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Conversion of EBSD data by a quaternion based algorithm to be used for
grain structure simulations

A. Melcher, A. Unser, M. Reichhardt, B. Nestler, M. Pötschke, M. Selzer

Over the last decades, great progress has been made in developing models to describe and simulate the time-spatial
evolution of microstructure in polycrystals. A major problem is to find suitable initial conditions to start such a
simulation.
One possibility to solve this problem is the usage of experimental data given by Electron Back Scattering Diffrac-
tion (EBSD) measurement. These technique provides the grain structure of a polycrystal in terms of Eulerian
angles.
In this work, we introduce a algorithm based on quaternions to describe the reconstruction of a polycrystal from
the EBSD data in two and three space dimensions. We describe the EBSD measurement and the mathematical
background in detail. From this we deduce the reconstruction algorithm and give some simulation results.

1 Introduction

In material sciences it is important to characterize the microstructure and texture of the material under investiga-
tion. Misorientation, grain size, grain shape, grain boundary character, grain orientation and texture distribution
can have significant influence on the properties of the material. To measure the microstructure and texture of a
material optical microscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) or
neutron and X-ray diffraction can be used to obtain local information of the microstructure.
In the last years, the automated Electron Backscatter Diffraction (EBSD), also known as Orientation Imaging Mi-
croscopy (OIM), has become increasingly important for the quantitative characterization of the grains, subgrains
and microtextures. This technique is applicable for materials with crystallographic character like metals, minerals,
semiconductors or ceramics, also most of inorganic crystalline materials (Maitland and Sitzman, 2006).
The EBSD technique allows for the automatic and direct measurement of a large amount of orientations in terms
of Eulerian angles in a cross-section of a specimen. Therefore, the EBSD technique is a priori a 2D measurement
of a 3D information in a specimen.
The main advantage of the EBSD technique lies in the direct access to the local orientation of the material in a
measurement point or in the relation between the microstructure and crystallography (K.Kunze et al., 1993). The
popularity of EBSD in connection with SEM is due to the fact, that for the time being it gives the most reliable
spatial resolution and angular precision to describe microstructures. It is also possible to process large data sets
and analyze them quickly due to the increasing power of computers (Cho et al., 2005). The EBSD technique
enables the user to post process the data for a subsequent analysis, like a finite element method, for considering
microstructure and texture or grain growth simulation. Fora complete review of the topic refer to (Rollett et al.,
2007).
In the sequel we describe an algorithm, where we can reconstruct an average or mean orientation for the grains
and the grain structure from the EBSD measurement based on the given lattice orientations. This algorithm can be
applied to 2D and 3D measurements.
Several attempts are proposed to solve this task in the 2D case, like a nonlinear method presented by (Barton and
Dawson, 2001) or a statistical analysis of the orientation data given by (Krieger Lassen et al., 1994). Our approach
is based on quaternion algebra as proposed in the works of (Cho et al., 2005) and (Humbert et al., 1996), where in
the last work an approach based on orthogonal matrices is introduced as well.
To identify a grain from EBSD measurement, one has to determine the grain boundary and the average orientation
inside this grain. To fulfill this task, it is useful to do the necessary computations in terms of misorientation over
the set of all measurement points inside the grain. There arethree major types of misorientations which can be
used to determine the misorientation inside a grain. First one can express the magnitude of misorientation over
all measurement points inside a grain called grain orientation spread (GOS). The second one is computed between
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Figure 1: Scheme of an EBSD measurement unit

each measurement point and the mean orientation called scalar orientation spread (SOS). Within this work we use
a third possibility called grain average misorientation (GAM), whereby the misorientation is only calculated from
adjacent measurement points only, which give a nearest neighbour correlation.
The aim of this work is to give a short review of the mathematical background to describe orientation and ro-
tation. We will give the connection between the several representations of orientation respectively rotation like
quaternions, rotation matrices and others. Based on this background, we develop an algorithm to reconstruct the
orientation and grain structure from EBSD data in two and three space dimensions.
This paper is organized as follows. In chapter 2 we give a short technical review of the EBSD measurement,
followed by an introduction of the mathematical theories for evaluating the EBSD-measurement in chapter 3. The
conversion algorithm is given in chapter 4 followed by simulation results in chapter 5 using phase-field simulations.
We close this paper with a summarizing conclusion and an outlook of possible future works.

2 The physical setup of the EBSD technique

In the sequel, we give a short survey of the physical background and the function of the EBSD technique. First
we introduce the EBSD technique in 2D and then give a short summary of the applications of EBSD measurement
to 3D problems. Further detailed information can be found in(Maitland and Sitzman, 2006) and (Schwartz et al.,
2009).
From the historical point of view, the development of the EBSD-technique started in 1928 with the work of Kikuchi.
An electron beam of50 keV was directed on a cleavage face of calcite at a grazing incidence of6◦, where diffrac-
tion patterns were recorded on photographic plates behind and in front of the crystal. The modern development
of the EBSD technique started in the mid eighties of the last century with the work of (Dingley, 1984) and is
still under development until the present time, for examplesee the works of (Khorashadizadeh et al., 2008) and
(S.Zaefferer et al., 2008).

2.1 How does EBSD work?

An EBSD measurement can be performed in a scanning electron microscope (see Figure 1). One need a flat highly
polished sample, that is arranged under a shallow angle in general of10◦ − 20◦ to the incident electron beam.
The technical parameters of the electron beam are typical: an accelerating voltage of10 − 30 kV and a current
between1 − 50 nA. The working distance to the tilted sample ranges between10 − 15 mm. The electron beam
interacts with the crystal of the sample, and the diffractedelectrons form a pattern (Electron Backscattering Pattern
(EBSP)) on a fluorescent screen, which was between150 − 170 mm away. This pattern is characteristic of the
crystal structure and orientation of the sample region, from which it was generated. See (Wells, 1999) for more
details of the electron-crystal interaction. The spatial resolution of the technique depends on the capabilities of the
underlying SEM optic. In general, an EBSD measurement is thescan of all measurement points(xi, yi) of the
sample with distances∆x and∆y between two measurement points.
The EBSP detector is a digital camera, where the CCD chip is illuminated by the phosphor screen which converts
the diffracted electrons into light suitable for the CCD camera to record. This data is evaluated with commercial
software provided together with the EBSD hardware. The Kikuchi bands included in the EBSP are analyzed
using the Hough transform (see (J.Illingworth and J.Kittler, 1988) for a survey). With a priori information of the
underlying phase of the crystal, the software is able to determine all possible orientations in every measurement
point. In consequence, EBSD gives a rise to 3D information ofthe underlying crystal coming from the 2D EBSP
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Figure 2: Scheme of a combined EBSD FIB measurement unit

on the phosphor screen in every measurement point.

2.2 Data measurement

The data set generated by the EBSD software for the measurement procedure is quite simple. It is a database,
where a row coincides with a measurement point, and a column represents a measured parameter. During the
EBSD measurement at every point of the sample, an EBSP is captured and analyze. The software gives as solution
the identified parameters or a zero solution. Zero solutionscome from measurements, where the software is unable
to detect an EBSP due to several reasons, like sample surfacedeformations or measurement at grain boundary with
overlapping EBSP. If the analysis of the software is successful, the most important information are the phases, if
more than one match unit is specified by the user, and orientation in terms of Eulerian angles.

2.3 Three-dimensional EBSD

As outlined above, the conventional EBSD technique for characterizing microstructures of a material is restricted
to the measurement of 3D information in a 2D plane cut of the sample. Statistical methods can give some addi-
tional information on the underlying 3D structure of the material, however in many cases the knowledge of the
3D characterization of the sample is of vital importance, like the true size and shape of grains for grain growth
investigations.
The characterization of materials in three space-dimensions can be done in two ways. Either by applying transmis-
sive radiation to gain the information, or the serial sectioning of a sample. In this work we restrict ourselves to the
second possibility.
Serial sectioning can be done in several ways, e.g. mechanical cutting, polishing, chemical polishing, etching and
others, and for all microscopy techniques are available. The main difficulty is the control of the sectioning depth
and the production of flat and parallel surfaces to get good measurements. The alignment of the sample must be
correct, as well, many of the sectioning techniques are labour intensive. A technique to overcome this difficulties
in serial sectioning is the usage of a dual beam system consisting of an EBSD unit and a Focused Ion Beam (FIB)-
Unit in a SEM. The FIB consists of acceleratedGa+-ions and the impact of the beam on the surface of a sample
leads to the sputtering of material, and can, therefore, be used to perform a cut in the lenght-scale of several nm.
Further information can be found in (S.Zaefferer et al., 2008) and the references therein. A scheme of the dual unit
can be found in Figure 2.

3 Mathematical background of orientation, misorientation and mean orientation

In this section, we introduce the mathematical basics of theterms orientation, mean orientation, misorientation and
rotation. A detailed theory can be found in the books (Bunge,1969) and (Morawiec, 2004).

3.1 Orientation and misorientation

If we work with the topic orientation in considering crystallites or polycrystals, both the sample and the crystal
symmetry have to be considered, because several equivalentorientations can exist depending on the symmetry
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Figure 3: Eulerian angles in Bunge notation

of the sample and the symmetry of the crystal. For example, ifa cubic symmetry is considered, there are 24
possibilities to arrange a crystal by using a proper rotational symmetry operator. This means that an orientation
can be expressed by 24 equivalent possibilities (Humbert etal., 1995) and (Bhattacharya, 2003).
In general, an orientation can be described by three parameters combined in the symbolg. Introduced by (Bunge,
1969), the orientation space or Eulerian space (Euler 1775)consists of every orientationg, which transforms a
sample coordinateKS in a crystal coordinateKC . In this work, we restrict ourselves to the so-called Bunge Euler
angles, i.e. that an orientation can be expressed through three rotations with the angles(ϕ1, φ, ϕ2). Given a fixed
coordinate system with thex−, y−, z−axes, we perform the following rotations (see Figure 3)

1. A rotation of an angleϕ1 about the z-axis.

2. A rotation of an angleφ about the rotated x-axis.

3. A rotation of an angleϕ2 about the rotated z-axis.

Now, the finite dimensional space of orientation is given by

g : [KS → KC ] or g−1 = gT : [KC → KS ]
G : 0 ≤ ϕ1, ϕ2 < 2π; 0 ≤ φ ≤ π. (1)

In the sequel we refer tog = {ϕ1, φ, ϕ2} as the Bunge-Euler angles notation. Rotations have in general the
following properties (Bunge, 1969):

• The composition of two rotationsg1 andg2 is again a rotationg : g = g2 · g1.

• Rotation constitutes a groupG in the mathematical sense, i.e.∀g ∈ G → g−1 ∈ G, where ing−1 denotes
the inverse rotation and is given in terms of Eulerian anglesasg−1 = {π − ϕ2, φ, π − ϕ}, and the identical
rotation is given ase = {0, 0, 0}.

• If a rotationg is known, the orientation of a crystal in a polycrystalline sample is characterized unique. But
we can not characterize a rotationg in a unique form from crystal orientation. The reason lies inthe crystal
symmetry. A detailed discussion can be found in (Bunge, 1969).

• If we neglect the crystal symmetry and consider two orientations or rotationsg andg′, then the misorientation
or distance of orientations is∆g = g−1 · g′.

For the parametrization of rotations or orientations thereexist several possibilities. An Eulerian angle is a degree
of freedom, that represents a rotation about one of the coordinate axes. An alternative representation is, that a
rotation can be described via a3 × 3 orthogonal matrix. The connection between the Bunge-Eulerangles and a
rotation matrix is

g(ϕ1, φ, ϕ2) =





cos ϕ1 − sin ϕ1 0
sinϕ1 cos ϕ1 0

0 0 1









1 0 0
0 cos φ − sin φ

0 sin φ cos φ









cos ϕ2 − sin ϕ2 0
sin ϕ2 cos ϕ2 0

0 0 1





=





cos ϕ1 cos ϕ2 − sinϕ1 cos φ sin ϕ2 − cos ϕ1 sin ϕ2 − sin ϕ1 cos φ cos ϕ2 sin φ sin ϕ1

sin ϕ1 cos ϕ2 + cos ϕ1 cos φ sin ϕ2 − sin ϕ1 sin ϕ2 + cos ϕ1 cos φ cos ϕ2 − sin φ cos ϕ1

sin φ sinϕ2 sin φ cos ϕ2 cos φ



 .

(2)
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More details about the properties of rotation matrices can be found for example in (Morawiec, 2004).
If we deal with orientations and rotations, another useful tool is the use of the quaternion algebra, especially the
use of unit quaternions. The main advantage of this representation is, that the singularity, which appears in Euler
spaces at the origin is avoided. It is easy to see, that in Euler space, the first and third angle becomes linear
dependent, if the second angle is zero.
A unit quaternion is defined as a real vector inR

4:

q = (q0; q) = (q0; q1, q2, q3) with
3

∑

i=0

q2
i = 1. (3)

The connection between the Eulerian angles in Bunge notation, unit quaternions is given in (Cho et al., 2005),
(Rollett et al., 2007), (Humbert et al., 1996). More detailed information can be found in the book (Morawiec,
2004) and the short review (Morawiec and Pospiech, 1989):

q =
[

cos ω
2
, sin ω

2
n1, sin

ω
2

n2, sin
ω
2

n3

]

, (4)

and
q =

[

cos φ
2

cos ϕ1+ϕ2

2
, sin φ

2
cos ϕ1−ϕ2

2
, sin φ

2
sin ϕ1−ϕ2

2
, cos φ

2
sin ϕ1+ϕ2

2

]

, (5)

whereω denotes the rotation angle andn = (n1, n2, n3)
T the rotation axis. The inverse relation from the equations

(4) and (5) can be found in appendix A. The quaternion corresponding to an inverse rotationg−1 is given as

q−1 = (q0; −q) = (q0; −q1,−q2,−q3). (6)

If we consider the rotationg = g1 · g2 , the corresponding quaternionq is the multiplication of the two quaternions
q1 andq2 associated to the rotationsg1 andg2:

q1 · q2 = (q0,1q0,2 − q1 · q2; q0,1q2 + q0,2q1 + q1 × q2). (7)

The misorientation in terms of quaternions is then

∆q = ∆q(q1, q2) = q−1
1 · q2, (8)

respectively
∆q(q1, q2) = (q0,1q0,2 + q1 · q2; q0,1q2 − q0,2q1 − q1 × q2), (9)

whereqi, i = 1, 2 belongs to the rotationgi, i = 1, 2 with ∆g = g−1
1 · g2.

If we take the crystal symmetry intro account, the possible misorientations are

Mi = ∆q · Si, i = 1, . . . ,K, (10)

whereK is the amount of the crystal-symmetry dependent possibilities to express an orientation. TheSi are the
possible realizations of the symmetry operation. From all this possible misorientations, we take the minimum

M :=
K

min
i=1

Mi, (11)

to get a unique representation of misorientation.
Since the misorientation is given in terms of a quaternion, the corresponding misorientation angleΦ can easily be
computed from the corresponding Rodriguez vector (Morawiec and Field, 1996):,

R(Φ,n) =
1

q0

(q1, q2, q3) = tan
Φ

2
n with |n| = 1, (12)

whereΦ describes the rotation angles andn the rotation axis.
We remark that the equations (4) and (5) state a two to one homomorphism between the group of unit quaternions
and the groupSO(3), i.e. the quaternionsq1 =

[

cos Φ

2
, sin Φ

2
n
]

andq2 =
[

cos Φ+2π
2

, sin Φ+2π
2

n
]

represent
the same rotationR(Φ,n). A unit quaternion can be considered as a point of the surfaceon the four-dimensional
unit sphereS3. The definition of the Rodrigues vector can be considered as the geodesic projection fromS3 to
R

3. In the sequel, we take advantage of the representation of rotations in terms of quaternions for computing the
misorientations and the mean orientations. For the representation and visualization of the orientation distribution
it is better to use the Rodrigues vector due to the fact, that it exhibits a one to one relation between orientation and
their presentation. Some useful additional formulas concerning this topic can be found in appendix A.
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3.2 Average of orientations

In this section we give a short review on how the average orientation can be computed from a set of orientations.
According to (Humbert et al., 1996), the average of orientations can be computed using quaternions or rotation ma-
trices. Using unit quaternions, we have first to introduce a suitable distance on the surface of the four-dimensional
unit sphereS3 (see Figure 4). Two possibilities are the geodesic distance, which is the angular distance, or the
Euclidean distance.

The Euclidean distance is
d2

k = ‖q − qk‖2 = ‖I − qkq−1‖2 = 4 sin2 ωk

4
. (13)

When using the well known trigonometric relationsin2 x
2

= 1

2
(1 − cos x) with x = ωk

2
yields

d2
k = 4 sin2 ωk

4
= 2

(

1 − cos
ωk

2

)

= 2 (1 − (q0qk,0 + q · qk)) , (14)

using the fact, thatcos ωk

2
is the first component of the quaternionq · qk.

The center of mass of rotationsg represented by the quaternionq can now be determined by minimizing the metric
distance. For a given setgk, k = 1, . . . , N of orientations letqk be the corresponding quaternions. We now
introduce the objective functionf(q, q1, . . . , qk) from equation (14) as

f(q, q1, . . . , qk) =
1

N

N
∑

k=1

2[1 − (q0qk,0 + q · qk)]. (15)

Remember, that the quaternionq is a unit quaternion, therefore, we have the constraint‖q‖2 = q0q0 +q ·q = 1 in
our minimization problem. Which yields with a Lagrange multiplier and the introduction of the modified objective
function f̂(q, q1, . . . , qk, λ)

f̂(q, q1, . . . , qk, λ) = f(q, q1, . . . , qk) + λ(‖q‖2 − 1). (16)

To determine the minima, we have to solve

∂f̂(q, q1, . . . , qk, λ)

∂qi

=
∂

∂qi

{

1

N

N
∑

k=1

2(1 − (q0qk,0 + q · qk)) + λ(q0q0 + q · q − 1)

}

= 0, (17)

for i = 0, 1, 2, 3. These condition gives

qi =
1

N

N
∑

k=1

qi,k · 1

λ
, i = 0, 1, 2, 3, (18)

whereλ = 1

N
‖

N
∑

k=1

qi,k‖ due to the constraint, thatq must be a unit quaternion. The last equation expresses, that

the mass center of a set of unit quaternions is simple the arithmetic average of the quaternions, i.e.

q̄ =

∑N
k=1

qk

‖∑N
k=1

qk‖
. (19)
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Figure 5: Adjacent orientation points in a threedimensional grid

4 Reconstruction algorithm

4.1 Some general assumptions

Before describing the reconstruction algorithm in detail,we repeat some general ideas. We describe this ideas in
such a way, that they are suitable for two- and three-dimensional EBSD-measurement.
The task is to construct a set or cloud of orientation, which has a minimum misorientation between adjacent
elements. To achieve this aim, a position criterion and a criterion for the misorientation is used.
First of all we assume, that within a grain the orientations respectively orientation distribution are described via a
continuous function, and there are orientation gradients inside the grain, i.e.

g(x) = {g(x) | ∀x ∈ a grain j}
with lim

∆x→0

m(x,x + ∆x)

∆x
= 0, (20)

wherem(x,y) ∈ R
n × R

n 7→ R denotes the misorientation function,g(x) the orientation function depending on
their representation andx ∈ R

n, n = 2, 3 the position.
If we consider the data coming from an EBSD measurement, the orientations at the measurement points have only
a discrete distribution depending on the grid size, i.e.

g(xi) = {g(xi) | ∀xi ∈ a grain j}
with lim

∆x→δ

m(x,x + ∆x)

∆x
= θ, (21)

whereδ is the spatial stepsize of the measurement andθ the misorientation angles allowed inside a grain. As
consequence, if the discrete orientation functiong(xi) is given, we can deduce, that the misorientation between
the adjacent points is smaller than for the points that are more remote. In general, there are four respectively six
adjacent points in a rectangular grid and, therefore, the search for adjacent points is made for all four/six direction
(see Figure 5). We note, that these amount can be reduced to two/three points, if we take the fact into account
that the rotation angle between two rotationsg1 andg2 is equal to the rotation angle betweeng2 andg1. Only the
rotation axis have opposite signs.

In our algorithm, the following position criterion for the misorientations must be satisfied

θ(xi,xj) ≤ θcrit

θ(xi,xj) = m(g(xi), g(xj)), (22)

wherexi andxj are adjacent measurement points andθcrit is the critical misorientation angle. In addition, we also
have to take the crystal symmetry into account. If the crystal symmetry providesM equivalents for an orientation,
we have to considerM sets of orientations for the measurement points of a grain. Only these orientations are
included in every set with the smallest misorientation between the adjacent points. In terms of quaternions we
have to compute

qk(x) = q(x) · Sk, k = 1, . . . ,M
qres(x) = qk(x) if min{∆q(qj(x), qk(x))}, (23)
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whereqj(x), j = 1, . . . , 6 denotes an adjacent quaternion to the quaternionq(x), Sk the crystal symmetry
operator. Then the average orientation is given as

q̄ =
q̃

‖q̃‖ with q̃ =
1

Vgrain

∫

Vgrain

qres(x)dx (24)

or

q̄ =
q̃

‖q̃‖ with q̃ =
1

N

N
∑

l=1

qres
l (x), (25)

whereqres
l (x) is a representative quaternion corresponding to an orientation g(x), andVgrain the area or volume

of the concerned grain.

4.2 Stepwise description of the reconstruction algorithm

In the following section we describe the conversion algorithm for EBSD data into simulation data, which uses the
previously introduced techniques. The algorithm consistsof the following steps:

i) Read EBSD measured Euler angles: In general, raw EBSD data are provided as a list of measurement
points. Typically such a list contains the coordinates and measured Euler angles. To determine the size of
the domain we scan all measurement points. After this step wegain a domain filled with continuous Euler
angles, see Fig. 6 a).

ii) Correction of measurement gaps: Often there are measurement gaps containing no data, markedby an
Euler angle (0.0, 0.0, 0.0). To allow a proper reconstruction it is necessary to remove as many as possible of
these gaps. One obvious way is to copy a value from a neighbouring point. Another possibility is to average
neighbouring points to get a value, but this often results inan even worse point when averaging between
two adjacent grains. Figure 6 b) shows the data after removing of the measurement gaps by copying theleft
neighbour angle.

iii) Clustering using neighbour misorientations: In the next processing step the continuous angles are grouped
to form a continuous grain. The basic idea is to start a flooding algorithm to cluster all measurement points
which are similar to their neighbours.

We start at a point nameds0 which is not assigned to any grain. This point is marked with aunique number,
the new index of the grain, further referred to as graing. To determine if any adjacent pointss are part of
the current graing we remember them in a set denoted byS.

As long asS is not empty there remain measurement points to be tested. Wechoose a points ∈ S and add
all its neighbours already associated with graing to a setN . The setN contains at least one point which is
the one that addeds to S in the first place. Ifθ(s, n) < θcrit for anyn ∈ N (see eqn. 22) we removes from
the setS, add it to graing and include all neighbors ofs, not already belonging to a distinguished grain, to
S. By this procedure every point is assigned to a single grain,satisfying the desiredθcrit which can be seen
in Fig. 6 c).

iv) Correction of measurement errors: We observe another main reason for fluctuations in the data. Mea-
surement errors due to the physical limitations appear. Using such points as correct input data will result in
grains expanding only over one grid cell. Another reason to reduce grains can be justified by the assump-
tion that small grains will disappear very fast in a grain coarsening process but require (memory intensive)
parametrization.

To achieve a more homogeneous structure we identify grains only composed of measurement points less
than a specified thresholdt. The selected grains are then mapped to an artificial graing′ which consists
of points that may not be connected. Figure 6 d) shows the grain reduction result for a thresholdt = 5, in
which the graing′ is marked in black. In this way the number of grains was reduced from initially 759 to 339
after this step of the algorithm. Using this as an initial geometry we conducted a preconditioning simulation
forcing the artificial grain to disappear.

v) Compute mean orientation of each grain: Finally for each grain the measured orientations are used to
compute an average orientation, as the global grain orientation, using equation (19).
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a) b) c) d)

Figure 6: Data conversion processing steps: a) Raw EBSD data, b) image after removing measurement gaps,
c) image after the clustering process and d) after mappingsmall grains to an artificial grain. Experimental data
provided by Dr. Stefan Roth, IFW Dresden.

4.3 Some remarks about the reconstruction algorithm

After describing the reconstruction algorithm and the mainformulas for computing the misorientation in terms of
quaternions, we remark, that alternative formulations forrotation matrices (Humbert et al., 1996) and mixed for-
mulations (K.Kunze et al., 1993) exist. The main advantage of using quaternions in comparison to rotation matrices
is, that for the calculation of the misorientation in the main computation step only two quaternion multiplications
are necessary in comparison to two matrix multiplications.A four dimensional quaternion multiplication needs
16 scalar multiplications and 12 scalar additions in contrast to a3 × 3 matrix multiplication for which 27 scalar
multiplications and 18 scalar additions must be performed (Andrew.J.Hanson, 2006). In summary a quaternion
multiplication needs only28 simple arithmetic operations where a multiplication of tworotations matrices needs
45 simple arithmetic operations. A comparison of the reconstruction algorithm using quaternions and rotation
matrices is done by the authors. The reconstruction algorithm using quaternions is60-times faster in comparison
to the usage of rotation matrices. Therefore, the speed up inlarge EBSD data sets should be obvious. In general,
the quality of the reconstruction depends on the quality of the EBSD measurement. The reconstruction algorithm
is programmed in such a way that it works for data files with measurement errors greater than50% of the total
amount of measurement points. You can get such EBSD measurements if you have plastic deformation inside the
grains due to e.g. a rolling process. But the results from such data files are questionable. Another marker for the
quality is the threshold of misorientation. Possible limitations of the reconstruction algorithm depend strongly on
the underlying hardware e.g. the cpu speed which give a direct influence to the computation time of the algorithm,
or the available memory, which gives a limitation of the maximal amount of measurement points. This limitations
can be improved in using a parallelized version of the reconstruction algorithm.

5 Simulation Results

In the previous sections, we introduced methods of transferring and postprocessing discrete EBSD measurements
in order to prepare complete and homogenized data sets for setting up large scale simulations of polycrystalline
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a) b) c) d)

Figure 7: Time evolution of an EBSD grain structure after conversion of the data. The sample performs the
characteristic features of grain growth. The different colours indicate the individual grains in a polycrystalline
material.

microstructures. The reconstruction algorithm provides information of the orientation and misorientation distribu-
tions in grain structures without gaps and errors from experimental measurements. These data can be used to divide
the initial computational domain in defined sections of grains with particular crystallographic orientation and allow
to simulate grain structure evolution on the basis of real experimental data. Furthermore, the misorientation data
sets give valuable input parameters of the grain boundary characteristics. The conversion methods find general
application to any kind of microstructure simulation. To illustrate the use, we will examplarily show phase-field
simulations of coarsening processes in polycrystalline austenitic material. For that, we briefly summarize the main
settings of the simulation. For a detailed understanding ofthe phase-field method, we refer to appropriate cita-
tions. To describe the evolution of a polycrystalline microstructure ofN different grains with a phase-field model,
a vector-valued order parameterφ = (φ1, . . . , φN ) is introduced where each componentφα, α = 1, . . . , N is a
non-conserved field variable depending on time and space andrepresenting the state of each grain. The dynamics
of the structure is described by a set of nonlinear partial differential equations of parabolic type for each component
of φ. The set of equations contains physical quantities of the grain boundaries, namely pairwise grain boundary
mobilities and energies including crystal anisotropy and afunctional dependence on the misorientation. Details of
the mathematical expressions can be recalled in Nestler et al. (2005). We use the converted EBSD data for both,
to fill the computational domain with an experimentally observed grain structure and to define a realistic matrix of
grain boundary misorientations.

Fig. 7 shows an image sequence of a phase-field simulation of agrain growth process in temporal order as can
be seen in heat treatment applications of manufacturing processes. The dynamic behaviour is the result of a
minimization of the total free energy in the system by reduction of mean curvature. The growth of the mean grain
size is a characteristic behavior of grain coarsening in polycrystalline structures and can be derived from an empiric
exponential power law for the mean grain diameter in time. Following (Gottstein, 2007), the evolution of the mean
grain diameterdt at timet is described by

dm
t − dm

0 = kt, (26)

whered0 is the initial mean grain diameter,m the grain growth exponent andk is the gradient energy coefficient.
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In our simulations we usedk = 1.0. If we assume thatd0 ≪ dt the equation can be simplified to

dt
∼= k̄tm. (27)

For isotropic grain growth, the exponent is typicallym = 2. In the phase-field simulation based on the converted
EBSD data, we measured a higher exponent ofm = 2.39. The accelated growth can be explained by the strong
inhomogenity of the initial grain size distribution and by the anisotropy of the grain boundaries.

6 Conclusion and outlook

The presented methods of reconstructing EBSD data for the use by microstructure simulations contribute to the aim
of establishing simulation environments that allow for a most realistic computational study of structure formation
processes. A successive algorithm has been presented showing results of a stepwise conditioning of experimentally
measured data. Because of the general form of the algorithm,the methods are applicable to almost all simulation
techniques working on the length scale of grain structures.
An investigation of grain structure evolution in differently prepared samples of magnetic shape memory alloys in
comparison with experimental results is in preparation. Furthermore, an extensive simulation study of large-scale
3D grain systems on the basis of EBSD data sets will be generated in a forthcoming paper.

A Appendix

In this section we give some useful additional formulas for the relation between rotation matrix and quaternion.
A rotation matrixg is given in general as

g =





g11 g12 g13

g21 g22 g23

g31 g32 g33



 , (28)

where the elementsgij are defined as the directions cosines between the axes of the crystal coordinate systemKC

and the sample coordinate systemKS (Spieß, 2009). The connection between a rotation matrix andthe Eulerian
angles in Bunge notation is given in section 3, equation (2).

In terms of quaternions, the elements of a rotation matrix are (Morawiec and Pospiech, 1989)

gij(q) = (q2
0 − q2

k)δij + 2qiqj + 2ǫijkq0qk, (29)

where we have used the summation convention in the first term of the last equation. This gives (Cho et al., 2005)

g(q) =





q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3



 . (30)

The Inversion of the last equation is (Cho et al., 2005)

q0 =

√
gii + 1

2
,

qi =
ǫijkgjk

4q0

=
ǫijkgjk

2
√

gii + 1
, if q0 6= 0, (31)

whereǫijk =











1 if (ijk) is an even permutation of(123)

−1 if (ijk) is an odd permutation of(123)

0 else

.

If q0 = 0 one has to solve the system
−q2

kδij + 2qiqj = gij , (32)

whereq2
k ≡ 1. Again, we have used the summation convention.

In section 3, equation (4), we have expressed a unit quaternion in terms of rotation angle and rotation axis. From
this formula we can also express the rotation angle and axis in terms of a unit quaternion as (Cho et al., 2005)

cos Φ = 2q2
0 − 1,
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sinΦ = 2q0

√

1 − q2
0 , (33)

and ifΦ 6= 0

ni =
qi

√

1 − q2
0

. (34)

Finally, we give the reverse relation between a unit quaternion and the Eulerian angles in Bunge notation:

cos φ = (q2
0 + q2

3) − (q2
1 + q2

2), (35)

sinφ = 2χ, (36)

cos ϕ1 =
q0q1 − q2q3

2χ
, (37)

sin ϕ1 =
q0q2 + q1q3

2χ
, (38)

cos ϕ2 =
q0q1 + q2q3

2χ
, (39)

sin ϕ2 =
q1q3 − q0q2

2χ
, (40)

whereχ =
√

(q2
0 + q2

3)(q2
1 + q2

2) 6= 0. In the case whereχ = 0 we have to distinguish two cases:

• q1 = q2 = 0 givesφ = 0 andcos ϕ1 + ϕ2 = q2
0 − q2

3 , sin ϕ1 + ϕ2 = 2q0q3.

• q0 = q3 = 0 givesφ = π andcos ϕ1 − ϕ2 = q2
1 − q2

2 , sinϕ1 − ϕ2 = 2q1q2.
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