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Analysis of Processes with Axisymmetric Plastic Flow of Metals 
 
M.A. Zapara, N.D. Tutyshkin, W.H. Müller, R. Wille 
 
 
A numerical method for the analysis of stresses and plastic flow rates is presented for processes with axisymmet-
ric plastic flow of metals.  This technique is based on a representation of yield zones in a special formulation of 
the stresses related to Iljushin’s deviatoric stress space.  The basic differential equations describing axisymmet-
ric plastic flow are solved by hyperbolic approximations.  In fact, the approach represents an enhanced method 
of slip lines since the characteristics of the differential equations for stresses and rates coincide with these.  This 
condition is very important for the analysis of damage induced by voids which generate microscopic slip bands.  
The method is illustrated by an analysis of the forging process of an axisymmetric part made of low-carbon low-
alloy steel.  The stepwise analysis of deformation allows for calculating the contact load applied to the working 
tool, the strains accumulated within the part volume, and some “meso-parameters,” e.g., the damage induced by 
strain micro-defects and the internal energy of hardening.  Two integral measures connected with the hydro-
static and deviatoric parts of the damage tensor are used for the calculation of strain-induced damage.  The 
predicted damage is significantly less than its permissible value, as high hydrostatic pressure in the plastic zone 
heals micro-defects, prevents their growth, and, thereby, increases the processing ductility of deformed metals 
during forging.  The research results allow us to give some recommendations for the selection of appropriate 
processing strains for forging in order to achieve high strength properties of the produced axisymmetric case-
shaped parts. 
 
 
1 Introduction 
 
Products of complex axisymmetric shape and high operational properties are widely used in Metal Forming (MF) 
technologies.  Methods of applied plasticity theory are used for developing the manufacturing processes.  These 
methods allow to calculate stress and strain fields and the related technological parameters for preset conditions 
as well as to predict structural and mechanical properties of the finished product material.  A reliable determina-
tion of the Stress-Strain State (SSS) in MF processes becomes especially important when studying a volume dis-
tribution of strains, mechanical properties, as well as damage induced by micro-defects in order to predict the 
limit state of the workpiece material.  For example, the limit state in the intense strain zones essentially depends 
on the history of deformation, stress triaxiality, and the local heat generation related to the dissipated energy of 
plastic deformation.  All of this indicates that a problem of reliable determination of the SSS is still an ongoing 
topic for MF techniques. 
 
State-of-the-art Finite Element (FE) codes successfully solve technological problems of MF.  They create huge 
and constantly increasing opportunities of numerical modeling of deformation.  However, if a more in-depth un-
derstanding of MF operations is required methods closely related to the physical behavior of plastic deformation 
are advantageous.  Such a technique is the slip line method which is used for studying processes with plane plas-
tic flow (Hill, 1950).  Application of this method to the analysis of processes with axisymmetric deformation is 
reasonable from a scientifically-cognitive point of view, for example, for an investigation of strain induced dam-
age.  It is experimentally established that large defects (voids) generate microscopic slip bands (Yokobori, 1968).  
Therefore, a determination of slip line (band) fields is necessary for the prediction of damage and of the limit 
state of the material before its macro-destruction.  Actually, the approach developed by the authors can be con-
sidered as the slip line method modernized for the analysis of the SSS and related structural and mechanical pa-
rameters in processes with axisymmetric flow. 
 
It is known that the system of the fundamental equations describing axisymmetric plastic deformation is locally 
statically indetermined as only three equations for the stresses are available but four nonzero components of the 
stress tensor exist, namely two differential equilibrium equations and the plasticity condition (cf., Kachanov, 
2004).  As a result there is a problem of determination the interconnected stress and velocity fields for preset 
forming conditions.  The method for solving this problem suggested here is based on yield zone mapping in a 
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special representation stress space related to A.A. Iljushin’s stress deviator concept (Iljushin, 1963).  This space 
allows us to find an initial approximate solution in stresses and velocities using a “flexible” additional condition 
for the normalized deviator.  The subsequent exact solution of the arising boundary problems is found by the 
method of hyperbolic approximations. 
 
The correct information on stress and velocity fields for different stages of the studied forming process is then 
used for calculating technological parameters and for solving the kinetic equations for the structural and me-
chanical parameters of the processed material.  Our approach is especially important for modeling processes with 
large deformation, e.g., forging, which is widely used in metal forming, as well as for a reliable prediction of the 
structural damage of deformed materials.  The compressive regime of the stress state during forging promotes 
high ductility of the processed materials and, accordingly, a greater operational deformation.  Therefore, forging 
provides high strength properties of products due to strain hardening.  However, the factor that limits admissible 
deformation is clearly a very high pressure on the working tool.  The components manufactured by cold forging 
are widely used in aerospace, motor car, and power engineering industry. 
 
Because of the outlined difficulties many complicated problems in research and development of MF techniques can 
only insufficiently be investigated for products with irregular shape.  In particular, for forging, where the processed 
material is under complex loading with strong variations of the stress state, it is very difficult to analyze and optimize 
the full process.  In this context, forging requires thorough research and modeling.  Here we present a new solution 
method for the analysis of typical axisymmetric MF processes.  The underlying equations and their solution will be 
described in the next two sections.  It should be emphasized that we construct the fundamental solution in stresses 
and velocities concurrently and an iterative scheme yields an almost exact solution.  For solvability it is temporarily 
necessary to modify the basic equations so that they become a determinate system, separately in stresses and in 
velocities.  Such an additional condition is formulated in Section 3 by means of the maximum shear stress trajecto-
ries in characteristic cross-sections of the plastic zone.  We conclude with the analysis of forging of a case-shaped 
part. 
 
 
2 Fundamental equations for axisymmetric fields of stress and plastic flow velocities 
 
Axisymmetric plastic flow of materials in MF processes can conveniently be described in a cylindrical coordinate 
system where r , z , θ  denote the radial, the axial, and the circumferential direction, respectively.  The deformed 
material is considered as a rigidly-plastic solid because plastic strains amount to %9070 −  at MF being 210≈  
larger than elastic strains in metal forming processes (e.g., drawing, die forging, extrusion).  The calculation of 
the stress-strain state and related parameters of forming processes by using the model of rigid-plastic solid leads 
to quite satisfactory results corresponding to experimental data.  The evolution of strain damage results in plastic 
dilatation.  According to test data plastic dilatation of engineering materials does not exceed %52 −  even at 
large processing deformations.  This fact enables one to make an assumption concerning the incompressibility of 
the material when determining the fields of plastic flow velocities. The basic equations of plasticity are given by 
the differential equations of equilibrium 
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the von Mises yield surface 
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the condition of coaxiality of the strain rate deviator, ije& , and the stress deviator, ijs  
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the condition of similarity of the deviators ije&  and ijs  (4), i.e., of coincidence of their Lode angles, e&φ  and σφ  

( 2I  and 3I  being the second and third invariant of the corresponding symmetric tensors) 
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the incompressibility condition 
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and kinetic equations for parameters related to the meso-structure, kµ  
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where rσ , zσ , θσ , rzτ  are nonzero components of the stress tensor ijσ , yτ  is the yield stress for shear, rυ  and 

zυ  are the components of the vector of plastic flow velocity, ( ) 2
2 e&& =ijeI , ( )ijeI &3 , ( ) 2

2 s=ijsI , ( )ijsI3  are the sec-

ond and the third invariant of deviatoric strain rates ije&  and deviatoric stresses ijs , respectively, e& , s  denote the 

equivalent deviatoric strain rate and stress, kµ  are parameters of the meso-structure, ije  are deviatoric strains, T  

is the thermodynamic temperature, sχ  are parameters connected with deviatoric strains ije , and t  denotes time. 
 
As physico-structural parameters kµ  we will specifically choose a micro-defect damage parameter ω , the grain 

size D  of the polycrystal, and the energy characteristic ( )µu  of irreversible changes of the crystal lattice (viz., a 
density of the internal energy of hardening, hu ).  For the parameters sχ , which are associated with the deforma-

tion, the intensity of shear strain rate, Λ& , and the cumulative shear strain, Λ , or Odquist parameter, are used 
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where ⋅

⋅
i
je&  denote the mixed components of the strain rate deviator.  The parameters Λ&  and Λ  are connected by 

the non-holonomic equation ΛΛ &=tdd .  For each strain path, ( )ts , the parameter Λ  can be determined by inte-

gration according to Eqn. (7) provided that strain rates ⋅
⋅
i
je&  are known. 

 
The axisymmetric SSS has the following features.  For the stress components we have 0== rz θθ ττ , 0=θυ .  
The hoop stress θσ  is a principal stress.  Two special classes of plane problems follow from Eqns. (1)-(6): If the 
axial deformation vanishes in z-axis direction (i.e., 0=ze ) Eqns. (1)-(6) describe a state of plain strain with cir-
cular boundaries.  If the hoop strain vanishes, 0→θe , then, according to the flow rule, it follows for the hoop 
stress that ( ) 3θθ σσσσσ ++=→ zr , and Eqns. (1)-(6) describe plane flow in meridian cross-sections (with 
the normal θn ) of the blank.  The second special case can be applied to the analysis of deep-drawing of thin-
walled axisymmetric shells.  As is shown by Hill (1950), if the ratio between thickness, s, and diameter, d, of the 
shell is 05.0≤ds then its deformation during deep-drawing is plane since the hoop stress θσ  is infinitely small.  
In order to represent the axisymmetric SSS completely it will be sufficient to determine a field of stresses and 
flow velocities in one of the meridian cross-sections of the deformed solid. 
 
For the analysis of axisymmetric MF processes with rapidly changing SSS we propose a method based on a con-
current construction of the initial approximate solution in stresses and velocities which is followed by an iterative 
process resulting in the exact solution.  For solvability it is reasonable to temporarily modify Eqns. (1)-(6) so that 
they are written separately in stresses and in velocities, e.g., by using additional conditions in terms of stresses.  It 
allows us to transform the basic equations to a set of equations of the hyperbolic type with two sets of characteris-
tics in a meridian cross-section of the deformed solid and to use some physical properties of slip lines.  A similar 
approach was applied in the solution of axisymmetric problems by fixation of the Lode angle σφ .  However, the 
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use of a “rigid” additional condition by fixing the Lode angle σφ  for the initial approximate solution may contra-
dict the condition (4).  Therefore, the use of a “flexible” additional condition is to be preferred.  It does not limit 
the phase of stresses and strain rates in the fundamental solution, i.e., the Lode angle σφ , and it is more effective.  
Moreover, from the theoretical point of view an additional condition should be universal and invariant for the 
hydrostatic stress σ , and it should allow us to recover known solutions as well as experimental results of proc-
essing problems.  Such an additional condition can be formulated by means of differential geometry and will be 
described in detail in the following section. 
 
 
3 Enhanced slip line method for axisymmetric deformation 
 
The required additional condition can be formulated for the parameters that determine the differential geometry 
of slip lines in the meridian cross-sections of the plastic zone.  Two mutually orthogonal directions, α  and β , 
exist in each point of the meridian cross-section.  Along these directions the tangential stresses βατ  and αβτ  
assume extreme values and the normal stresses are equal, i.e., βα σσ = .  The directions α  and β  form two 
families of mutually orthogonal lines in the meridian cross-section of plastic zone 
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where θδ  is the angle between the r -axis and the line α .  The angle θδ  is connected with the stress compo-
nents by the following relation: 
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which can be used in the initial approximate solution as the additional condition in terms of stresses. 
 
It was shown by Tutyshkin et al. (2001) that the geometry of the slip lines strongly depends on the boundary 
conditions, e.g., on the geometry and on the conditions of the contact surface of the working tools.  This allows 
us to determine the function ),( zrθδ in Eqns. (8) by known approximate solutions or by experimental determina-
tion of slip line trajectories.  Slip line trajectories can be successfully found by experiments using the special 
technique for preparing a polished micro-section.  An advantage of this technique is the possibility to detect slip 
line trajectories in any cross-section of test specimens without loosing their continuity during deformation. 
 
A comparison of the stress fields in the processes with axisymmetric and plane deformation indicates a geometric 
similarity of their slip line trajectories.  This occurs when the boundary conditions are similar both in the merid-
ian cross-section of the axisymmetric process and in the flow surface of the plane process (e.g., when embedding 
conical and wedge punches, metal flow in convergent axisymmetric and wedge dies, compression (upsetting) of a 
thin layer).  This property of trajectories α , β  allows us to determine angle parameter ( )0

θδ in the initial ap-
proximate solution of problems for axisymmetric strain states by the solutions of corresponding problems for 
plane strain states, i.e., to assume ( )0

θδ  in the initial approximate solution as a known function of meridian coor-
dinates ( )zr,θδ  
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The two differential equations of equilibrium (1), the yield condition (2), and the additional condition (10) form a 
local statically determinate system of equations for the four unknown stress components rσ , zσ , θσ , rzτ .  Thus 
the solution of the equations (1), (2), and (10) gives an admissible tensor field of stresses.  In a geometrical inter-
pretation the solution is mapped by the line 11NM  onto the von Mises yield surface in the principal stress space 

1σ , 2σ , 3σ  (cf., Figure 1). 
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The coaxiality condition (3) for the strain rate deviator ije&  and the stress deviator ijs  together with the incom-

pressibility condition (5) form a closed system for the two unknown components rυ , zυ .  Its solution allows us 
to define an admissible velocity field, and, in a geometrical interpretation, to find for each point of the plastic 
zone its graphic representation (line 22 NM ) onto the von Mises cylinder (cf., Figure 1) by using the equations of 
plastic flow (Tutyshkin, 2005).  The line MN corresponding to the exact solution is located between the line seg-
ments 11NM  and 22 NM .  Therefore, a repetitive computational process leading to the exact solution can be in-
terpreted as a mutual rotation of the generating lines 11NM  and 22 NM  about the hydrostatic axis 321 σσσ ==  
until the coincidence condition (4) for the phases (i.e., the Lode angles) of the deviators ije&  and ijs  is fulfilled 
with preset accuracy.  Thus Eqn. (4) can be considered as a differential constraint to be satisfied by the exact 
solution.  Hence, each plastic particle of the deformed material is mapped by a line moving on yield surface 

0=f  under complex loading, i.e., in case of the generalized von Mises condition (2), onto the surface of the 
second invariant of the stress deviator ijs . 
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Figure 1.  Representation of the solution for the components ijσ , iυ  in principal stress space 321 ,, σσσ . 

 
A similar type of deformation process corresponds to local strain theory (Malmeisters et al., 1980) where the 
strain is considered to be the result of elementary deformation mechanisms (sliding, twinning) in the discrete 
polycrystalline structure.  Malmeyster et al. (1980) introduced a probability factor ss FF /+  of plastic strain ap-

pearance in a spherical particle, where +
sF  is a set of orientations of elementary slide areas, and sF  the area of 

the unit sphere.  An experimentally defined increment of the factor ss FF /+  can be represented as a segment of 
the generating line moving on the load surface ( 0=f ).  Hence, the method proposed for determination of stress 
and velocity fields corresponds to the experimentally verified concept of the onset and evolution of plastic yield 
at a segment of the generating line “sliding” on the load surface ( 0=f ). 
 
From this viewpoint the advantage of cylindrical surfaces selected as the load surface, 0=f , described by the 
von Mises function becomes obvious.  The movement of a segment of the generating line under complex loading 
can be interpreted as its rotation about the hydrostatic axis 321 σσσ ==  in principal stress space 1σ , 2σ , 3σ , 
i.e., as a change in the Lode angles of the stress and the strain rate deviators ijs  and ije& , respectively. 
 
When solving the constitutive equations (1)-(6) it is convenient to set a position of a segment of the generating 
line (MN) on the load surface in a special representing space of the parameters θϕ , θm , rm , zm  which are in-
troduced by the following relations 
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 ( ) ( )θαβθθ δτϕ 22 coscos =ms , (12) 
  
 ( ) ( ) ( ) 0signsign2sin1 =−−−−= rzzrij mmmsI σσσσϕ θθθθ , (13) 
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where ( ) ( ) 1,0 21 == ijij sIsI  are the first and the second invariants of the normalized stress deviator 

( ) sijijijij ssIss ≡= 2 , and ( )θσσ −zsign , ( )rσσθ −sign  are the sign functions, i.e., the signs of the argu-

ments ( )θσσ −z  and ( )rσσθ − . 
 
The representing space of the parameters θϕ , θm , rm , zm  is connected with Iljushin’s deviatoric space (Ilju-
shin, 1963) 
 
 ( ) ( )θθθσσ ϕσσββ 2sinsignsincos 21 mmss rz −−−=+ , 

 ( ) ( )θθθσσ σσϕββ −+=





 ++






 +− zrmmss sign2sin

6
πcos

6
πsin 21 , (15) 

 ( ) ( )rzzr mmss σσσσββ θθσσ −+−−=





 −−






 − signsign

6
πcos

6
πsin 21 , 

 ( )θθ ϕ2
2
3 cosms

=  ,  0
2
4 =

s
 ,  0

2
5 =

s
, 

 

where ( )5,,2,1 L=isi  are the components of the five-dimensional vector s  with the scalar ( ) 12 == ijsIs , and 

σβ  is the phase parameter of the stress deviator ijs .  The deviatoric stresses ijij ss =s  and the components of 
the five-dimensional vector s  are connected by the following dependencies (Iljushin, 1963) 
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The dependences of the tensorial stresses ijσ  on the parameters θϕ , θm , rm , zm  can be found from Eqns. (15) 
and (16) 

 ( ) ( )[ ]θθθ ϕσστσσ 2sinsign
3
2 mm rzyr −−−+= , ( ) ( )[ ]θθθ σσϕτσσ −++= zryz mm sign2sin

3
2 , 

 ( ) ( )[ ]rzzry mm σσσστσσ θθθ −+−−+= signsign
3
2 , ( )θθyrz mττ ϕ2cos= . (17) 

 
Note that the parametric representation (17) of the stress components corresponds to the invariants (13) and (14) 
of the normalized stress deviator ijs .  Eqns. (17) together with Eqns. (13) and (14) allows us to determine the 

stress tensor ijσ  during axisymmetric deformation by using four quantities, the hydrostatic stress σ , the yield 
stress yτ , and the parameters θϕ  and θm  (instead of the components rσ , zσ , θσ , rzτ ). 
 
The sign functions ( )θσσ −zsign  and ( )rσσθ −sign  that appear in Eqns. (17) depend on the type of processing 
operations.  In processes with predominant axial compression (e.g., extrusion, upsetting, bulk forging) we have 



 

 93  

 zr σσσ θ ≥≥  ,  ( ) 1sign −=− θσσ z  ,  ( ) 1sign −=− rσσθ ; 
in processes with predominant axial tension (e.g., drawing, dragging) 
 rz σσσ θ ≥≥  ,  ( ) 1sign =− θσσ z  ,  ( ) 1sign =− rσσθ ; 
in processes of expansion 
 rz σσσθ ≥≥ ;  ( ) 1sign −=− θσσ z  ,  ( ) 1sign =− rσσθ ; 
in processes of pressing 
 θσσσ ≥≥ zr  ,  ( ) 1sign =− θσσ z  ,  ( ) 1sign −=− rσσθ . 
 
It is convenient to use a graphic presentation of the SSS for the analysis of plastic flow processes.  The paramet-
ric representation for the stresses (17) allows us to graphically represent the normalized deviator in three-
dimensional parametric space θm , rm , zm  for the region 1,,0 ≤≤ zr mmmθ  (cf., Figure 2). 
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Figure 2.  Graphic presentation of the stress deviator ijij sss =  at the axisymmetric stress state. 

 
Eqn. (13) defines the deviatoric plane ( ) 01 =ijsI which passes through the point O and can be presented in the 

following form: 0=++ zzrr mAmAmА θθ , where all the coefficients θА , rA , zA  cannot be of equal signs.  Eqn. 

(14) is equivalent to the yield condition (2) and determines the spherical surface 1222 =++ zr mmmθ  (of unit ra-
dius 1=R ) in the region [ ]1;0,, ∈zr mmmθ .  The intersection of the surfaces ( ) 01 =ijsI  and ( ) 12 =ijsI  defines 

the deviatoric curve zr LL  (cf., Figure 2).  The third invariant 33cos2det)(3 σφδσσ −=−= ⋅
⋅ ij
i
jijsI  is repre-

sented by a hyperboloid with the hydrostatic axis sσσ = .  The intersection of the surfaces 

( ) 33cos23 σφ−=ijsI  and ( ) 12 =ijsI  defines the phase curve θNN z  of stresses.  Moreover, the intersection of 

the curves zr LL  and θNN z  fixes the point ),,,( zr mmmM θθϕ  which determines the vector of hydrostatic shear 
stress 88 ττ =s . 
 
Physically speaking the parameters θm , rm , zm  define a direction of the vector 8τ  in the deviatoric plane (13).  
We assume that ( ) ( ) ( )zr AAA signsignsign −== θ .  In this case the boundary points rL and zL  of the deviatoric 
curve zr LL  are always in planes 0=rm  and 0=zm  for all possible combinations of stresses.  The point rL  
corresponds to uniaxial tension while the point zL  corresponds to uniaxial compression.  The angle mφ  between 
the segments zOL  and OM is a representation of the Lode angle σφ  in the parametric space θm , rm , zm . 
 
Eqns. (1), (13), and (14) together with the parametric representation of stresses (17) takes the following form in 
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the system of coordinates α  and β  
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 ( ) ( ) 0signsign =−−−− αθβθβα σσσσ mm , (20) 
  
 1222 =++ θβα mmm . (21) 
 
Eqns. (19) and (20) result in 
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The angle θδ  and the parameter θϕ  appearing in Eqns. (18) and (19) are connected by (11).  Deviation of the 
non-linear dependence (11) from the linear relation θθ δϕ =  (cf., Figure 3, left) corresponds to a deviation of the 
dependence ( )σεε µµµ && =  from the Levi-von Mises equations (cf., Figure 3, right).  In Figure 3 (right) 

( ) ( ) 12 3132 −−−= εεεεµε &&&&  and ( ) ( ) 12 3132 −−−= σσσσµσ  are the coefficients of the strain and of the stress 
state, respectively.  The experimental dependence ( )σεε µµµ && =  was obtained by classical tests by Taylor and 
Quinny (Hill, 1950). 
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Figure 3.  left - dependence )( θθθ δϕϕ = , right - experimental dependence )( σεε µµµ && = , 
○ – low-carbon steel, • – copper  

 
In view of the dependence (22) and the non-linear relation (11) between the parameters θϕ  and θδ , the differen-
tial equations (18) and (19) become 
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where ( ) θθθθ δϕδϕ dd ′=′ . 
 
The velocity equations (3) and (5) can be rewritten in terms of fixed coordinates *α  and *β  coinciding with 
trajectories α  and β  
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The solution of Eqns. (4), (23)-(26) should satisfy Cauchy-type boundary conditions.  In case of the axisymmetric 
problem the Cauchy-type conditions are presented by boundary values of the required functions σ , θδ , θm , 

∗α
υ , ∗β

υ  at the two-dimensional surface ( ) 0, =∗∗ βαω  in the space ∗∗ βα , .  Thus, the boundary problem of 

axisymmetric plastic flow is reduced to the solution of basic equations in the plane ( )∗∗ βα ,rz  (cf., Figure 4). 
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Figure 4.  A boundary problem in the meridian plane rz at the axisymmetric plastic state. 

 
The Eqns. (23) and (24) and the additional condition (10) form a locally definable set of the equations for three 
required components σ , θδ , and θm .  Two velocity relations (25) and (26) form a closed system for two re-

quired velocity components, *α
υ , *β

υ .  The initial approximate solution of these sub-systems allows us to repre-

sent each node point of the plastic zone by two lines ( 11NM  and 22NM ) on the cylindrical yield surface in prin-
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cipal stress space 1σ , 2σ , 3σ  (cf., Figure 1).  One of these lines corresponds to admissible stresses, and the 
other to admissible velocities.  The position of MN corresponding to the exact solution is situated between the 
lines 11NM  and 22 NM .  The exact solution should satisfy the condition of coincidence of phases, i.e., the Lode 
angles e&φ  and σφ , of the deviators ije&  and ijs  (4). 
 
The four partial differential equations (23)-(26) are closed w.r.t. five required functions σ , θδ , θm , *α

υ  and 

*β
υ  by means of the differential constraint (4).  These four equations are of hyperbolic type and have two pair-

wise coincident sets of mutually orthogonal characteristics α  and β .  Characteristic lines α  and β  coincide 
with slip lines and are described by Eqns. (8).  This fact allows us to use grid-characteristic schemes for the nu-
merical solution of arising boundary problems. 
 
The strain damage measures 1ω  and 2ω  connected with the second-rank order tensor of damage ( ijω ) are used 

as meso-structural parameters kµ  of the ductile material (cf., Zapara et al., 2008).  The kinetic equation (6) for 
the damage measure 1ω , which is related to plastic dilatation of the deformed material due to an increase in mi-
cro-defect volume, becomes 
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where ( )Λε ⋅

⋅
i
i  is plastic dilation ⋅

⋅
i
iε  (i.e., the first invariant of the plastic strain tensor ijε ) dependent on the cu-

mulative strain at shear 
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je& are the mixed components of the deviatoric strain, ( )ts  is a load 

path, tddΛΛ =&  is an intensity of the shear strain rate, and limΛ  is the limit strain of the material at the moment 
of its macro-destruction. 
 
The kinetic equation (6) for the damage measure 2ω , which is connected with a change in micro-defect (void) 
shape under plastic deformation, takes on the following form 
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where e&)  is the equivalent deviatoric strain rate of voids, cre)  is the critical deviatoric strain of voids correspond-

ing to a stage of intense coalescence of ellipsoidal voids and formation of cavernous defects, and ⋅
⋅
i
je&)  are the 

mixed components of the deviatoric strain rate of voids. 
 
Being described by differential equations the damage measures are defined over the following range: 

[ ]1;0, 21 ∈ωω , where the upper-range value 11 =ω  corresponds to the moment of macro-fracture, and 12 =ω  cor-
responds to the stage of formation of cavernous defects (i.e., a stage of the micro-destruction at meso-scale). 
 
 
4 Analysis of press forging of axisymmetric parts 
 
4.1 Determination of consistent fields of stresses and plastic flow velocities 
 
Press forging is used in the metalware engineering industry both independently and in combination with other 
forming operations.  Products can be processed by press forging completely as well as partially.  Powerful press 
equipment and high-strength tool steels allow us to apply Cold Press Forging (CPF) to manufacture a number of 
components for mechanical and aerospace engineering.  Press forging operations relate to processes with non-
stationary plastic flow which are very difficult to model (Dung, 1992).  Various configurations of workpieces and 
complex boundary conditions result in heterogeneous and non-stationary fields of processing stresses, strains, 
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strain rates, mechanical and microstructural characteristics of deformed materials.  Thus, the development and 
upgrading of manufacturing techniques including press forging is appreciably connected with the use of process-
ing feasibilities of volumetric forming during these operations. 
 
As a case study here we choose press forging of a small-height axisymmetric part with a flange when plastic flow 
spreads along all the height of a billet.  We consider a final stage of press forging accompanied by the outflow of 
the metal into a radial clearance between the top die and the counter die (cf., Figure 5).  Figure 5 shows the me-
ridian cross-section of the processed billet.  The shape of the contact surface of the die is simplified.  It can be 
complicated according to the shape of the finished part that will result in necessity of solving more complex 
boundary problems in order to determine a stress-strain state during press forging. The final stage of press forg-
ing is reached when the die cavity is filled up.  It is accompanied by squeezing the metal into the radial clearance.  
The complete filling of the die cavity in press forging is accompanied by an increasing resistance to the metal 
outflow into the clearance.  This deformation resistance should not abruptly increase in order to ensure high qual-
ity filling of the die cavity.  The method given above will be used for the calculation of the mechanical properties 
and strain-induced damage of the material as well as for determination of pressure to be applied to the die. 
 
All parameters of press forging are calculated using the following input data:  The material of the part is an an-
nealed low-carbon low-alloy steel (C 0.08-0.20 %, Cr 0.15-0.30 %) (cf., Table 1); the diameter of the die cavity 
is given by mm138=dd  (the diameter of the part is dp dd = , respectively), the height of the cylindrical billet at 

the beginning of press forging is mm5.19=bh  while the height of the finished part is ph = 14 mm, the radial 

clearance ch  between the top die and the counter die  changes during press forging from mm70 =ch  to 

mm5.1=fch .  During the process we assume a constant processing speed with strain rates of 1s10010 −−=ie&  
and a given temperature of K500300 −=T .  Note that this temperature is still below the recrystallization tem-
perature of the steel. 
 
The stress-strain state is evaluated at three stages (cf., Figure 5), as follows 

1. at the initial moment of the second stage when 60.01 =h∆  mm, 
2. at an intermediate moment when 5.22 =h∆  mm, 
3. at the final state, i.e., 5.53 =h∆  mm, 

where ih∆  denotes a displacement of the top die at a moment i, where i = 1 – 3. 
 

 
 
Figure 5. Press forging of an axisymmetric part 

 
The yield stress under shear that appears in the von Mises function (2) can be written as 3yy στ =  , where yσ  
is the yield stress under uniaxial condition.  This relation allows us to use uniaxial tension and compression tests 
in order to determine yτ .  As outlined in detail by Zapara et al. (2008) the evolution of the yield stress yσ  can be 
described by 
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where ( )kii

(is)
y

(is)
y Tee µσσ ,,, 00&=  refers to isothermal hardening curves obtained for various materials at a fixed 

strain rate 0ie&  and an initial thermodynamic temperature 0Т , ie  is an intensity of the cumulative strains, kµ  are 
meso-structural parameters, Т  and maxТ  are the current and the maximum temperature of the process, respec-
tively, and α  and q  are parameters used in the equation for the temperature dependent yield strength yσ  (cf., 
Zapara et al., 2008).  The isothermal yield stress can be written as follows: 
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where 0σ  is the initial yield stress given by the resistance to the movement of free dislocations, ω  is the strain 
damage related to plastic dilatation induced by micro-defect growth, and dσ  is a stress required for the move-
ment of locked dislocations which will be specified below.  Moreover, A  and m  are parameters of the relation-
ship ( )ωσσ dd = , D is average grain size, l is a characteristic distance from the grain boundary to the nearest dis-
location source, and B, 0n , and 1n  are scalar parameters describing the work hardening of the yield stress in an 
isothermal regime. 
 
Table 1. Parameters of plastically deformed low-carbon low-alloy steel  (temperature 500300 −=T  K, strain 
rate -1s10010 −=ie& ) 

 

0σ , 
MPa 

0d =ωσ , 

MPa 
A, 

MPa 
m 
 

210−⋅l , 
mm 

B, 
MPa 0n  1n  0T , 

K 
maxT , 
K 

α  q 

150 265 157 1.40 0.222 391 0.435 0.097 300 800 0.177 2.691 
 
By substituting the data of Table 1 into Eqs. (4)-(5) we may determine the yield stress of this steel depending on 
strain hardening and micro-structural changes by 
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Since the process characteristics depend on the strain history a stepwise analysis of deformation together with a 
detailed determination of stress-strain state is necessary for their calculation.  For the purpose of the analysis the 
process of press forging will be divided into three stages since the plastic flow of the material is non-stationary. 
 
First, we determine consistent fields of stresses and flow velocities at the moments corresponding to various dis-
placements of the top die: mm6.01 =h∆ , mm5.22 =h∆ ; mm5.53 =h∆ .  The following ratios of the changing 
dimensions correspond to these moments of press forging: ( ) 3.711 =−= Δhhdhd bpp , 

( ) 1822 .Δhhdhd bpp =−= , and ( ) 9.933 =−= Δhhdhd bpp .  Shapes of the billet and the die as well as the con-
tact conditions are mirrored w.r.t vertical and horizontal axes of symmetry.  The fields of stresses, flow veloci-
ties, and strains are mirrored w.r.t. these axes of symmetry as well.  Therefore, in order to present the figures 
more compactly and with enough large scale we shall show in this paper only one fourth of the fields of stresses 
and flow velocities (to the left and above the axes of symmetry, cf., Figures 7, 9, 11, 12). 
 
By solving the boundary problem we may construct a field of slip lines (i.e., characteristics) in the meridian 
cross-section of the axisymmetrically deformed material.  (Details of the employed numerical scheme are summa-
rized in the Appendix, cf., Eqns. (A.1)-(A.13)).  Then the boundary of the plastic zone is determined, and stress 
components and pressure nσ  on the die are calculated.  For the numerical calculations the defining differential 
equations (8), (23)-(26) are represented in recursive form (A.1)-(A.5).  For the initial approximate solution the 
function ( )zr,θδ , which appears in the additional condition (10), is represented in a linear form (A.8) for 
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neighboring node points of the plastic zone.  The dependence (A.8) follows from the first Hencky theorem for the 
theory of plane deformation of rigid-plastic solids (Hill, 1950). 
 
Eqns. (A.2) and (A.3) are written in view of the sign functions for press forging: ( ) 1sign =− αθ σσ , 

( ) 1sign −=− θβ σσ .  The values of the sign functions follow from the representation of possible stress states at 
press forging by means of Mohr’s circle (cf., Figure 6). 

σ− 1O 2O 3O 1σ

2σσθ =

σ

( ) 231 σσσσ βα +==
3σ

A C B  O

3a

a

τ
press forging

 
 

Figure 6.  Mohr’s circle for the processes of press forging 
 
In fact, possible stress states during press forging are presented for the values of hoop stress 

( )( ]1312 ;2 σσσσσθ +∈= .  The upper limit value 1σσ θ =  corresponds to uniaxial compression and is fulfilled 
at the symmetry axis of the blank (at 0=r ).  The lower limit value ( ) 231 σσσθ +=  corresponds to pure shear.  
The stress state close to pure shear (at ( ) 290.085.0 31 σσσθ +−= ) is realized in a zone of the material outflow 
into the radial clearance.  Hence, for all combinations of the stress state, we may write 

( ) θβα σσσσσ <+== 231  which confirms previously determined values of the sign functions. 
 
The stress fields in the plastic area of the strained product are defined in each approximation on the basis of a 
solution of the boundary problems, e.g., after the first stage ( mm6.01 =h∆ , cf., Figure 7, top) the sequence is as 
follows: degenerate Riemann problem in the zone 1.4−− EA , mixed Cauchy problem in the zones 

4.41.4 −−E , 4.64.4 −−F , 6.64.64.4 −− , C−− 5.64.6 , Riemann problem in the zone C−−− 6.76.65.6  
and mixed Cauchy problem in the zone D−− 6.76.6 .  Note that the numbers m.n refer to the indices m and n of 
the node points which are formed by intersection of the slip lines mα  and nβ  (cf., Figure 7, top).  It is necessary 
to mention that the point A  on the contact surface of the top die is a singular point of the slip line field (cf., e.g., 
Kachanov, 2004).  This point coincides with the initial slip line 0β  (with the vanished radius of curvature, 

0
0

→βR ) which is contracted to the point.  Values of the parametric angle θδ  in the point A  are over the range 

[ ]0.40.1 ; θθ δδ  as the slip lines 1α , 2α , 3α , 4α  converge to the point A .  Hence the node points 0.1 , 0.2 , 0.3 , 
0.4  coincide with the point A . 

 
The determined field of the slip lines α and β  allow us to define the boundary AFCDE of the plastic area in the 
meridian cross-section of the half-finished part (Figure 7 shows 41  of the meridian cross-section as the plastic 
area is mirrored w.r.t. the axes of symmetry).  When solving these boundary problems we use a condition of 
maximum contact friction at the end surface of the tool, i.e., maxττ =c  ( maxτ  denotes the shearing stress at the 
contact, index c is for contact).  This condition is based on the experimental data showing that high hydrostatic 
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pressure σ  in the die cavity leads to maximum tangential stresses maxτ  acting along the contact surface (Unk-
sov et al., 1992). 

 

 

  
 

Figure 7. Press forging of an axisymmetric part: the plastic area and the stress field for various dis-
placements of the top die: top – mm6.01 =h∆ , center – mm5.22 =h∆ ; bottom – mm5.53 =h∆  

 
To calculate the average stress σ  it is necessary, at first, to find its value in one node point of the plastic area.  
For this purpose, we use a condition of equilibrium of the material outflowing into a radial clearance 
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AE

sr .0dcossin θαβθα δτδσ  (32) 

 
A numerical solution of the integral equation (32) allows us to find the average stress in the point A (cf., Figure 7) 
(for example, 155−=Aσ  MPa at the final moment of press forging). 
 
For the purpose of a computing procedure it is necessary to note that partial derivatives of a yield stress w.r.t. the 
coordinates ( βyαy s,s ∂∂∂∂ ττ ) that appear in the differential equations (23) and (24).  The corresponding re-

cursive equations (A2) and (A3) include relations 
1.1.
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ττ
.  Derivatives (and quanti-

ties in the recursive equations corresponding to them) consider a change of the yield stress in the meridian cross-
sections of the deformed material.  This change is connected with strain hardening.  The strain can be determined 
in three ways, first, analytically, e.g., using a geometrical theory of deformation (cf., Kachanov, 2004), second, 
experimentally by coordinate grids (Thomson et al., 1968), and, third, found from known solutions for analogous 
processes.  When calculating the derivatives βα ττ ss yy ∂∂∂∂ ,  the authors use the known solutions for the 
strain distribution in analogous processes of press forging (Thomson et al., 1968).  More accurate distribution of 
strains can be found from the flow velocity fields determined for different moments of press forging.  The exact 
strain distribution is used when solving the kinetic equations for damage measures. 
 
The material pressure distributed on the contact surface of the top die is hzn == /βσσ , where hz=/βσ  is a nor-
mal stress in the contact layer of the processed material (at hz = ) directed along the slip lines β  which ap-

proach the contact surface at the angle of o90  (cf., Figure 7).  The processing force of press forging is 
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rrP
d

n dπ2
2

0
∫= σ .  The average pressure on the die is dFPp = , where 4π 2dFd =  is the active area of the top 

die which transfers processing force.   The values of maxnσ , P , and p  calculated for the different stages of 
press forging (Table 2) and the contact pressure ( nσ ) diagrams (cf., Figure 8) show their strong change during 
the process. 
 

Table 2.  Force parameters of press forging 
 

Displacements of the top die 
Force parameters 60.01 =h∆ mm 50.22 =h∆ mm 50.53 =h∆ mm 

Maximum pressure on the die, 
maxnσ , MPa 1018 1310 1950 

Processing force, 
P, MN 10.8 13.3 15.7 

Pressure of press forging, 
p, MPa 724 890 1050 

 

 
 
Figure 8. Contact pressure nσ  vs. drrr /=  for various displacements of the top die: 
1 – mm6.01 =h∆ , 2 – mm5.22 =h∆ ; 3 – mm5.53 =h∆  

 
The determined fields of slip lines (i.e., the maximum shear stress trajectories βτ a ) allow us to calculate the 
fields of plastic flow velocities (cf., Figure 9) by using Eqs. (A.4) and (A.5). 
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Figure 9. Flow velocity fields for various displacements of the top die: 
top left – mm6.01 =h∆ , top right – mm5.22 =h∆ ; bottom – mm5.53 =h∆  

 
The parametric angle θδ  and the trajectory arcs αs , βs  appearing in Eqs. (A.4) and (A.5) are known from the 

slip line fields.  The field of plastic flow velocities represents a grid of the material lines βα and  which coin-
cide with the slip lines βα and  in the coordinate system zr υυ , .  Such a representation allows us to find the 
velocity vector nm.υ

r
 and its components ( nmznmr .. , υυ ) for each node point nm.  of the plastic area (cf., Figure 

10).  The radius vector of the represented point nm.  is the velocity vector nm.υ
r

 and its components are the veloc-

ity components nmznmr .. and υυ .  Thus, representation βα ,  allows us to determine a dependence of plastic 
flow velocities on the coordinates of node points, i.e.,  ( )nmnmr yx .. ,υ  and ( )nmnmz yx .. ,υ . 
 

      
 

Figure 10.  Determination of the material velocity in the node points of the slip line field βα ,  using 
representation βα ,  in the coordinate system zr υυ ,  

 
The following boundary conditions were used when solving the boundary problems (in velocities): 

δδυ βθα cos,sin ** UvU −=−=  (along the boundary AFCD), θβθα δυδυ sin
4

,cos
4 c

*
c

* h
Ud

h
Ud

−=−=  (along 

the boundary AE), 2** U=−= βα υυ  (along the line ED), where U is a velocity of the top die movement.  The 
flow velocity fields can be determined by a solution of the boundary problems, e.g., after the first stage 
( mm6.01 =h∆ , cf., Figure 9, top left) the sequence is as follows: mixed Cauchy problem in the zone 
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D−− 6.76.6 , Riemann problem in the zone C−−− 6.76.65.6 , mixed Cauchy problem in the zones 
C−− 5.64.6 , 6.64.64.4 −− , 4.64.4 −−F , 4.41.4 −−E , and Riemann problem in the zone 

0.41.4 −−− EA .  Note that the abbreviation m.n refers to the indices m and n of the node points which are 
formed by intersection of the lines mα  and nβ  mapped onto the meridian plane of velocities rυ , zυ  (cf., Figure 
9, top left).  The boundary points A, F, C, D, E represent the same points of the plastic area.  The velocity 

2Uz =υ  is mapped onto the represented fields of plastic flow velocities (cf., Figure 9).  This technique simu-
lates a situation when the top die and the counter die move with the equal velocity 2U .  Such a technique allows 
us to mirror the fields of velocities w.r.t. the horizontal axis of symmetry and does not affect any results of the 
subsequent calculations.             
 
The field of velocities should satisfy a kinematic condition according to which a velocity of outflow into the 
clearance is 
 

 .
4

sincos **
c

c h
Ud

=−−= θβθα δυδυυ  (33) 

 
Comparison of velocity diagrams shows that the velocity of outflow into a radial clearance strongly increases 
during press forging: 4.11c2c =υυ , 3.21c3c =υυ .  It should be noted that the field of plastic flow velocities 
does not contain discontinuities which cross the symmetry axis z, i.e., the velocities of the processed material 
change continuously during its movement along the trajectories. 
 
A grid of lines α , β  selected in the plastic zone consists of continuum points.  This grid is coincident with a 
grid of slip lines α , β  at the observed moment of deformation.  This grid of the material lines of continuum, 

α , β , can be considered as associated coordinate frame (Sedov, 1983), and plotted velocity fields (cf., Figure 

9) can be considered as a representation of the material lines βα ,  in the velocity plane.  A similar representa-
tion of the flow velocity field is essential for the following kinematic analysis of the non-stationary processes. 
 
The flow velocity field has the following features at axisymmetric press forging (cf., Figure 9): The mutual or-
thogonality of the lines α  and β  is virtually kept when we map the lines α , β , which are close to the radial 
clearance of the die (lines 2121 ,,, ββαα ), onto the plane of velocities rυ , zυ .  This is typical for pure shear 
(plane deformation) in this area of the deformed metal.  The angle between the tangents of continuum lines α  

and β  increasingly changes in their intersection points when we map the lines α  and β  onto the plane of ve-
locities rυ , zυ .  Finally, when we map the node points which are located at the symmetry axis, the level lines of 
the velocity vector zυ  converges in the range from 0 to dυ .  For these points the mapped angle between the con-
tinuum lines α  and β  is equal to π /2 (the lines α  and β  are mapped in opposite phase) which is typical for 
uniaxial states.  Thus, a representation of the continuum lines α  and β  in the plane of velocities rυ , zυ  is de-
pendent on the Lode angles e&φφσ ,  of the stress ( ijs ) and the strain rate ( ije& ) deviators, respectively. 
 
The degree of conformity between the fields of stresses ( )0

ijσ  and velocities ( )0
iυ  in the initial approximate solu-

tion is determined by fulfilling the similarity condition (4) for deviators ije&  and ijs  in the form: 
 
 ( ) ( ) [ ]θ

σ
θθ ∆mmm e ≤−& , (34) 

 
[ ]θm∆  being a permissible mismatch error for the parameters ( )em &

θ  and ( )σ
θm  related to the fields of stresses and 

strain rates (cf., Eqn. (A.13) and Figure A.1). 
 
For the solution of the inequality (34) the method of group relaxation is used (e.g., Korn and Korn, 2000, Section 
20.3-2).  By regulating the absolute value of the difference between the parameters ( )em &

θ  and ( )σ
θm  in selected 

nodes of the plastic zone (instead of its complete liquidation at the first step) it is possible to fulfill the inequality 
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(34) already at the first correction with the permissible error [ ] 01.0=θ∆m .  The calculated stress field (cf., Figure 
7) and the corresponding field of flow velocities (cf., Figure 9) satisfy the inequality (34) for the permissible error 
[ ] 01.0=∆ θm . 
 
 
4.2 Determination of cumulative strains 
 
The cumulative strain Λ  and its rate Λ&  appears in the kinetic equations (7) for the meso-structural parameters 

kµ  by means of the parameter sχ .  Λ  and Λ&  also appear in Eqn. (27) for the damage measure 1ω  which is 
connected to the plastic dilatation of the deformed material due to the volume growth of the voids.  The consis-
tent fields of stresses ( ijσ ) and plastic flow velocities ( iυ ) found at different stages of non-stationary deforma-

tion allow us to calculate strain rates Λ& , strain increments ∆Λ , and cumulative strains Λ  along the trajectories 
of the movement of the material particles.  The trajectories for particles of the deformed material can be de-
scribed in terms of the coordinates *α , *β , t  by the following differential equations: 
 

 ( )t
t

s *,*,
d

d
*

* βαυα
α =  ,  ( )t

t
s

*,*,
d

d
*

* βαυβ
β = . (35) 

 
The fields of slip lines and flow velocities allow us to integrate Eqns. (35) numerically (i.e., step-by-step): 

ts ΔΔ ** αα υ= , ts ΔΔ ** ββ υ= , where *αsΔ , *βsΔ  are projections of the vector srΔ , which defines a directed 

increment of the trajectory at the current stage, tΔ  being the time of the current loading stage.  For the press 
forging process the time t  is substituted for the top die displacement h  (time-like parameter of the process), i.e. 

pii vht ∆=∆  for the i-th stage of deformation.  The trajectories of movement for particles of the deformed ma-
terial in the plastic area (cf., Figure 11) are found by numerical integration of the differential equations (35). The 
initial coordinates of the chosen particles G, K, L, M, N, R, S, T are defined at the moment 1.7=hd  by intersec-
tion of the surfaces dr 125.0−= , dr 25.0−= , dr 375.0−= ,  dr 475.0−= , and the planes hz 25.0=  and 

hz 5.0= .  Figure 11 shows trajectories of the material particles for 41  of a meridian cross-section of the billet 
(to the left and above the axes of symmetry).  Trajectories of the rest part of the meridian cross-section are mir-
rored w.r.t. the axes of symmetry. 
 

 
 
Figure 11. Trajectories of particles of the deformed material (in the layer with the Lagrange coordinate 

bhz 25.0= ) in the radial direction r  at the final moment of press forging 
 
Now we will determine the strain cumulated by the material particles along the trajectories of their movement.  
The non-vanishing components of the strain increments in the coordinates *α , *β , θ  are 
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or according to the rule of differentiation of vector components in a curvilinear coordinate system 
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where aυ  and βυ  are the flow velocity components relative to a moving grid of the characteristics (differential 
equations of equilibrium (25) and (26) and differential equations of velocities (25) and (26) are both of hyper-
bolic type and have two sets of characteristics βα and  coinciding with the slip lines). 
 
In view of the obvious relations βα ee dd =  and βαθ eee d2d2d −=−=  we may obtain the following dependence 
for the intensity of the shear strain increment ( Λd ) 
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or for a short stage k  of deformation 
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where the components ( ) ( )

1***Δ
−

−=
kk ααα υυυ  and ( ) ( )

1***Δ
−

−=
kk ααα υυυ  can be found by the fields of plastic 

flow velocities. 
 
The components αυ , βυ  relative to a moving grid of the characteristics βα,  at non-stationary flow are 
 
 *

** ααα υυυ −=  ,  *
** βββ υυυ −= , (39) 

 
*

*αυ , *
*βυ  denoting the velocity components of a moving grid of the characteristics α , β .  

 
When considering a grid of the characteristics α , β  as the intersection of two sets of mutually orthogonal sur-
faces ( ) 0,, =tzrαω  and ( ) 0,, =tzrβω  by the planes =t  const (in the space r , z , t ) it is possible to use the 
following equations in terms of complete differentials 
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It is obvious that the derivatives ααω s∂∂ , ββω s∂∂  vanish since the surfaces 0=αω  and 0=βω  are charac-
teristics.  By virtue of Eqns. (39) we may find the velocity components for a grid of the characteristicsα , β : 
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and the following relations for its kinematic properties 
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If a moving grid of the characteristics α , β  is considered as the material continuum then its strain rate compo-
nents are 
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i.e., a grid of the characteristics is subject to an extension or a compression, but not to shear during its transla-
tional movement w.r.t. a fixed reference frame *α , *β .  This means that the parametric angle θδ  varies over π±  
when a grid of the characteristics α , β  is mapped onto velocity plane.  Thus, the kinematic relations (42) repre-
sented in the recursive form (A.6) and (A.7) allow us to map fields of the characteristics α , β  onto the velocity 

plane (cf., Figure 12).  This mapping allows us to find the velocity vector ∗
nm.υ

r
 and its components nmznmr .. , ∗∗ υυ  

(or 
nmnm ..

, ∗∗
∗∗ βα υυ  in the coordinates ∗∗ βα , ) for each node point nm.  of the moving grid of the characteristics 

(by analogy with determination of the material velocity in the node points of the slip line field βα ,  by means of 
representation βα ,  in the coordinates zr υυ , , cf., Figure 10)  and to calculate the velocity components αυ , βυ  
by the dependences (42) at each stage k  
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Figure 12. The fields of velocities ** , βα υυ  of characteristics for various displacements of the top die: 
top – mm6.01 =h∆ , center – mm5.22 =h∆ ; bottom – mm5.53 =h∆  

 

The cumulative strains after stage k are ∑
=

=
k

j
jk

1

∆ΛΛ , and ∑
=

=
n

j
j

1

∆ΛΛ  at the end of forming.  In Figure 13 the 

distribution of the cumulative strains Λ  is shown for the layer with the Lagrange coordinate bhz 25.0=  in the 
radial direction r  at the final moment of press forging.  The diagram for ( )rΛ  shows that the most intense strain 
is experienced by the metal particles that intersect a boundary of the plastic area or come close to it at the final 
moment of press forging.  Large finite strains in the zone with outflow into the radial clearance result in intensive 
thermal flux and heating of the processed metal up to 350°С and higher.  According to the rheological depend-
ence (29), a distribution of the strain Λ  allows us to refine a distribution of the mechanical properties of the 
processed material, i.e., the yield stress in node points of the slip line field.  Figure 13 (left) shows a distribution 
of the yield stress yσ  in the radial direction r  of the layer with the Lagrange coordinate 025.0 hz = . The slip 

lines fields (i.e., the stresses ijσ ) together with a refined distribution of the yield stress yσ  (or equivalent stress 
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3yys στ == ) allow us to determine the stress triaxiality ys τσσσ ==  in node points of the plastic 
area at the considered moments of press forging (cf., Figure 13). 
 

    
 

Figure 13. Distribution of the parameters yσΛ and  at the final moment of press forging (left) and tri-

axiality σ  for various displacements of the top die (right): 1 – mm6.01 =h∆ , 2 – mm5.22 =h∆ ; 3 – 
mm5.53 =h∆ , in the layer with the Lagrange coordinate bhz 25.0=  in the radial direction 

 
 
4.3  Determination of strain damage 
 
The strain damage of the finished part can be predicted by numerical integration of Eqns. (27) and (28) for the 
damage parameters 1ω  and 2ω .  The function of plastic dilatation, ( )Λε ⋅

⋅
i
i , that appears in Eqn. (27), is of the 

power type, ( ) ai
i bΛΛε =⋅

⋅ , where b  and a  denote experimentally determined parameters (cf., Table 3).  There-
fore Eqn. (27) becomes 
 

 Λ
Λ
Λ

ω dd
lim

1

1 a

aa −

= . (45) 

 
The limit cumulative strain at shear, limΛ , appearing in Eqn. (45), corresponds to the destruction of the deformed 
material.  The limit strain limΛ  is determined by experimental diagrams of plasticity plotted for the investigated 
steel under prescribed temperature-speed conditions (cf., Figure 14).  Plasticity diagrams represent the experi-
mentally determined dependence of the limit strain limΛ  on stress triaxiality σ , which can be approximated by 
a power function in the following form 
 
 ( ) ( )σσΛ cBA −⋅+−⋅= expexplim , (46) 
 
where cBA ,,  are the experimentally determined parameters (cf., Table 3). 
 
Proceeding in Eq. (45) with small finite increments of the strain ( ΛΔ ) we may find the material damage after the 
k-th stage of deformation by numerical integration 
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where 01ω  is the damage of the as-delivered material (cf., Table 3), jΛ  is the strain accumulated by the material 

particles up to the j-th stage, ( )jσΛlim  is the limit strain corresponding to stress triaxiality jσ  at the j-th stage.  

Calculations of the damage measure 2ω  by means of numerical integration of the kinetic equation (28) are con-

nected to the determination of the equivalent deviatoric strain rate of voids e&) , and the critical deviatoric strain 
cre)  corresponding to a stage of intense coalescence of ellipsoidal voids and formation of cavernous defects.  

Calculations of the equivalent strain rate of voids necessitate an experimental determination of their dimensions 
changing under deformation (Chen et al., 2002; Lemaitre and Desmorat, 2007; Voyiadjis and Kattan, 2006).  The 
determination of the critical equivalent strain cre)  of voids in the investigated materials is based on microscopic 
analysis of void coalescence in test specimens during their stage-by-stage plastic deformation.  The obtained mi-
crographs will allow us to detect a stage of intense void coalescence into large cavernous defects.  Such experi-
ments involve great technical difficulties (Krajcinovic, 2000).  This is why we shall make use of statistical char-
acteristics of void formation. 
 
For instance, an average equivalent strain rate can be applied within each Representative Volume Element 
(RVE).  A corresponding measure is the equivalent strain rate ( e& ) of the RVE.  The hypothesis that it is possible to 
model the void deformation by using the strain measures of the RVE requires detailed experimental verification.  The 
experimental justification of this hypothesis will allow us to predict shape changes and coalescence of voids by 
means of accompanying axes iξ  plotted as coordinate grids on deformed specimens and manufacturing blanks.  

The hypothesis allows us to accept in our case ( ) ( )tzrtzr ,,,, ee &&) = , where the function ( )tzr ,,e&  can be established 
by a distribution of the equivalent strain increments ( )hzr ,,eΔ  in cells of the coordinate grid, i.e., 

( ) ( ) ( ) hhzrttzrtzr p Δ,,ΔΔ,,Δ,, eee ⋅=≅ υ& . 
 
In order to find the critical equivalent strain of voids, cre) , the experimental results obtained by Bogatov et al. 
(1984) were used.  They investigated void coalescence and formation of cavernous defects in some structural 
metals at forming.  Electron-probe analysis of the micro-structure of stepwise deformed metals allowed them to 
verify that the critical equivalent strain of voids can be expressed as ( )[ ]σ−⋅= 105.0exp6.0 limeecr

) , where 
2limlim Λ=e  is the limit deviatoric strain of RVE corresponding to the moment of its destruction.  In view of the 

given experimental data Eq. (28) becomes 
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By using small finite strain increments, eΔ , in Eq. (48) we may calculate the material damage 2ω  after the 

−k th stage of deformation by numerical integration 
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where 02ω  is the damage of the as-delivered material (cf., Table 3), and jlime  is the limit deviatoric strain corre-

sponding to the stress state parameter jσ  at the j -th stage of deformation. 

 
Table 3. Material parameters for calculations of damage 
 

Parameters 
of plastic dilatation Parameters of limit plasticity Damage of  

the as-delivered material C in steel, % 
b a A B c 01ω  02ω  

0.08-0.10 0.032 1.193 -0.222 2.042 0.560 0-0.10 0-0.12 
0.18-0.20 0.033 1.263 -0.156 1.656 0.550 0-0.10 0-0.12 
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The cumulative strain Λ  (including the equivalent strain 3Λ=e ) and stress triaxiality σ  appears in the 
constitutive equations for damage measures (27), (45), (46), (48).  We have the complete information which is 
required to calculate damage measures by means of Eqs. (47) and (49).  Moreover, we know the mechanical and 
meso-structural parameters of the steel (cf., Tables 1 and 3) as well as stepwise values of the strain, iΛΔ , and the 
limit strain limΛ  (as the known function of stress triaxiality σ , cf., (46)). 
 
In Figure 14 the predicted distribution of damage ( 1ω  and 2ω ) is shown for the radially directed middle layer of 
the finished product (with the coordinate 025.0 hz = ).  The observed fact that the damage increases from the 
symmetry axis towards the flange can be explained as follows.  First, the strain ( Λ ) accumulated by the material 
particles along their trajectories (which are directed towards the radial clearance of the die) increases in the same 
direction.  Second, large compressive hydrostatic stress σ  prevents the evolution of damage, and indeed, the 

absolute value of σ  increases when moving from the radial clearance toward the axis of symmetry. 
 

  
 
Figure 14. Limit strain limΛ  vs. triaxiality σ  (left) and damage 1ω  and 2ω  vs. relative radius drrr /= (right) 
 
Also note in Figure 14 that the growth rate of 2ω  is higher than that of 1ω .  The ratio of the increments 

1dd 12 >ωω  follows from Eqs. (45) and (48).  For example, 6.13.1dd 12 −=ωω  when the triaxiality is 
67.03 −−=σ , which is typical for MF processes.  In other words, this ratio is greater for tensile regimes of the 

stress state ( 0>σ ) than for compressive ones ( 0<σ ).  These relations are physically obvious.  Void coa-
lescence always advances macro-crack formation.  And during tensile loading regimes (when tensile stresses 
promote void growth) this advance will be greater than during compressive ones. 
 
The predicted values of damage induced by micro-defects are much less than allowed ones 
 
 158.049.0 lim1max1 =<−= ωω ,  180.068.0 lim2max2 =<−= ωω . (50)  
 
where the lower calculated values of damage (0.49 and 0.68) correspond to the steel with carbon content 

%10.008.0:C −  since the upper values (0.58 and 0.80) correspond to %..: 200180C − . 
 
Medium damage of the finished part can be explained, first of all, by high hydrostatic pressure that heals micro-
defects in the plastic zone, prevents their growth and, thereby, enhances the processing ductility of the deformed 
metal.  Thus, larger processing strains are possible during press forging (up to 85% and more). 
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5 Conclusions 
 
The enhanced method of slip lines is used here in order to obtain the rapid and accurate solution of the applied 
problem of press forging.  The results allow us to make the following conclusions: The state of stress of the de-
formed metal changes substantially throughout its volume, from uniaxial compression at the symmetry axis to 
pure shear close to compression nearby a radial clearance between the top die and the counter die.  This fact is 
the result of a complex loading of the processed material, i.e., a change in the ratio between the principal stresses 
and strain rates along the movement trajectories of material particles.  A change in the ratio between the principal 
stresses 321 ,, σσσ  and the principal strain rates 321 ,, eee &&&  is defined by a phase angle of the stress deviator ijs  

and the strain rate deviator ije& , i.e., the Lode angles σφ  and e&φ , respectively.  According to our calculations the 
Lode angles change from the symmetry axis towards a radial clearance between the top die and the counter die 
over the range 35.00, −=σφφe& .  This condition necessitates a determination of consistent fields of stresses and 
flow velocities in the plastic area taking into account that the condition of similarity between strain rate and stress 
deviators ( σφφ =e& ) should be satisfied in all nodal points. 
 
The similarity condition for the deviators ije&  and ijs  is identically fulfilled during plane plastic flow when Lode 

angles correspond to pure shear ( 6π== σφφe& ).  When processes with non-stationary axisymmetric flow are 
analyzed it is very difficult to fulfill the similarity condition ( σφφ =e& ) in all nodal points of the plastic area.  The 
reason is a complex numerical procedure of coordinating the stress and the flow velocity fields.  The enhanced 
method of slip lines, based on a representation of yield zones in deviatoric stress space, allows us to implement 
this numerical procedure. 
 
The cumulative strains are irregularly distributed in the meridian cross-sections of the part.  The largest strain is 
accumulated by the material particles that appear out of the plastic zone or approach to its neighborhood at the 
final moment of processing.  The reliability of the predicted mechanical and mesostructural characteristics de-
pends on the accuracy of the calculated strain field.  The strains that were experimentally determined from a co-
ordinate grid satisfactorily agree with the theoretically calculated strains. 
 
Comparison between the maximum values of damage measures and their allowed values, i.e., 

158.049.0 lim1max1 =<−= ωω , 180.068.0 lim2max2 =<−= ωω , allows us to predict the quality of the material struc-
ture after press forging.  Moderate damage can be explained by the effect of a large compressive hydrostatic 
stress σ  which prevents void growth and coalescence.  Large processing strain at press forging provides high 
strength properties of products due to strain hardening.  The carbon content in steels substantially affects the 
damage induced by strain. 
 
The combined use of two damage measures, 1ω  and 2ω , in contrast to using only 1ω  or the volume fraction of 
voids, vf , as in the known common models (cf., e.g., McClintock, 1968; Rice and Tracey, 1969; Kachanov, 
1986; Gurson, 1977), allows us to predict not only a risk of macro-fracture of the deformed material but even the 
stage of formation of large cavernous defects due to coalescence of voids taking a change in their shape and ori-
entation into account.  For example, under large processing deformation it can happen that 11 <ω  while 12 =ω .  
In this case using only one measure ( 1ω  or vf ) for calculations would indicate non-criticality of damage while 
the second measure ( 12 =ω ) reveals a critical stage of voids coalescence and generation of cavities.  This situa-
tion is undesirable or even unacceptable when producing metalware to be operated under intense loading and 
thermal actions which is widespread in aerospace, automotive and energy engineering. 
 
It should be noted that a successful practical application of tensor theory to modeling of MF processes requires 
rather laborious experimental research on damage kinetics for deformed materials under complex loading.  Such 
experiments will promote the creation of a database for meso-structural properties of plastically deformed mate-
rials which is necessary for computer simulations.  To this end the authors have already begun their experimental 
research on the growth, shape change, and coalescence of meso-defects during stepwise plastic deformation of 
some structural metals. 
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Appendices 
 
A.1 The recursive form of the basic differential equations for axisymmetric deformation of a plastically 

rigid solid 
 
For the numerical solution of the basic differential equations (8), (23)-(26) and (42) for axisymmetric deforma-
tion of a rigidly-plastic solid the following recursive form can be used 
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where m.n denote indices m and n of the node points which are formed by intersection of the slip lines mα  and 

nβ  (cf., Figure 7).  For the initial approximate solution the additional condition (10) is expressed in a linear form 
for neighboring grid points of the plastic zone 
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A.2 Connection between the parameter θm  and the Lode angle for the stresses, σφ , and strain rates, e&φ  
 
In context with the calculations of the stress and the plastic flow velocity fields a connection between the parame-
ter θm  and the Lode angle for the stresses, σφ , and strain rates, e&φ , is used.  The parametric form of Eqn. (17) 
for deviatoric stresses in the coordinates α , β  becomes 
 

 ( )αθβα σστ −−= sign
3
2 ms y  ,  ( )θβαβ σστ −= sign

3
2 ms y , (A.9) 

 ( ) ( )[ ]αθβθβαθ σσσστ −+−−= signsign
3
2 mms y  ,  θαβ ττ my= , (A.10) 

 
or, if the sign functions during press forging are taken into account, i.e., ( ) 1sign =− αθ σσ , ( ) 1sign −=− θβ σσ , 
we may write 
 

 βα τ ms y3
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Similar relations are obtained for the deviatoric strain rates 
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Since 21 2
θβα mmm −== , we obtain the following dependencies of the Lode angle σφ  (or e&φ ) on the pa-

rameter θm  (cf., Figure A.1) 
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The values 23=θm  and 0=σφ  correspond to uniaxial compression at the symmetry axis of the blank, while 
the values 1=θm  and 6π=σφ  correspond to pure shear ( )( )2312 σσσ +=  in the outflow zone of the material 
into the radial clearance. 
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Figure A.1.  Diagrams σφ  vs. θm  and ( )σφ3cos  vs. θm . 
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