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The refined theory of creep deformation and creep damage in moderately thick shells of revolution which 
accounts for transversal shears and additionally for nonlinear distribution across its thickness of the 
components of the strain tensor as well as of  the angles of rotation of the triad of vectors defined the position of 
the arbitrary point of a shell is discussed.  A constitutive model for describing the creep deformation and 
directional nature of damage under creep conditions in initially isotropic materials with characteristics 
dependent on the kind of the stress state has been used. The governing equations of the moderately thick shell 
theory under discussion are introduced, and the initial/boundary-value problem in the frame of the physical 
nonlinearity and geometrical linearity has been formulated. The numerical tool developed for analysis of creep 
deformation and creep damage in moderately thick shells of revolution using the proposed theory is discussed. 
 
 
1 Introduction 
 
Analysis of creep deformation and creep damage in moderately thick shells is of interest in many applications, 
because shells of this class are broadly used in nuclear, chemical, aircraft and space facilities at high 
temperatures, and under severe operational and accidental conditions. In this way, constitutive modeling of the 
actual material behavior including time-dependent irreversible deformation process (creep) as well as time-
dependent microstructural changes (creep damage) which induce some material deterioration due to dislocations, 
impurity atoms and voids in the initial stage, microscopic cavities in the following, and microcracks in the final 
stage of the creep process, all of them, at the grain boundaries with some preferential orientation, is of great 
importance. Obviously, satisfactory prediction of the creep deformation and accurate estimation of the creep 
failure time for the moderately thick shells may be possible only in the case of the realistic description of the 
creep and creep damage features. 
 
One of the creep and creep damage features of the initially isotropic polycrystalline materials is their different 
behavior under tensile and compressive loading types (Altenbach et al., 1995; Betten, 2002; Zolochevskij, 1988; 
Zolochevsky, 1982). Thus, there are two different creep curves obtained from uniaxial tests in tension and 
compression at the same temperature, and for one and the same absolute value of constant stress. Furthermore, 
the creep damage development under uniaxial tension and uniaxial compression is essentially different depending 
on the sign of the stress. In other words, there is the directional nature of the material deterioration under creep 
conditions. For example, the nucleation, growth and coalescence of microscopic cavities and wedge microcracks 
in polycrystalline materials under uniaxial tension occur along grain boundaries which are perpendicular to the 
axis of tensile loading. On the other hand, the appearance, growth and coalescence of cavities and microcracks 
under uniaxial compression take place at the grain boundary faces located parallel to the axis of compressive 
loading. Constitutive models based on different creep and creep damage responses in tension and compression 
have been discussed in Altenbach et al. (1995), Betten (2002) and Kletschkowski et al. (2004). 
 
In fact, the effect of the kind of the stress state on the creep deformation and creep damage development is more 
complicated phenomenon for many initially isotropic polycrystalline materials, and it can not be identified using 
only material characteristics under tensile and compressive loading types (Altenbach et al., 1995).  For example, 
the growth of the specific dissipation energy φ  with time t  up to creep rupture in an aluminum alloy AK4-1T at 
the temperature of T=473 K (Rubanov, 1989) under uniaxial tension, uniaxial compression, and pure shear 
realized under pure torsion conditions is shown in Figure 1 by circles. Here  
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where klσ  is the Cauchy stress tensor, klp  is the infinitesimal creep strain tensor, and the dot above the symbol 
denotes a derivative with respect to time. It is interesting to note that the specific dissipation energy given by 
equation (1) and, therefore, the level of the creep damage in the aluminum alloy AK4-1T are largest under pure 
torsion, and they cannot be predicted using mentioned above constitutive models which are coupled with the 
experimental data under tension and compression (Altenbach et al., 1995). Thus, it is necessary to take into 
account the effect of shear stress under pure torsion conditions on the creep deformation and creep damage 
development in initially isotropic materials under discussion as an independent phenomenon. In this regard, a 
number of constitutive models coupled with three series of the basic creep experiments (uniaxial tension, uniaxial 
compression and pure torsion) have been developed (Altenbach et al., 1995; Betten et al., 1998; Kawai, 2002; 
Mahnken, 2003; Zolochevskij, 1988; Zolochevsky, 1982; Zolochevsky et al., 2007) in order to describe the effect 
of the kind of the stress state. 
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Figure 1: Specific Dissipation Energy vs. Time: a) Uniaxial Tension; b) Uniaxial Compression; c) Pure Torsion 

 
In the past, various authors have analyzed the creep deformation and creep damage development in thin and 
moderately thick shells (or plates) using the classical theories based on the Kirchoff-Love (or Kirchoff ’s) 
hypotheses, and the refined (shear deformation) theories, as a rule, by Timoshenko or Reissner, respectively. 
However, most of them assumed no effect of the kind of the stress state on the creep behaviour and creep damage 
growth for the materials of shells and plates. For the first time, the analysis of creep deformation for thin shells 
based on the Kirchoff-Love assumptions taking into account different behavior of materials in tension and 
compression has been performed by Zolochevsky (1982), and subsequently by Betten and Borrmann (1987). In 
the following, the effect of the kind of the stress state on the creep behavior and creep damage development for 
thin shells composed of the aluminum alloy AK4-1T discussed above has been investigated by Altenbach and 
Zolochevsky (1991), and subsequently by Zolochevsky et al. (2007) using the Kirchoff-Love hypotheses. Creep-
damage analysis of moderately thick shells and plates based on the refined shear deformation theories and 
constitutive model of Leckie-Hayhurst has been performed by Altenbach and Naumenko (2002), Altenbach et al. 
(2004), Bodnar and Chrzanowski (1994), Ganczarski and Skrzypek (2004), Sichov (1998), however, the realistic 
material behavior similar to the creep of the aluminum alloy AK4-1T (Figure 1) was not considered. Thus, to the 
best of the authors’ knowledge, up to now no investigations exist of the effect of the kind of the stress state on the 
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creep deformation and creep damage development in moderately thick shells made from materials, such as the 
aluminum alloy AK4-1T. The aim of this paper is to formulate the theoretical framework for such investigations.  
 
2 Constitutive Theory 
 
A creep theory for initially isotropic polycrystalline materials at small strains and under multiaxial loading which 
will be discussed in this section was recently proposed by Betten et al. (1998) and Zolochevsky et al. (2007). The 
principal eigenvalues of the stress tensor are assumed to be distinct. Therein, the creep damage is assumed to be 
related to dislocation creep and microstructural changes at the grain boundary faces located perpendicular to the 
direction of the maximum principal stress. Introduction into consideration of the scalar damage variable in a form 
of the specific dissipation energy φ  and putting into the expression for the equivalent stress eσ  in a creep 

potential an eigenvector  3

1k k
mm =


associated with the maximum principal stress maxσ  give the possibility to 

reproduce the effect of the kind of the stress state on the creep deformation and creep damage development in 
initially isotropic materials as well as to describe the directional nature of the material deterioration under creep 
conditions. In this way, a satisfactory agreement has been obtained between the results generated from the 
proposed creep theory and the experimental data under proportional loading with two-dimensional stress state for 
isothermal processes of various polycrystalline materials (Betten et al., 1998). The constitutive equation and 
creep damage evolution equation in the case of the Norton-type power relation have the following structure 
(Zolochevsky et al., 2007): 
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In these notations φ∗  is a critical value of φ  that corresponds to creep rupture time, 1I  and 2I  are the first and 
the second invariants of the stress tensor, α  is a weight coefficient, and klδ  is the Kronecker delta. Material 
parameters m, q, A, B and C can be found (Zolochevsky et al., 2007) using the experimental results, such as, 
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Taking into account the natural scatter of experimental data, particularly marked in compression, the results of 
approximation of the creep curves and the experimental data are in the satisfactory agreement. The material 
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application of the constitutive theory under discussion is the creep deformation and creep damage development in 
moderately thick shells. The reader, who is interested to the constitutive modeling under three-dimensional stress 
state, is refereed to Altenbach et al. (1995), Ganczarski and Skrzypek (2001), and Zolochevskij (1988). 
 
3      Basic Equations of the Shell Theory 
 
A moderately thick shell of revolution (Figure 2) made from the material with the creep and creep damage 
characteristics dependent on the kind of the stress state is considered with reference to a cartesian coordinate 



 41

system , ,x y z  with a triad of orthonormal vectors , ,x y ze e er r r obeying the condition ( , , , )k m kme e k m x y zδ⋅ = =
r r , 

where z is the coordinate directed along the axis of revolution, and coordinates x, y are in the plane perpendicular 
to the direction z. The position of the arbitrary point M of a shell may be determined in the local curvilinear 
coordinate system s , ϕ , ς  with a triad of orthonormal (before deformation) vectors , ,se e eϕ ς

r r r  obeying the 
condition ( , , , )k m kme e k m sδ ϕ ς⋅ = =

r r , where s  0( )ns s s≤ ≤  is the length of the coordinate meridian arc 

referenced from the end 0s s= , ϕ  is the circumferential coordinate, ς  0( )Nς ς ς≤ ≤  is the distance of the 
point M  from the coordinate surface referenced in the direction of the outer normal, coordinates 0ς  and Nς  
correspond to the inner and outer surfaces of a shell. In our approach, the coordinate meridian surface does not 
coincide with the middle surface of a shell. Assume that the moderately thick shell is initially unstressed and 
undeformed at a temperature T0, and it is then subjected to an axisymmetrically and statically applied thermal and 
force loading leading to the meridional, transversal shear and torsional deformations. In a cartesian coordinate 
system , ,x y z  the parametric equations of the coordinate surface have the form 
 

( ) cosx r s ϕ= ,     ( ) siny r s ϕ= ,      ( )z z s=                                                  (3) 
 
where r is the distance from a point of this surface to the axis of revolution. The combination of equations 0ϕ =  
and (3) leads to the equations of the coordinate meridian in the plane 0z x  
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Figure 2: The Meridian of a Shell of Revolution 

 
In the curvilinear coordinate system , ,s ϕ ς  the Lame’s parameters can be defined as 
 

1s s sH k aς= + = ,   (1 )H r k raϕ ϕ ϕς= + = ,   1Hς =                       (5) 
 
where sk , kϕ  are the principal curvatures of the coordinate surface given by 

sk θ ′= ,   sink
rϕ

θ
=                                                                   (6) 

and ( )π θ−  is the angle between the normal to the coordinate surface and the axis z.  Here and in the following 

derivations we use the abbreviation ( ) ( ) .
d
...d...
s

=′  

 
Let us consider the basic equations for the shell under discussion in the frame of the geometrically linear 
formulation. At present, there exist a number of the refined shell models taking into account the transversal shear 
deformation. The reader, who is interested in details to these refined theories, is refereed to Tovstik P.E. and 
Tovstik T.P. (2007). In our approach, the displacements of the arbitrary point M of a shell are determined as 
follows (Grigorenko et al., 1987, Mindlin, 1951): 
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s su u ςψ= + ,     u vϕ ϕςψ= + ,     u wς =                                         (7) 
 
where ,u v  are the displacements of a point of the coordinate surface in the directions s  and ϕ ; w  is the 
deflection of the coordinate surface; sψ  and ϕψ  are the total angles of rotation of a rectilinear element, initially 
perpendicular to the coordinate surface before deformation. The components , , ,ss s sϕϕ ϕ ςε ε ε ε of the strain tensor 
as well as the angles of rotation ,s ϕθ θ  of the triad , ,se e eϕ ς

r r r  due to its declination after deformation are 
connected with corresponding parameters of the coordinate surface by the following relations (Grigorenko et 
al., 1987; Novozhilov, 1958): 
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where  
 

s su k wε ′= + ,    u k wϕ ϕε ρ= + ,    s sκ ψ ′= ,    sϕκ ρψ= , s vω ′= ,   vϕω ρ= − ,    s ϕτ ψ ′=  
 

ϕ ϕτ ρψ= − , s sk u wϑ ′= − ,   k vϕ ϕϑ = ,   s s sγ ψ ϑ= − ,   ϕ ϕ ϕγ ψ ϑ= − ,   cos
r

θ
ρ =                (9) 

 
Here ,s ϕε ε  and sκ , ϕκ  are the strains of the coordinate surface and the parameters of its change in curvature in 
the directions s  and ϕ ; sω , ϕω , sτ , ϕτ  are parameters that specify the change of the angle between axes s  and 
ϕ ; sϑ , ϕϑ  are the angles of rotation of the normal to the coordinate surface; sγ  and ϕγ  are the angles of rotation 
due to transversal shears, and the symbol ( , )s ϕ implies that the new equation follows from the equation under 
consideration by the cyclic substitution of the subscripts s and ϕ . 
 
Note that the normal stress ςςσ  is negligibly small compared to the other stresses, and therefore it vanishes in the 
present paper, so that 0ςςσ = . Let now introduce the forces and the moments in the coordinate surface of a shell 
under discussion as the integral characteristics of the components of the stress tensor over the shell thickness in 
the following form (Grigorenko et al., 1987; Novozhilov, 1958):  
 

( )s ssN F aϕσ=   ( , )s ϕ ,    ( )s sN F aφ ϕ ϕσ=   ( , )s ϕ ,     ( )s sQ F aς ϕσ=    ( , )s ϕ                                  (10) 

                                      ( )s ssM F aϕσ ς=   ( , )s ϕ ,      ( )s sM F aϕ ϕ ϕσ ς=   ( , )s ϕ  
 
where sN , sN ϕ  and sQ  are the membrane force, shear force and transversal force acting in the cross section 

consts = ( Figure 3); sM  and  sM ϕ  are bending moment and twisting moment in the same cross section; Nϕ , 

sNϕ , Qϕ  Mϕ  and sMϕ  are the analogous forces and  moments in the cross section constϕ = . Here and in the 
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Figure 3: Forces and Moments in a Shell 
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The equations of equilibrium (Grigorenko et al., 1987; Novozhilov, 1958) are given by 
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′
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where ςϕ qqqs ,,  are the distributed loads referred to the coordinate surface, and ,sm mϕ  are the distributed 
moments caused by these applied loads. 
 
The physical equations of the moderately thick shell theory will be formulated here by the assumptions of the 
initial isotropy for the shell material, no effect of the damage on the elastic deformation of the shell, and the 
effect of the kind of the stress state in the shell on the creep deformation and creep damage development. 
Additionally, the total strains in a shell are assumed to be composed of an elastic part, thermal part and a part due 
to creep, and using the generalized Hooke’s law we obtain  
 

11 12ss ss ssB B ϕϕσ ε ε σ ∂= + − ,     12 22ssB Bϕϕ ϕϕ ϕϕσ ε ε σ ∂= + −                                     (12) 

 442s s sBς ς ςσ ε σ ∂= − ,    552Bϕς ϕς ϕςσ ε σ ∂= − ,    662s s sBϕ ϕ ϕσ ε σ ∂= −  
 
where  the nonzero components of the  symmetrical matrix [ ] ( )ijB B=  ( , 1, 2,...,6)i j = , and the additional terms 
related to the creep and thermal expansion are expressed as   
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( ) ( )12 11 22 22Т ТB p T B p Tϕϕσ α α∂ = + ∆ + + ∆ ,    44 132s B pςσ ∂ = ,    55 232B pϕςσ ∂ = ,    66 122s B pϕσ ∂ =  
 
Here G, ν and αT are the shear modulus, Poisson’s ratio and the coefficient of linear thermal expansion, 
respectively, 0T T T∆ = − . The creep strains in equation (13) are defined by equation (2) describing the effect of 
the kind of the stress state in the shell on the creep deformation and creep damage growth in the shell material. 
The combination of equations (8), (12) and (10) with integration over the shell thickness leads to the physical 
equations of the shell theory under discussion as follows: 
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Here the superscript ‘Т’ denotes the transposition operation, the components of the matrixes [ ]C , [ ]K , [ ]D , 
[ ]L  are the stiffness characteristics of the shell, so that  [ ] ( )ijC C=  ( , 1, 2,..., 4)i j =    ( )C K D↔ ↔ ,  

[ ] ( )pqL L=    ( ), 1, 2p q = ,  the symbol ( )C K D↔ ↔  means that the formal replacement of C by K  and D is 

permissible, and   vectors , ,sX X Qϕ

→ → →
∂ ∂ ∂ are due to the creep and thermal expansion. Note that the matrixes [ ]C , 

[ ]D , [ ]L  are the symmetrical ones, so that [ ] [ ]TC C=  ( )C D L↔ ↔ . The nonzero components of the matrixes 
[ ]C , [ ]K , [ ]D , [ ]L  can be defined as 
 



 44

 ij ij
s

a
C F c

a
ϕ 

=  
 

,    ( )ij ijK F k= ,   s
ij ij

a
D F d

aϕ

 
=   

 
    (16) 

 11 44
s

a
L F B

a
ϕ 

=  
 

,     22 55
sa

L F B
aϕ

 
=   

 
     

 
2, , 2p q p q pqc c cς+ += = ,  2

2, 2p q pqc cς+ + = ( , 1, 2)p q =    ( )c k d↔ ↔  

11 11c B= ,     22 22 22 66c k d B= = = ,   11 12k B= ,    11 22d B=  
 
Thus, the kinematic equations (9), static equations (11) and physical ones (14) form a complete system of the 
governing equations describing the creep deformation and creep damage development in the moderately thick 
shells composed from materials with creep and damage characteristics dependent on the kind of the stress state. 
 

4     Initial/ Boundary-value Problem 

 
In the case under consideration all unknowns in the coordinate surface of a moderately thick shell depend on the 
time and additionally only on the meridianal coordinate s.  In this way, it is necessary to find the displacements 
u , v and w , total angles of rotation of a rectilinear element sψ and ϕψ , angles of rotation of the normal to the 
coordinate surface sϑ and ϕϑ , angles of rotation due to transversal shears sγ  and ϕγ , forces sN , Nϕ , sN ϕ , sNϕ , 

sQ and Qϕ , moments sM , Mϕ , sM ϕ  and sMϕ , components of the deformation of the coordinate surface sε , 

ϕε , sκ , ϕκ , sω , ϕω , sτ and ϕτ . Thus, it is necessary to find the 27 unknowns in the coordinate surface of a 
moderately thick shell. For this purpose, there are twelve kinematic equations (9), five static equations (11) and 
ten physical equations (14), thus, in general, 27 basic equations. Here, we keep in the mind that physical 
equations (14) are highly nonlinear in nature due to the creep dependence of the components of vectors 

, ,sX X Qϕ

→ → →
∂ ∂ ∂ . 

 
The problem to investigate the creep deformation and creep damage growth in a moderately thick shell will be 
now formulated as the initial/ boundary-value problem. In this regard, a vector of resolving functions is 
introduced as 

{ } { }T
T

1 10,..., ,Y y y N u
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= =                                        (17) 
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→

= =  

Governing equations (9), (11) and (14) of the shell theory under discussion can then be transformed to the 
following system of nonlinear differential equations presented in vector form 
 

      [ ]Y P Y f
→ → →
′ = +           (18) 

 

Here the matrix [ ]P  has a block structure, so that [ ] [ ] [ ]
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T[ ] [ ]m m=   ( )m n↔ . The matrixes [ ]p , [ ]m , [ ]n  have the following nonzero components:   
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44 44 22cosm l rρ θ= Λ + ,   1
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 1[ ] [ ]Cλ −= ,     [ ] [ ][ ]Kµ λ=  

 [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] [ ]T T TD K K D K D Kλ µ µΛ = − = − = −  

11
11

1l
L

= ,    12 12 11l L l= ,    22 22 12 12l L l L= −  

Note that the matrixes [ ]λ  and [ ]Λ  are symmetrical ones. The free-term vector f
→

that includes the surface loads 
as well as the effects of creep and thermal expansion has the following components:   
 

 1 1 cos sf rqη θ= − ,   2 2 2sin cosf rqϕχ θ η θ= − − − ,  3 3 cos sf rmη θ= −   (20) 

4 2 4 cosf r rmϕχ η θ= − − ,  5 1 sinf rqςη θ= − ,    5 i if ξ+ =   ( 1, 2,..., 4)i = , 10 1f χ=  
 
where 

  1 11 sl Qχ ∂= ,     2 12 sl Q Qϕχ ∂ ∂= − ,         [ ] sXξ λ
→→

∂= ,   [ ]T
sX X ϕη µ

→ →→
∂ ∂= −     (21) 

 
The system of the nonlinear differential equations (18) must be complemented by the boundary conditions at the 
ends of the moderately thick shell  
 

[ ]G Y g
→ →

=                                                                                    (22) 

where  [ ]G and g
→

 are the specific rectangular matrix and vector of the boundary conditions used, so that 

[ ] ( )ijG G=   ( 1, 2,...,5; 1,2,...,10)i j= = ,    { }T
1 5,...,g g g

→

= . 
 
Thus, the analysis of the effect of the kind of the stress state on the meridional, transversal shear and torsional 
deformations under creep-damage conditions in the moderately thick shells of revolution subjected to an 
axisymmetrically and statically applied thermal and force loading reduces to a nonlinear one-dimensional 
boundary- value problem given by equations (18) and (22). Due to the time dependence of the components of the 

vector f
→

related to the creep, the boundary- value problem under discussion should be considered simultaneously 
with the initial-value problem (with respect to time) for the ordinary differential equations (2) with the natural 
initial conditions 01223132211 ====== φppppp  at t=0. Thus, the direct integration of the initial-value 
problem for equations (2) by one of the numerical methods with explicit or implicit schemes involves reducing 
the nonlinear boundary-value problem of creep to the solution of a sequence of linear boundary value problems 

with known components of the vector f
→

related to the creep. The fourth-order Runge-Kutta-Merson's method 
with automatic selection of time step sizes will be used in order to solve the initial-value problem for equations 
(2). This time integration algorithm has been applied for the first time in the study of creep of structures, to the 
authors’ best knowledge, by Zolochevsky (1982) for the numerical analysis of creep deformation in thin shells. It 
has been later used in creep and creep damage analyses by many authors, for example, by Hayhurst et al., 1984; 
Sichov, 1998, and Ling et al., 2000. Each linearized boundary-value problem will be solved by the discrete 
orthogonal shooting method of Godunov given in Grigolyuk and Shalashilin (1991). After finding the basic 
unknowns in the coordinate surface of a moderately thick shell the strains ssε , ϕϕε , sςε , ϕςε , sϕε  will be calculated 
from equations (8) while the stresses ssσ , ϕϕσ , ϕςσ , sϕσ  will be found from equations (12). Since the shear stress 

sςσ  found from equations (12) does not satisfy the boundary conditions at the shell surfaces it will be determined 
as a result of integration directly from the equilibrium equation taken in terms of the stresses together with the 



 46

corresponding boundary conditions. The strain ςςε  can be found as a sum of an elastic part defined by the 
generalized Hooke’s law, thermal part and a part due to creep.  
 
 
5     Conclusions 
 
The effect of the kind of the stress state on the creep behavior and creep damage of the initially isotropic 
polycrystalline materials under two-dimensional stress state can be identified using three series of the basic 
experiments up to creep rupture (uniaxial tension, uniaxial compression and pure torsion). A constitutive model 
for describing the creep and directional nature of damage in initially isotropic materials with characteristics 
dependent on the kind of the stress state has been applied to the modeling of the meridional, transversal shear and 
torsional deformations under creep-damage conditions in the moderately thick shells of revolution. The refined 
shear deformation theory of a shell has been considered, and the approach of establishing the basic equations for 
the moderately thick shells under creep and creep damage conditions has been introduced. To solve the 
formulated initial/boundary-value problem, the fourth-order Runge-Kutta-Merson’s method of time integration 
with the combination of the discrete orthogonal shooting method of Godunov is used. Some applications of the 
proposed refined shell theory will be considered in a forthcoming paper.  
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