EBSP detector is a digital camera, where the CCD chifuimihated by the phosphor screen which converts
the diffracted electrons into light suitable for the CCD @mento record. This data is evaluated with commercial
software provided together with the EBSD hardware. The Blikibands included in the EBSP are analyzed
using the Hough transform (see (J.lllingworth and J.Ki;tl988) for a survey). With a priori information of the
underlying phase of the crystal, the software is able tordete all possible orientations in every measurement
point. In consequence, EBSD gives a rise to 3D informatiothefunderlying crystal coming from the 2D EBSP
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Figure 2: Scheme of a combined EBSD FIB measurement unit

on the phosphor screen in every measurement point.

2.2 Data measurement

The data set generated by the EBSD software for the measntrgrezedure is quite simple. It is a database,
where a row coincides with a measurement point, and a col@presents a measured parameter. During the
EBSD measurement at every point of the sample, an EBSP igreaidind analyze. The software gives as solution
the identified parameters or a zero solution. Zero solutionse from measurements, where the software is unable
to detect an EBSP due to several reasons, like sample sddémenations or measurement at grain boundary with
overlapping EBSP. If the analysis of the software is sudogghe most important information are the phases, if
more than one match unit is specified by the user, and orientiat terms of Eulerian angles.

2.3 Three-dimensional EBSD

As outlined above, the conventional EBSD technique for attarizing microstructures of a material is restricted
to the measurement of 3D information in a 2D plane cut of thepda. Statistical methods can give some addi-
tional information on the underlying 3D structure of the eral, however in many cases the knowledge of the
3D characterization of the sample is of vital importancks lihe true size and shape of grains for grain growth
investigations.

The characterization of materials in three space-dimassian be done in two ways. Either by applying transmis-
sive radiation to gain the information, or the serial sattig of a sample. In this work we restrict ourselves to the
second possibility.

Serial sectioning can be done in several ways, e.g. medianitting, polishing, chemical polishing, etching and
others, and for all microscopy techniques are available mhin difficulty is the control of the sectioning depth
and the production of flat and parallel surfaces to get gooasomements. The alignment of the sample must be
correct, as well, many of the sectioning techniques aredaimensive. A technique to overcome this difficulties
in serial sectioning is the usage of a dual beam system c¢ingsef an EBSD unit and a Focused lon Beam (FIB)-
Unit in a SEM. The FIB consists of accelerat@d ™ -ions and the impact of the beam on the surface of a sample
leads to the sputtering of material, and can, therefore skd to perform a cut in the lenght-scale of several nm.
Further information can be found in (S.Zaefferer et al.,80hd the references therein. A scheme of the dual unit
can be found in Figure 2.

3 Mathematical background of orientation, misorientation and mean orientation

In this section, we introduce the mathematical basics ofdimas orientation, mean orientation, misorientation and
rotation. A detailed theory can be found in the books (Buigé9) and (Morawiec, 2004).

3.1 Orientation and misorientation

If we work with the topic orientation in considering crydias or polycrystals, both the sample and the crystal
symmetry have to be considered, because several equialentations can exist depending on the symmetry
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of the sample and the symmetry of the crystal. For exampla,déibic symmetry is considered, there are 24
possibilities to arrange a crystal by using a proper rotatigymmetry operator. This means that an orientation
can be expressed by 24 equivalent possibilities (Humbaet,1995) and (Bhattacharya, 2003).

In general, an orientation can be described by three paessnedmbined in the symbgl Introduced by (Bunge,
1969), the orientation space or Eulerian space (Euler 1@53ists of every orientatiog which transforms a
sample coordinat&s in a crystal coordinaté’. In this work, we restrict ourselves to the so-called BungkeE
angles, i.e. that an orientation can be expressed througé tbtations with the anglés, ¢, ¢2). Given a fixed
coordinate system with the—, y—, z—axes, we perform the following rotations (see Figure 3)

1. Arotation of an angle>; about the z-axis.
2. Arotation of an anglé about the rotated x-axis.

3. Arotation of an angle, about the rotated z-axis.

Now, the finite dimensional space of orientation is given by

g ¢ [Ks— Kclorg ' =g": [Kc — Kg
G 0<p,p2<2m 0< <. (1)

In the sequel we refer tg = {¢1, ¢, w2} as the Bunge-Euler angles notation. Rotations have in getrer
following properties (Bunge, 1969):

e The composition of two rotationg andgs is again a rotation : g = g2 - 1.

¢ Rotation constitutes a groupin the mathematical sense, i¢g € G — ¢~ ! € G, where ing~! denotes
the inverse rotation and is given in terms of Eulerian angies ! = {7 — ¢2, ¢, T — ©}, and the identical
rotation is given as = {0,0,0}.

e If arotationg is known, the orientation of a crystal in a polycrystalliragrgple is characterized unique. But
we can not characterize a rotatigiin a unique form from crystal orientation. The reason liethmcrystal
symmetry. A detailed discussion can be found in (Bunge, 1969

e If we neglect the crystal symmetry and consider two oriéoiator rotationg andg’, then the misorientation
or distance of orientations &g = g~ - ¢'.

For the parametrization of rotations or orientations thexist several possibilities. An Eulerian angle is a degree
of freedom, that represents a rotation about one of the auatelaxes. An alternative representation is, that a
rotation can be described via3ax 3 orthogonal matrix. The connection between the Bunge-Eargies and a
rotation matrix is

[cosp;  —sing; 0] [1 0 0 cospy —singy 0
g(p1,0,09) = |sinp; cosepr 0| [0 cos¢ —sing| |sinps cosps 0
0 0 1| [0 sin¢g cos¢ 0 0 1
[cos 1 cos gy —sinp; cos¢ singy —cos p; sin s — sin ] cos ¢ cos s  sin ¢ sin
= Sin 1 cos g + cos; cos @ sinws —sin; sin g + cos Y] cos @ cospy —sin@ cos
i sin ¢ sin @9 sin ¢ cos s cos @

&)
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More details about the properties of rotation matrices @afobnd for example in (Morawiec, 2004).

If we deal with orientations and rotations, another usejol ts the use of the quaternion algebra, especially the
use of unit quaternions. The main advantage of this reptasen is, that the singularity, which appears in Euler

spaces at the origin is avoided. It is easy to see, that inrESplace, the first and third angle becomes linear
dependent, if the second angle is zero.

A unit quaternion is defined as a real vectomitt

3

= (q0; @) = (q0; q1,q2,q3) With Y g7 = 1. 3
=0

The connection between the Eulerian angles in Bunge natatioit quaternions is given in (Cho et al., 2005),
(Rollett et al., 2007), (Humbert et al., 1996). More dethileformation can be found in the book (Morawiec,
2004) and the short review (Morawiec and Pospiech, 1989):

q= [cos $,8in § ny,sin g ng,sin § nd] , 4)
and
_ @ Pitee o @ P1—P2 i D i PL—P2 D iy PLEP2
q—[coszcos 722, sin § cos #2522 sin § sin #1522 cos § sin £ ], (5)

wherew denotes the rotation angle and= (n1,n2,n3)? the rotation axis. The inverse relation from the equations
(4) and (5) can be found in appendix A. The quaternion comesing to an inverse rotatigyT ! is given as

a " = (90 —a) = (q0; —q1,—q2, —33). (6)
If we consider the rotation = ¢, - ¢- , the corresponding quaternigris the multiplication of the two quaternions
q1 andgs associated to the rotatiogs andg-:

q1 - g2 = (0,190,2 — 91 - d2; Go,1d2 + ¢o,2d1 + q1 X q2). (7)

The misorientation in terms of quaternions is then

Aq = Aq(q1,q2) = a7 "+ a2, ®)

respectively
AQ(Qh Q2) = (%,19‘[0,2 +di1-92; 0,192 — Go,2d1 — d1 X QZ), (©)]

whereg;, i = 1,2 belongs to the rotatiop;, i = 1,2 with Ag = g;* - go.
If we take the crystal symmetry intro account, the possibkonentations are

where K is the amount of the crystal-symmetry dependent poss#slib express an orientation. Thegare the
possible realizations of the symmetry operation. Fromhédl possible misorientations, we take the minimum

K
M := min M, (11)

to get a unique representation of misorientation.
Since the misorientation is given in terms of a quaternibe,dorresponding misorientation anglecan easily be
computed from the corresponding Rodriguez vector (Morewied Field, 1996):,

1 [
R(®,n) = —(q1,92,q3) = tan Zh with |n| =1, (12)
4o

where® describes the rotation angles amcthe rotation axis.

We remark that the equations (4) and (5) state a two to one hmrphism between the group of unit quaternions
and the grougSO(3), i.e. the quaterniong, = [cos 2,sin 2 n| andgs = [cos 2E2%, sin 2427 n| represent
the same rotatioRR (P, n). A unit quaternion can be considered as a point of the sudadbe four-dimensional
unit sphereS3. The definition of the Rodrigues vector can be considerethageodesic projection froy® to

R3. In the sequel, we take advantage of the representatiortatfons in terms of quaternions for computing the
misorientations and the mean orientations. For the reptaten and visualization of the orientation distribution
it is better to use the Rodrigues vector due to the fact, tledhibits a one to one relation between orientation and

their presentation. Some useful additional formulas coring this topic can be found in appendix A.
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Figure 4: Geodesic and Euclidean distance of the unit syiitere

3.2 Averageof orientations

In this section we give a short review on how the average taiem can be computed from a set of orientations.
According to (Humbert et al., 1996), the average of oriéatestcan be computed using quaternions or rotation ma-
trices. Using unit quaternions, we have first to introducaitable distance on the surface of the four-dimensional
unit sphereS® (see Figure 4). Two possibilities are the geodesic distanbéch is the angular distance, or the
Euclidean distance.

The Euclidean distance is

_ .o Wk
di = lla = all* = 1T = qrg™"||* = 4sin” =2 (13)
When using the well known trigonometric relatigim? 5= % (1 — cosz) with z = < yields
Lo w Wi
di=451n2zk=2(1—(?057) =2(1-(909k0 +q-ax)), (14)

using the fact, thatos <* is the first component of the quaternigngy.
The center of mass of rotatiopgepresented by the quaternigean now be determined by minimizing the metric

distance. For a given sef., £ = 1,..., N of orientations lely;, be the corresponding quaternions. We now
introduce the objective functiofi(g, g1, - . ., ¢ ) from equation (14) as
N
faaq, . a) = Z [1 = (q0qk,0 + - ak)]- (15)

Remember, that the quaternigiis a unit quaternion, therefore, we have the constigijfit = gogo +q-q = 1in
our minimization problem. Which yields with a Lagrange npligr and the introduction of the modified objective

function f(q, q1, . . ., qi, \)

f(Q5 qiy---4k, )‘) = f(Qa qiy .- 7Qk) + >‘(||q||2 - 1) (16)
To determine the minima, we have to solve

Of (@, quy -y Qs M) _ 0

N
{]1[ > 201 = (qogk0 + - ) + Maogo + - q — 1)} =0, 17)
k=1

for : = 0,1,2,3. These condition gives

1 N
1*NZ ‘77112();172737 (18)
k=1

whereX = || Z ¢i.1|| due to the constraint, thatmust be a unit quaternion. The last equation expresses, that

the mass center of a set of unit quaternions is simple thenaeitic average of the quaternions, i.e.

N
- i (19)
12 k= axl

Bl
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Figure 5: Adjacent orientation points in a threedimendlignial

4 Reconstruction algorithm

4.1 Some general assumptions

Before describing the reconstruction algorithm in detad, repeat some general ideas. We describe this ideas in
such a way, that they are suitable for two- and three-dino@asiEBSD-measurement.

The task is to construct a set or cloud of orientation, whiek B minimum misorientation between adjacent
elements. To achieve this aim, a position criterion andtaroin for the misorientation is used.

First of all we assume, that within a grain the orientaticespectively orientation distribution are described via a
continuous function, and there are orientation gradierg&le the grain, i.e.

g(x) = {g9(x) | V(X € agArai)nJ}
. . m(x, X+ Ax)
with - Jim = =% (20)

wherem(x,y) € R" x R™ — R denotes the misorientation functigy(x) the orientation function depending on
their representation ande R™, n = 2, 3 the position.

If we consider the data coming from an EBSD measurement,rtbntations at the measurement points have only
a discrete distribution depending on the grid size, i.e.

g9(xi) = {g(x) | (ij, € aAgr;';\inj}
. . m(x, X+ Ax)
wih - A @D

where¢ is the spatial stepsize of the measurement @rige misorientation angles allowed inside a grain. As
consequence, if the discrete orientation funcjdr;) is given, we can deduce, that the misorientation between
the adjacent points is smaller than for the points that areememote. In general, there are four respectively six
adjacent points in a rectangular grid and, therefore, taechefor adjacent points is made for all four/six direction
(see Figure 5). We note, that these amount can be reducedftihtee points, if we take the fact into account
that the rotation angle between two rotatignsandgs is equal to the rotation angle betwegnandg;. Only the
rotation axis have opposite signs.

In our algorithm, the following position criterion for theisorientations must be satisfied

Q(Xi,Xj) S ecrit
0(xi,x;) = m(g(x:), 9(x;)), (22)

wherex; andx; are adjacent measurement points afi¢ is the critical misorientation angle. In addition, we also
have to take the crystal symmetry into account. If the chystaametry provides\/ equivalents for an orientation,
we have to consideld sets of orientations for the measurement points of a grainly @ese orientations are
included in every set with the smallest misorientation lestvthe adjacent points. In terms of quaternions we
have to compute

Fx) = q(x)- Sy, k=1,....M
k(X

¢ (x) if min{Ag(q) (%), ¢*(x)))}, (23)

NS
|
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whereg’(x), j = 1,...,6 denotes an adjacent quaternion to the quaternies, S;. the crystal symmetry
operator. Then the average orientation is given as

_ q . . 1 )
g=-—Withg=—— / g (x)dx (24)
||QH Vgrain
Vgrain
or
g 1«
g=Lowithg= 3 g (x), (25)
14l N 2

whereq]°(x) is a representative quaternion corresponding to an otienta(x), andVy,..;,, the area or volume
of the concerned grain.

4.2 Stepwise description of the reconstruction algorithm

In the following section we describe the conversion al¢ponifor EBSD data into simulation data, which uses the
previously introduced techniques. The algorithm congisthe following steps:

i) Read EBSD measured Euler angles: In general, raw EBSD data are provided as a list of measuremen
points. Typically such a list contains the coordinates amésared Euler angles. To determine the size of
the domain we scan all measurement points. After this stegairea domain filled with continuous Euler
angles, see Fig. 6 a).

i) Correction of measurement gaps. Often there are measurement gaps containing no data, mbyked
Euler angle (0.0, 0.0, 0.0). To allow a proper reconstrunitiés necessary to remove as many as possible of
these gaps. One obvious way is to copy a value from a neighigppoint. Another possibility is to average
neighbouring points to get a value, but this often resultarireven worse point when averaging between
two adjacent grains. Figure 6 b) shows the data after rergaithe measurement gaps by copying lefée
neighbour angle.

iii) Clusteringusing neighbour misorientations: In the next processing step the continuous angles are gidoupe
to form a continuous grain. The basic idea is to start a flapdigorithm to cluster all measurement points
which are similar to their neighbours.

We start at a point nameg which is not assigned to any grain. This point is marked witim@ue number,
the new index of the grain, further referred to as grairTo determine if any adjacent poinésare part of
the current grairy we remember them in a set denoted$y

As long asS is not empty there remain measurement points to be teste¢h@ése a point € S and add

all its neighbours already associated with gr@ilo a set\. The set\ contains at least one point which is
the one that addegdto S in the first place. 19(s,n) < 6<% for anyn € N (see eqn. 22) we removefrom
the setS, add it to graing and include all neighbors of not already belonging to a distinguished grain, to
S. By this procedure every point is assigned to a single geaitisfying the desired“"** which can be seen
in Fig. 6 c).

iv) Correction of measurement errors. We observe another main reason for fluctuations in the data-M
surement errors due to the physical limitations appeamdJsiich points as correct input data will result in
grains expanding only over one grid cell. Another reasorethuce grains can be justified by the assump-
tion that small grains will disappear very fast in a grainrseaing process but require (memory intensive)
parametrization.

To achieve a more homogeneous structure we identify graillsammposed of measurement points less
than a specified threshold The selected grains are then mapped to an artificial grawhich consists
of points that may not be connected. Figure 6 d) shows tha gegiuction result for a threshotd= 5, in
which the grainy’ is marked in black. In this way the number of grains was reddi@am initially 759 to 339
after this step of the algorithm. Using this as an initial getry we conducted a preconditioning simulation
forcing the artificial grain to disappear.

v) Compute mean orientation of each grain: Finally for each grain the measured orientations are used to
compute an average orientation, as the global grain otientaising equation (19).
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Figure 6: Data conversion processing steps: a) Raw EBSD Hatanage after removing measurement gaps,
c) image after the clustering process and d) after mapgingll grains to an artificial grain. Experimental data
provided by Dr. Stefan Roth, IFW Dresden.

4.3 Someremarks about thereconstruction algorithm

After describing the reconstruction algorithm and the miarmulas for computing the misorientation in terms of
quaternions, we remark, that alternative formulationséation matrices (Humbert et al., 1996) and mixed for-
mulations (K.Kunze et al., 1993) exist. The main advantdgmsing quaternions in comparison to rotation matrices
is, that for the calculation of the misorientation in the medomputation step only two quaternion multiplications
are necessary in comparison to two matrix multiplicatioAsfour dimensional quaternion multiplication needs
16 scalar multiplications and 12 scalar additions in cattta a3 x 3 matrix multiplication for which 27 scalar
multiplications and 18 scalar additions must be performaatd(ew.J.Hanson, 2006). In summary a quaternion
multiplication needs onlg8 simple arithmetic operations where a multiplication of txetations matrices needs
45 simple arithmetic operations. A comparison of the recamsion algorithm using quaternions and rotation
matrices is done by the authors. The reconstruction alguritsing quaternions 0-times faster in comparison
to the usage of rotation matrices. Therefore, the speed lgsge EBSD data sets should be obvious. In general,
the quality of the reconstruction depends on the qualithefEBSD measurement. The reconstruction algorithm
is programmed in such a way that it works for data files with sne@ment errors greater tha0% of the total
amount of measurement points. You can get such EBSD measntgifiyou have plastic deformation inside the
grains due to e.g. a rolling process. But the results fronh siada files are questionable. Another marker for the
quality is the threshold of misorientation. Possible latittns of the reconstruction algorithm depend strongly on
the underlying hardware e.g. the cpu speed which give atdirigence to the computation time of the algorithm,
or the available memory, which gives a limitation of the nmaai amount of measurement points. This limitations
can be improved in using a parallelized version of the rettaoson algorithm.

5 Simulation Results

In the previous sections, we introduced methods of trarisfeand postprocessing discrete EBSD measurements
in order to prepare complete and homogenized data setstforgsep large scale simulations of polycrystalline
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Figure 7: Time evolution of an EBSD grain structure aftervasion of the data. The sample performs the
characteristic features of grain growth. The differentoco$ indicate the individual grains in a polycrystalline
material.

microstructures. The reconstruction algorithm provigdarimation of the orientation and misorientation distribu
tions in grain structures without gaps and errors from exrpemtal measurements. These data can be used to divide
the initial computational domain in defined sections of ggawith particular crystallographic orientation and allow
to simulate grain structure evolution on the basis of repkeeinental data. Furthermore, the misorientation data
sets give valuable input parameters of the grain boundaayackeristics. The conversion methods find general
application to any kind of microstructure simulation. Twistrate the use, we will examplarily show phase-field
simulations of coarsening processes in polycrystallirgtemitic material. For that, we briefly summarize the main
settings of the simulation. For a detailed understandinthefphase-field method, we refer to appropriate cita-
tions. To describe the evolution of a polycrystalline mgtracture ofNV different grains with a phase-field model,

a vector-valued order paramet@r= (¢4, ..., ¢y) is introduced where each component« = 1,...,Nis a
non-conserved field variable depending on time and spaceepnélsenting the state of each grain. The dynamics
of the structure is described by a set of nonlinear partféddintial equations of parabolic type for each component
of ¢. The set of equations contains physical quantities of thendgroundaries, namely pairwise grain boundary
mobilities and energies including crystal anisotropy amdretional dependence on the misorientation. Details of
the mathematical expressions can be recalled in Nestlér @085). We use the converted EBSD data for both,
to fill the computational domain with an experimentally alygel grain structure and to define a realistic matrix of
grain boundary misorientations.

Fig. 7 shows an image sequence of a phase-field simulatiorgadia growth process in temporal order as can
be seen in heat treatment applications of manufacturinggsses. The dynamic behaviour is the result of a
minimization of the total free energy in the system by resturcof mean curvature. The growth of the mean grain
size is a characteristic behavior of grain coarsening igigrgbtalline structures and can be derived from an empiric
exponential power law for the mean grain diameter in timélofAang (Gottstein, 2007), the evolution of the mean
grain diameterl; at timet is described by

dyt — dit = kt, (26)

whered, is the initial mean grain diameter; the grain growth exponent aridis the gradient energy coefficient.
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In our simulations we usekl = 1.0. If we assume thal, < d; the equation can be simplified to
dy = kt™. (27)

For isotropic grain growth, the exponent is typically= 2. In the phase-field simulation based on the converted
EBSD data, we measured a higher exponenthof 2.39. The accelated growth can be explained by the strong
inhomogenity of the initial grain size distribution and ietanisotropy of the grain boundaries.

6 Conclusion and outlook

The presented methods of reconstructing EBSD data for thbymicrostructure simulations contribute to the aim
of establishing simulation environments that allow for astmealistic computational study of structure formation
processes. A successive algorithm has been presentecghr@sults of a stepwise conditioning of experimentally
measured data. Because of the general form of the algorittermethods are applicable to almost all simulation
techniques working on the length scale of grain structures.

An investigation of grain structure evolution in differgnprepared samples of magnetic shape memory alloys in
comparison with experimental results is in preparatiorrti@rmore, an extensive simulation study of large-scale
3D grain systems on the basis of EBSD data sets will be gextbiata forthcoming paper.

A  Appendix

In this section we give some useful additional formulas fferitelation between rotation matrix and quaternion.
A rotation matrixg is given in general as

gi1 9gi12 g13
g=|921 922 G23|, (28)
931 932 933

where the elementg; are defined as the directions cosines between the axes af/Stalcoordinate systeii ¢
and the sample coordinate systéfg (Spiel3, 2009). The connection between a rotation matrixtla@dtulerian
angles in Bunge notation is given in section 3, equation (2).

In terms of quaternions, the elements of a rotation matex&orawiec and Pospiech, 1989)

9i5(q) = (a4 — a2)8ij + 2q:q; + 2€:k 90k, (29)
where we have used the summation convention in the first téthedast equation. This gives (Cho et al., 2005)
G+ad—a—a  2ae—q9e) 2000+ )

glq) = 2 +aa) @-d+E -3 20— on) |- (30)
2(q193 — qoq2) 2(q2q3 + 01) @G —ai — a3+ a3

The Inversion of the last equation is (Cho et al., 2005)
gii + 1
9 = —F5

2
€ijkgjk €ijk9jk .
. — e s |f O7 31
qi 100 NS qo # (31)

1if (ijk) is an even permutation ¢123)
wheree; i, = —1if (ijk) is an odd permutation qfi23) .
0 else
If go = 0 one has to solve the system

—q3ij + 20195 = gijy (32)

whereg? = 1. Again, we have used the summation convention.
In section 3, equation (4), we have expressed a unit quatemiterms of rotation angle and rotation axis. From
this formula we can also express the rotation angle and axé1ins of a unit quaternion as (Cho et al., 2005)

cos® = 2¢2—1,
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sin® = 2go\/1— g3, (33)

andif® #£ 0
4qi
V1-¢

Finally, we give the reverse relation between a unit quaterand the Eulerian angles in Bunge notation:

(34)

n; =

cosg = (g5+a)— (6 +6), (35)

sing = 2, (36)

cospr = qoq1 — Q2f]37 (37)
2x

sing, = qoq2 2-;6]1613 7 (38)

cospy = qoq1 24;(]2613 7 (39)

singy = q193 2;(10(12 7 (40)

wherex = /(2 + ¢3)(¢? + ¢3) # 0. In the case wherg = 0 we have to distinguish two cases:

* q1 = qo = 0 givesp = 0 andcos 1 + 2 = q3 — g3, singr + @2 = 2qogs.
e qo = g3 = 0 givesy = 7 andcos p1 — Y2 = ¢7 — G5, sin 1 — Y2 = 2q1G2.
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