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On the Contributions of Pavel Andreevich Zhilin to Mechanics

H. Altenbach, V. A. Eremeyev, D. A. Indeitsev, E. A. Ivanova,A. M. Krivtsov

This paper is dedicated to the memory of Pavel A. Zhilin (1942–2005), the great Russian scientist in the field of
Rational Mechanics. He was educated and worked at the State Polytechnical University in St. Petersburg (Russian
Federation), formerly known as the Polytechnical Institute. As Head of the Department of Theoretical Mechanics
he supervised sixteen PhD theses (Candidate of Science theses) and six higher doctorates (Habilitations or Doctor
of Science theses), some of them are shown on Fig. 2. His scientific interests covered various branches of Me-
chanics and Theoretical Physics. In his research he strivedto pave a way based on Rational Mechanics to areas
which are traditionally not associated with Mechanics, such as Physics of Microstructures and Electrodynamics.
The paper gives a brief summary of the scientific biography and the main results obtained by Pavel A. Zhilin1.

1 Theory of Shells

Pavel A. Zhilin’s early publications, his Candidate of Science and Doctor of
Science theses are devoted to the development of consistenttheory of shells.
When he started his research in this area, no general theory ofshells was avail-
able. For each class of shell-type structures there were particular (and mostly
independent) theories: the theory of thin single-layer shells, the theory of struc-
tural anisotropic shells, the theory of ribbed shells, the theory of thin multi-
layered shells, the theory of perforated shells, the theoryof cellular shells,
the theory of thick single-layer shells among others, see, e.g., Naghdi (1972);
Grigolyuk and Kogan (1972); Grigolyuk and Seleznev (1973).Within each
theory there are differences in basic assumptions as well asin resulting equa-
tions. The main motivations behind these theories were new applications that
could not be described within the existing theories. Between 1975 and 1984
Zhilin formulated the general non-linear theory of thermoelastic simple shells.
Some parts of this theory differ fundamentally from the other approaches in the
shell theory discussed, for example, in Reissner (1985).

Figure 1: Pavel Andreevich
Zhilin (1942-2005)

Figure 2: Pavel Zhilin together with his wife Nina, his scholars Anton Krivtsov, Alexandr Sergeyev, his colleague
Vladimir Pal’mov (from left to right second line) and his scholars Elena Ivanova, Ekaterina Pavlovskaia, Sergei
Gavrilov and Elena Grekova (from left to right first line) (Zelenogorsk, 1996)

1Some additional information can be found in Altenbach et al. (2007).
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The basic definition of Zhilin’s theory is:

A simple shell is a two-dimensional continuum in which the interaction between neighboring parts is
due to forces and moments.

In addition, two assumptions are formulated:

The representation of the shell (for example, homogeneous or inhomogeneous in thickness direction)
is given by a deformable surface.

This assumption results in the concept of effective properties allowing to present various classes of shells by similar
equations, only the effective properties (e.g. stiffness)characterize each shell under consideration.

Each material point of the surface is an infinitesimal body with 6 independent degrees of freedom (3
translations and 3 rotations).

This assumption allows for the formulation of the shell theory with independent rotations instead of rotations which
are derivatives of the displacements. The theory established by Zhilin can be easily generalized for any shell-like
structure and can be applied to other problems in continuum mechanics. The basics and some discussions are
given in Zhilin (2006a). Several applications are presented in this journal in the early 80th, see Altenbach and
Shilin (1982).

Let us discuss briefly the basic features of Zhilin’s theory of simple shells. The reference configuration (unde-
formed state) is defined by{rrr(q1, q2);dddk(q1, q2)}, whererrr(q1, q2) is the position vector,dddk(q1, q2) are orthonor-
mal vectors, so-called directors. The actual configuration(deformed state) is given by{RRR(q1, q2, t);DDDk(q1, q2, t)},
DDDk ···DDDm = δkm. Thus, the motion of the directed surface is defined byRRR(q, t) andPPP (q, t) ≡ DDDk(q, t) ⊗ dddk(q),
wherePPP (q, t) ≡ PPP (q1, q2, t) is the rotation tensor,DetPPP = +1. Finally, one obtains the linear and the angular
velocitiesvvv(q, t),ωωω(q, t)

vvv = ṘRR, ṖPP = ωωω ×PPP , PPP (q1, q2, 0) = PPP 0, ḟ ≡
df

dt

The balances of linear momentum and moment of momentum yieldthe first and the second Euler equation of
motion

∇∇∇ ··· TTT + ρfff = ρ(vvv + ΘΘΘT
1 ···ωωω)···, ∇∇∇ ···MMM + TTT× + ρlll = ρ(ΘΘΘ1 ··· vvv + ΘΘΘ2 ·ωωω)··· + ρvvv ×ΘΘΘT

1 ···ωωω (1)

with TTT = RRRα ⊗ TTTα the force tensor of Cauchy type,MMM = RRRα ⊗MMMα the moment tensor of Cauchy type,fff , lll
the mass density of the external forces and moments,ρ, ρΘΘΘ1, ρΘΘΘ2 the density, the first and the second tensor of
inertia,∇∇∇ ≡ RRRα(q1, q2, t) ∂

∂qα
the Nabla operator, andTTT× ≡ RRRα × TTTα for any second rank tensorTTT .

In the case of elastic shells, the constitutive equations can be derived from the surface density of the stored energy

W = W (UUU,KKK), (2)

whereUUU andKKK are Lagrangian strain measures

UUU = FFF ·PPP , KKK = −
1

2
rrrα ⊗

[

PPPT ·
∂PPP

∂qα

]

×

, (3)

andFFF = ∇∇∇RRR.

The tensor of forces and the tensor of moments can be calculated by the derivatives ofW

TTT = J−1FFFT ·
∂W

∂UUU
·PTPTPT , TTT = J−1FFFT ·

∂W

∂KKK
·PTPTPT , (4)
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where

J =

√

1

2

[

tr2 (FFF ·FFFT ) − tr (FFF ·FFFT )
2
]

Similar variants within the direct approach have been established, for example, in Eremeyev (2005); Eremeyev and
Zubov (2007, 2008); Shkutin (1985); Zubov (1997, 2001).

Let us note that Eqs (1) are formulated directly for the two-dimensional continuum, but they are in a good agree-
ment with the equations of the general nonlinear theory of shells, which can be deduced from the three-dimensional
theory and which are presented, for example, in Libai and Simmonds (1983, 1998); Chróścielewski et al. (2004);
Eremeyev and Pietraszkiewicz (2004, 2006). The deformation measures and the constitutive equations in these
theories are practically the same to (3), (2), (4).

The direct approach in the theory of shells has been suggested first by Ericksen and Truesdell (1958). The shell
is modeled as a deformable surface with a number of directorsDDDk(q1, q2), k = 1 . . . p. In this variant it was
not assumed that the directors are orthogonal and normalized. The theory was called Cosserat shell or Cosserat
surface theory. After this pioneering work various theories with one deformable director have been developed, see,
for example, Green et al. (1965); Green and Naghdi (1968, 1974); Naghdi (1972) and the monographs by Rubin
(2000) and Antman (2005). In addition to the traditional approaches, the thickness changes are taken into account.
However, the main problem of all these approaches is that theinteraction between different parts of the shell are not
presented by forces and moments only. This means that all these theories contains higher order stress resultants.

In Zhilin (1982b); Altenbach and Zhilin (1988) the general theory with six degrees of freedom is transformed to
a theory of shells with five degrees of freedom (similar to theReissner’s theory) introducing some constraints for
the deformations. The main constraint is, that one of the directors, for exampleDDD3 is the normal to the surface:
DDD3 = NNN . It must be underlined that the directorddd3 can be assumed to be identical to the normal in the reference
configurationnnn. In this case rotations aboutDDD3 have no influence on the strain energy of the shell. It is physically
clear that such type of deformation is very small in comparison to the bending or tension deformations, especially
in the case of smooth surfaces. This invariance property results in a less number of independent components of the
strain measures (3). In this case the strain energy and the set of strain tensors can be given as it follows

W = W (EEE ,KKK, γγγ), EEE =
1

2

(

UUU ·UUUT − aaa
)

, KKK =KKK ·UUUT −
1

2
kkk ·UUU ·UUUT −

1

2
kkk · aaa, γγγ = UUU ·nnn,

whereaaa = EEE −nnn⊗nnn is the two-dimensional unit tensor,

kkk =
1

2
rrrα ⊗

(

dddk ×
∂dddk

∂qα

)

.

The simplest example of the strain energy is the following quadratic form

W =
1

2
EEE · ·AAA · ·EEE + EEE · ·BBB · ·KKK +

1

2
KKK · ·CCC · ·KKK + EEE · ·ΓΓΓ1 · γγγ +KKK · ·ΓΓΓ2 · γγγ +

1

2
γγγ · ·ΓΓΓ · γγγ.

HereAAA, BBB, CCC are fourth rank tensors,ΓΓΓ1, ΓΓΓ2 are third rank tensors, whileΓΓΓ is a second rank tensors,·· is the
double contraction product. The tensorsAAA,BBB,CCC,ΓΓΓ1,ΓΓΓ2 andΓΓΓ reflect the individual properties of the shell. They
are named effective stiffness properties of the shell. Notethat general expressions of the strain energy are discussed
in Zhilin (2006a).

This variant of the theory is discussed in Altenbach and Zhilin (2004); Altenbach (1987); Altenbach et al. (2005);
Zhilin (2006a); Altenbach (2000a,b); Altenbach and Eremeyev (2008a,b). In Grekova and Zhilin (2000, 2001)
the method presented in Zhilin (1982b); Altenbach and Zhilin (1988) is applied to the three-dimensional case. In
particular, the identification procedure of the effective stiffness tensors for various anisotropic shells is developed
in Zhilin (2006a); Altenbach (2000a,b).

1.1 Discretely Stiffened Thermoelastic Shells

The general theory of discretely stiffened thermoelastic shells has been developed between 1965 and 1970 (Zhilin,
1968, 1970) and applied to the following practical problemsincluding the analysis of the high-pressure water
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turbine spiral of the Nurek hydropower station (Zhilin and Mikheev, 1968) and of the vacuum chamber of the
thermonuclear Tokamak-20 panel (Zhilin et al., 1982). In 1966 Zhilin has proposed a modification of the Steklov2-
Fubini3 method for differential equations, the coefficients of which have singularities ofδ-function type. This
method allows forfinding the solution in an explicit form fora problem of axisymmetric deformations of a dis-
cretely stiffened cylindrical shell, see Zhilin (1966).

1.2 New Formulation of the Second Law of Thermodynamics Applied to Deformable Surfaces

A new formulation of the second law of thermodynamics has been proposed in 1973, see, for example, Zhilin
(1975a,b, 1976), by means of the combination of two Clausius4-Duhem5-Truesdell6 type inequalities, e.g. Trues-
dell (1984); Zhilin (2006a). This formulation is based on the assumption of a deformable oriented surface, each
side of which (top and bottom sides) has its own temperature and entropy. This means that the formulation contains
two entropiesη±, two internal temperature fieldsT±, and two external temperature fieldsT ext

± . Both inequalities
can be written as

d

dt

x

σ

ρη+dσ ≥
x

σ

ρ

(

q+
T ext

+

+
Q+

T−
+
qσ
+

T+

)

dσ −

∫

ω

qν
+

T+

ds,

d

dt

x

σ

ρη−dσ ≥
x

σ

ρ

(

q−
T ext
−

+
Q−

T+

+
qσ
−

T−

)

dσ −

∫

ω

qν
−

T−
ds

(5)

Hereσ – denotes an arbitrary part of the shell,ω = ∂σ is its boundary ,qν the hear flux through the boundary,
qσ
± the heat flux through the surface±, Q+ = −Q− denotes the volume heat exchange between both sides of the

surface.

It should be noted that the formulation of the thermodynamics for two-dimensional systems like shells is con-
nected with several difficulties. For example, in the case ofa simple material any material point is linked to one
temperature. For deformable surfaces this is not enough. The problems are related to the presentation of a three-
dimensional temperature field by two-dimensional field equations. In contrast to Zhilin (1975a,b, 1976), other
models with one temperature, see Murdoch (1976a,b) among others, or with one temperature field and an addi-
tional scalar field of the temperature gradient with respectto the thickness, Green and M. (1970, 1979); Simmonds
(1984, 2005) are suggested. In Makowski and Pietraszkiewicz (2002) three temperature fields are suggested, two
temperature fields in Eremeyev and Zubov (2008). The use of two temperature fields is the more natural way in
comparison with the other approaches since the boundary conditions and the constitutive equations can be pre-
sented by very simple expressions. This approach is similarto the representation of a two-component continuum
with the following properties: material points of both components can be located in the same position, but the
temperatures must be different, see, e.g., Bowen (1967); Atkin and Crain (1976a,b).

Apart from the theory of shells, this elaboration of the second law of thermodynamics is also useful for the Solid
State Physics when studying the influence of skin effects on the properties of solids, as well as for the description
of interfaces between different phases of a solid, see Zhilin (2007). A similar approach has been applied to the
modeling of fibre suspensions, see Altenbach et al. (2003b).

1.3 Generalisation of the Classical Theory of Symmetry of Tensors

In 1977 an important extension has been made to the tensor algebra, namely the concept of oriented tensors,
i.e. tensor objects which depend on the orientation in both the three-dimensional space and in its subspaces. The
theory of symmetry formulated in Zhilin (1978, 1982b) is presented for oriented tensors. It generalizes the classical
theory of symmetry, which can be applied to Euclidean tensors only. In Fig. 3 the definition of an axial vector (spin
vector) is visualized. Such a type of mathematical objects depends on the orientation of the reference system. On
the other hand, the spin vectors are necessary, for example,for the description of rotations or moments in statics or
rigid body dynamics. In addition, axial tensors play an important role in the theory of shells or rods, if the direct
approach is applied.

2Vladimir Andreevich Steklov (1864-1926); Soviet/Russian mathematician, mechanician and physicist
3Guido Fubini (1879-1943); Italian mathematician
4Rudolf Julius Emanuel Clausius (1822-1888); German physicist
5Pierre Maurice Marie Duhem (1861-1916); French physicist and philosopher of science
6Clifford Ambrose Truesdell III (1919-2000); American mathematician
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Figure 3: Oriented system of reference: a) Objectâaa is named spin vector, b) Straight arrow is the axial vectoraaa
corresponding tôaaa in the right oriented system of reference, b) Straight arrowis the axial vectoraaa corresponding
to âaa in the left oriented system of reference,

Figures 4 and 5 show two types of vectors - the spin vector and the polar vector. The first one represents, for exam-
ple, a moment, the second one a force. The mirror symmetry canbe mathematically described by the orthogonal
tensorQQQ = EEE − 2n⊗ nn⊗ nn⊗ n, whereEEE is the unit tensor andnnn is the normal unit vector with respect to the mirror
plane. As shown in Fig. 4, only for the polar vectorQQQ belongs to the group of symmetry. The opposite situation
it obtained, if the vector is in the same direction like the normalnnn (Fig. 5). It is shown that the application of the
classical theory, i.e. objects dependent on the orientation in the three-dimensional space, sometimes leads to wrong
conclusions, see Grekova and Zhilin (2001); Kolpakov and Zhilin (2002); Zhilin (2006e). The proposed theory
is necessary to obtain the constitutive equations for shells and other multi-polar media, as well as when studying
ionic crystals.

mmmmmm

nnnnnn

pppppp

Spin vector Polar vector

QQQ = EEE − 2n⊗ nn⊗ nn⊗ n
is not an element of symmetry

QQQ = EEE − 2n⊗ nn⊗ nn⊗ n
is an element of symmetry

Figure 4: Spin and polar vectors (I)

mmmmmm

nnnnnn
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Spin vector Polar vector

QQQ = EEE − 2n⊗ nn⊗ nn⊗ n
is an element of symmetry

QQQ = EEE − 2n⊗ nn⊗ nn⊗ n
is not an element of symmetry

Figure 5: Spin and polar vectors (II)

The transformation rules for axial and polar tensors and vectors are different with respect to orthogonal transfor-
mations. This fact is very helpful in the formulation of local symmetry groups of the constitutive equations. This
has been pointed out in Zhilin (1982b); Altenbach and Zhilin(1988) for shells. Another example is the so-called
micropolar theory of shells. The wryness tensor in the three-dimensional micropolar continuum and the bending
tensor (curvature change tensor) in the shell theory are axial tensors or so-called pseudo-tensors. They change the
sign under the mirror reflection transformation of the space. This fact is not taken into account in Kafadar and
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Eringen (1976) considering a three-dimensional micropolar continuum and in Murdoch and Cohen (1979, 1981)
where a local symmetry group for Cosserat shell theory is deduced. In Eremeyev and Pietraszkiewicz (2006);
Eremeyev and Zubov (2008) the stretch tensor is suggested tobe a polar tensor while the bending tensor is an axial
one.

The theory of the symmetry for tensor functions is developed. A new definition for tensor invariants was given in
Zhilin (2003b, 2005); Altenbach et al. (2006). This definition coincides with the traditional one only for Euclidean
tensors. It is shown that any invariant can be obtained as a solution of a differential equation of first order. The
number of independent solutions of this equation determines the minimum number of invariants that are necessary
to fix the system of tensors as a solid unit.

1.4 General Nonlinear Theory of Thermoelastic Simple Shells

The general non-linear theory of thermoelastic simple shells is formulated and established between 1975 and 1984.
The way of its formulation differs fundamentally from all known shell theories. The theory can be easily extended
to any shell-like structure and other objects of continuum mechanics (for example, rods). Its key feature is that
it allows to study shell-like objects of a complex internal structure, when traditional methods are not applicable,
see, for example, Zhilin (1972, 1975a,b, 1976, 1978); Altenbach and Shilin (1982); Zhilin (1982b); Altenbach and
Zhilin (1988). For shells of constant thickness made of isotropic material, the new method gives results that are in
accordance with those of the classical formulations and perfectly coincide with the results of the three-dimensional
theory of elasticity for an arbitrary external loading including point loads, see Zhilin and Skvorcov (1983); Zhilin
and Il’icheva (1980, 1984).

1.5 Paradox in the Problem of Bending Deflection of a CircularPlate

The exact analytical solution is given for the problem of finite displacements of a circular plate, see Zhilin (1982a,
1984). The solution explains a well-known paradox that is described in handbooks and assumed that the deflection
of a membrane, i.e. a plate with zero bending stiffness, is less than the deflection calculated with non-zero bending
stiffness. The problem considers a circular plate with fixededge and loaded by transversal pressure. In this case,
for some pressure values the linear theory is no more applicable since it overestimates the deflection approximately
25 times. The theory published in Zhilin (1982a, 1984) has been used in calculations of an electrodynamic gate,
see Venatovsky et al. (1987).

1.6 Final Remarks

The surveys of the theory of simple shells published by Altenbach and Zhilin (1988); Zhilin (1992b, 1995c) demon-
strate the capacity of the new theory in comparison with the traditional ones. The main advantages are:

• a clear definition of the simple shell,

• an introduction of six independent degrees of freedom in each material point of the surface,

• an application of the thinness-hypothesis as late as possible,

• a consequent application of the tensor analysis introducing axial and polar mathematical objects, which can
be oriented,

• an application of the theory of symmetry and the dimension analysis to establish the constitutive equations,

• an introduction of the concept of effective properties.

The correctness of Zhilin’s theory is verified by independent research results including Kienzler (2002); Tovstik
and Tovstik (2007) and others. The extension to the viscoelastic case is discussed, for example, in Altenbach
(1987).
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2 Theory of Rods

The dynamic theory of thin spatially curvilinear and naturally twisted rods is developed between 1987 and 2005.
By analogy to the theory of shells, the rod in Zhilin’s theoryis modeled by a deformable line consisting of material
points with 6 independent degrees of freedom. The various classes of rods are described with the help of the
effective properties concept. The proposed theory includes all known variants of the theories of rods, but it has a
wider domain of application. A significant part of the publications in this field is devoted to the analysis of various
classical problems, including those the solutions of whichhave paradoxes. The main results of the theory of rods
and its applications are presented in the most complete way in Zhilin (2006b).

Like in the case of shells, Zhilin has presented the kinematics of the rod by three orthonormal directorsDDDi,
i = 1, 2, 3. This approach is firstly discussed in Ericksen and Truesdell (1958); Green et al. (1973); Naghdi and
Rubin (1984); Cohen and Sun (1992), see Rubin (2000) where the concept of the set of deformable directors is
applied. In contrast to other publications like Ericksen and Truesdell (1958); Green et al. (1973); Naghdi and
Rubin (1984); Cohen and Sun (1992); Rubin (2000), Zhilin’s approach is based again only on forces and moments.

2.1 General Nonlinear Theory of Rods and its Applications tothe Solution of Particular Problems

Based on the methods developed for the theory of shells, the general non-linear theory of flexible rods is formulated
by Goloskokov and Zhilin (1987), where all the basic cases ofdeformation (bending, torsion, tension, transversal
shear) are taken into account. The introduction of the rotation (turn) tensor allows to write down the equations in
a compact form, convenient for the mathematical analysis. In contradiction to previous theories, the proposed one
describes the experimentally discovered Poynting7 effect (the contraction of a rod under torsion, Backhaus (1983);
Billington (1986)), which is also discussed by Zhilin’s supervisor Prof. Lurie8 (Fig. 6). The developed theory is

Figure 6: Pavel Zhilin together with his supervisor Anatolii Lurie and his colleague Vladimir Pal’mov (from left
to right, House of Scientists of the Leningrad Polytechnical Institute, 1971)

applied to the analysis of particular problems, see Zhilin and Tovstik (1995); Zhilin et al. (1997). A new method is
suggested in Zhilin (2006b, 2007, 2006c) for the formulation of the elastic stiffness tensors. In these publications a
new theory of symmetry of tensors, determined in the space with two independent orientations, is essentially used.
All stiffness constants are identified for plane curvilinear rods.

2.2 Euler’s Elastica

The famous Euler’s9 elastica problem is considered in Zhilin et al. (1997); Zhilin (1997b, 2006b, 2007, 2006c),
where it was shown that apart from the known static equilibrium configurations there exist also dynamic equilib-
rium configurations. In the latter case, the form of the elastic curve remains the same, and the bent rod rotates
about the axis orthogonal to the rod axis. The energy of deformation does not change in this motion. Note that this
is not the rigid motion of a rod, since the clamped end of the rod remains fixed. This means that the curvilinear

7John Henry Poynting (1852-1914); British physicist
8Anatolii Isaakovich Lurie (1901-1980); Soviet mechanician
9Leonhard Euler (1707-1783); Swiss mathematician who worked in Berlin and St. Petersburg
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Figure 7: Pavel Zhilin together with Dmitry Indeicev, Holm Altenbach and Alexandr Sergeyev (from left to right,
XXVIIth Summer School, Repino, 2000)

equilibrium configuration in the Euler’s elastica is unstable, contrary to the common point of view. This conclusion
however has not been confirmed by experiments yet.

2.3 Nikolai’s Paradox

Nikolai’s10 paradox is analyzed in Zhilin and Sergeyev (1993a,b, 1994);Zhilin et al. (1997); Zhilin (2006b,c,
2007). The paradox appears when a rod is torsioned by means ofa torque applied to its end. The experiment
shows that the torsion torque stabilizes the rod, which contradicts the theory. It was shown in Zhilin (2006c), that
one may avoid the mentioned paradox if a special constitutive equation for the torque is chosen. The torque has to
depend in a special way on the rotational velocity. This dependence is not related to the existence (or absence) of
the internal friction in the rod.

2.4 Development of Mathematical Methods

An approach, which allows to analyze the stability of motionin the presence of spinor motions described by means
of rotation (turn) tensor is suggested in Zhilin (1995d). The problem is that the rotation tensors are not elements
of a linear space (unlike the displacement vectors). Thus the equations in variations have to be written down as a
system of equations, the right parts of which depend nonlinearly on the previous variations. However, the obtained
system of equations allows for the exact separation of variables, i.e. the separation from the time variable.

3 Dynamics of Rigid Bodies

The advantage of Zhilin’s representation of the dynamics ofrigid bodies is that it is consequently formulated
in terms of the direct tensor calculus. A new mathematical technique is developed for the description of spinor
motions. This technique is based on the use of the rotation (turn) tensor and related concepts. The new results in
the dynamics of rigid bodies are mostly presented in Zhilin (2001b,c, 2003c).

3.1 Development of Mathematical Methods

The general investigation of the rotation (turn) tensor is given in Zhilin (1992a, 2001a, 2003c), where a new proof
of Euler’s kinematic equation was obtained. The old (and correct) proof of the kinematic equation can be found in
the original publications of Euler and in some old Theoretical Mechanics textbooks, but it is very tedious. In the
well-known book of Levi-Civita11 and Amaldi12 (see Levi-Civita and Amaldi (1926, 1927)) a new compact proof
is suggested, but it is incorrect. Later this proof is widelydistributed and repeated in almost all modern courses on
Theoretical Mechanics with exception of the book by Suslov (1946). In Zhilin (1992a), the proof of a new theorem
on the composition of angular velocities, different from those cited in classical textbooks, is proposed. The new
equation, see Zhilin (1992a, 1997c, 2000, 2001c, 2003c), relates the left angular velocity to the derivative of the
rotation vector. This equation is necessary to introduce the concept of potential torque. Apart from that it is very

10Evgenij Leopoldovich Nikolai (1880-1950); Russian/Soviet mechanician
11Tullio Levi-Civita (1873-1941); Italian mathematician
12Ugo Amaldi (1875-1957); Italian mathematician
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Figure 8: Introduction of Eulerian angles with the help of the turn tensor

useful when solving numerically problems of dynamics of rigid bodies since there is no need to introduce either
systems of angles, or systems of parameters of the Klein13-Hamilton14 type.

A new theorem on the representation of the rotation (turn) tensor composing turns about arbitrary fixed axes is
suggested in Zhilin (1995a, 1996b, 1998, 2001c, 2003c). Allpreviously known representations of the rotation
(turn) tensors, or, more precisely, of their matrix analogues, via Eulerian angles (Fig. 8), Tait15-Bryan16 angles,
plane or ship angles, etc. (see, for example, Lurie (2002); Brommundt (2006)), are particular cases of this general
theorem, the role of which, however, is not only a simple generalization of these cases. Figure 8 is related to the
following theorem suggested by Zhilin:

Any arbitrary rotationQQQ(θ) can be introduced as a composition of rotations about the arbitrary se-
lected and fixed at time axesmmm andnnn

QQQ(θ) =QQQ(ψ(t)mmm) ···QQQ(ϑ(t)eee) ···QQQ(ϕ(t)nnn), eee =
mmm×nnn

|mmm×nnn|
,

where the anglesψ(t), ϑ(t), ϕ(t) are the angles of precession, nutation and eigen-rotation.If mmm =
nnn, the anglesψ(t), ϑ(t), ϕ(t) are the Eulerian angles, and the vectoreee is selected arbitrary, but
orthogonal tonnn.

The most important fact is that one can introduce any traditional system of angles. However, one describes the
(unknown) rotation of a body in terms of turns about these axes. If this choice is made in an inefficient way or if
it is difficult to make an appropriate choice, the chances to integrate or even to analyze qualitatively the resulting
system of equations are very poor. Moreover, even in those cases when it is possible to integrate the system, the
obtained solution is often not of practical use, since it contains poles or indeterminacy of the type zero divided by
zero. Consequently, the numerical solution, even after thefirst pole or indeterminacy becomes very distorted. The
advantage and the purpose of the theorem under discussion isthe fact that it allows to consider the axes of rotation
as principal variables and to determine them in the process of obtaining solution. As a result, one can obtain the
simplest (among all possible forms) solutions.

In Zhilin (1997c, 1998, 2000) an approach is proposed, whichallows to analyze the stability of motion in the
presence of spinor rotations described by the rotation (turn) tensor. The method of perturbations for the group of
proper orthogonal tensors was developed.

13Felix Christian Klein (1849-1925); German mathematician
14Sir William Rowan Hamilton (1805-1865); Irish mathematician
15Peter Guthrie Tait (1831-1901); Scottish physicist and mathematician
16George Hartley Bryan (1864-1928); British mathematician andexpert in aeronautics
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3.2 New Solutions of Classical Problems

A new solution is obtained in Zhilin (1995a, 1996b) for the classical problem of the free rotation of a rigid body
about a fixed center of mass (Euler’s case). It is shown that for each tensor of inertia, the entire domain of
initial values is divided into two sub-domains. It is known that there is no such a system of parameters, which
would allow to cover the entire domain of initial values by a unique map without poles. This fact is confirmed
in Zhilin (1996b), where in each sub-domain and at the boundary between them the body rotates about different
axes, depending only on the initial values. Stable rotations of the body correspond to the interior points of the
sub-domains mentioned above, and unstable rotations to theboundary points. When constructing the solution, the
theorem on the representation of the rotation (turn) tensoras described above plays an essential role. Finally, all
characteristics to be found can be expressed via one function, determined by a rapidly converging series of a simple
form. For this reason, no problem appears in the simulations. The propriety of the determination of the axes, about
which the body rotates, manifests in the fact that the velocities of the precession and the proper rotation have a
constant sign. Note that in all previously known solutions only the sign of the precession velocity is constant, i.e.
in these solutions only one axis of turns is correctly chosen. It follows from the solution, see Zhilin (1996b), that
stable solutions, however, may be unstable in practice, if acertain parameter is small enough. In this case the body
may jump from one stable rotational regime to another one under the action of arbitrarily small and short loads
(like, e.g., a percussion with a small meteorite).

A new solution for the classical problem of the rotation of a rigid body with a transversely-isotropic tensor of
inertia is obtained by Zhilin (1996d, 2006d) for a homogeneous gravity field (Lagrange’s17 case). The solution of
this problem from the formal mathematical point of view has been known for a long time, and one can find it in
many monographs and textbooks. However, it is difficult to make a clear physical interpretation of this solution,
and some simple types of motion are described by it in an unjustifiably sophisticated way. In the case of a rapidly
rotating gyroscope an approximate solution in elementary functions is obtained. It is shown by Zhilin (2006d) that
the expression for the precession velocity, found by using the elementary theory of gyroscopes, gives an error in
the principal term.

In the frame of the dynamics of rigid bodies, the explanationof the fact that the velocity of the rotation of the earth
is not constant and the axis of the earth undergoes weak oscillations is given in Zhilin (2003c). Usually this fact is
explained by the argument that one cannot consider the earthas an absolutely rigid body. However, if the direction
of the dynamic spin differs slightly from the direction of the earth’s axis, the earth’s axis will make a precession
about the vector of the dynamic spin, and, consequently, theangle between the axis of the earth and the plane of
ecliptic will slightly change. In this case the alternationof day and night on the earth will not be determined by the
proper rotation of the earth about its axis, but by the precession of the axis.

3.3 New Models in the Frame of the Dynamics of Rigid Bodies

In the Newtonian18 dynamics an oscillator is a basic element. In the Eulerian mechanics, the analogous role plays a
rigid body on an elastic foundation, and this system can be named arigid body oscillator(Fig. 9). The latter one is

kkk

elastic
foundation

Figure 9: Rigid body on elastic foundation (kkk is the axis of rotation)

necessary when constructing the dynamics of multi-polar media, but in its general case it is neither investigated not

17Joseph-Louis Lagrange (1736-1813); Italian-French mathematician and astronomer (born as Giuseppe Lodovici/Luigi Lagrangia)
18Sir Isaac Newton (1643-1727); English physicist, mathematician, astronomer, natural philosopher, and alchemist
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Figure 10: Gyrostat on elastic foundation (kkk is the axis of rotation)

even described in the literature. Of course, its particularcases are considered, for instance, in the analysis of the
nuclear magnetic resonance, and also in many applied investigations, but only for infinitesimal angles of rotation.
A new statement of the problem of the dynamics of a rigid body for a non-linear elastic foundation is proposed by
Zhilin (1997c, 1998, 2000). The general definition of the potential of torque is introduced and some examples of
problem solutions are given.

For the first time, the mathematical statement for the problem of a two-rotor gyrostat on an elastic foundation
is given in Zhilin (1997c); Zhilin and Sorokin (1998); Zhilin (1999). The elastic foundation is described by
introducing the strain energy as a scalar function of the rotation vector. Finally, the problem is reduced to the
integration of a system of non-linear differential equations having a simple structure but a complex nonlinearity.
The difference of these equations from those traditionallyused in the dynamics of rigid bodies is that for their
formulation it is not necessary to introduce any artificial parameters like the Eulerian angles or the Cayley19-
Hamilton parameters. A new method of integration of the basic equations is described in Zhilin’s papers. The
solutions are obtained in quadratures for the isotropic non-linear elastic foundation.

The model of a rigid body is generalized in Zhilin (2003c) forthe case of a body not consisting of mass points,
but of point-bodies of general kind. There is considered a model of a quasi-rigid body, consisting of the rotating
particles with distances between them remaining constant during the motion.

3.4 Dynamics of a Rigid Body on an Inertial Elastic Foundation

The problem of the construction of high-speed centrifuges with a rotational speed 120 000–200 000 rotations per
minute required the development of more accurate mechanical models. An example of such model is shown on
Fig. 10, where the motion is presented as a rigid body on elastic foundation. The parameters of the rotor and of
the elastic foundation do not allow to consider the elastic foundation as inertialess. There a method is proposed in
Zhilin and Tovstik (1995); Ivanova and Zhilin (2002), allowing to reduce the problem to the solution of a relatively
simple integro-differential equation.

3.5 Coulomb Law of Friction and Paradoxes of Painlev́e

The application of the Coulomb20 law has its own specifics related to the non-uniqueness of thesolution for the
dynamic problems. It is shown that the Painlevé21 paradoxes (see, e.g. Le (2003)) appear because of a priori
assumptions about the character of motion and the characterof the forces needed to induce this motion. The
correct statement of the problem requires either to determine the forces by the given motion or to determine the
motion by the given forces, see, e.g., Zhilin and Zhilina (1993); Wiercigroch and Zhilin (2000). The improved
analysis is based on the enlarged model shown in Fig. 11.

19Arthur Cayley (1821-1895); British mathematician
20Charles Augustin de Coulomb (1736-1806); French physicist
21Paul Painlev́e (1863-1933); French mathematician and politician, served twice as prime minister of the Third Republic
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Figure 11: Enlarged model with two degrees of freedom (c - spring stiffness,M - mass of the body,m - mass of
the framework,y, x - coordinates)

4 Fundamental Laws of Mechanics

The formulations of the basic principles and laws of Eulerian mechanics are suggested in Zhilin (1994a, 1995b,
2001b, 2002a, 2003c) with an explicit introduction of spinor motions. All the laws are formulated for the ”open
bodies”, i.e. bodies of a variable content, which appears tobe extremely important when describing the interaction
of macrobodies with electromagnetic fields. Apart from that, in these formulations the concept of a body itself
is changed. The body may contain not only particles, but alsovarious fields. Namely, the latter ones makes it
necessary to consider bodies of variable content. The importance of spinor motions, in particular, is determined
by the fact that the true magnetism can be defined only via the spinor motions, contrary to the induced magnetism,
caused by Foucault22 (eddy) currents, i.e. by translational motions.

A new basic object, the point-body, is introduced into consideration in Zhilin (1994a, 1995b, 2001b, 2002a, 2003c),
where it is assumed that the point-body occupies zero volume, and its motion is described completely by means
of its position-vector and its rotation (turn) tensor. It ispostulated that the kinetic energy of a point-body has a
quadratic form of its translational and angular velocities, and its momentum and proper kinetic moment (dynamic
spin) are defined as partial derivatives of the kinetic energy with respect to the vector of translational velocity and
the vector of angular velocity, respectively. The model of apoint-body, see Zhilin (2003c), is described by three
parameters: mass, moment of inertia, and an additional parameterq, conventionally namedcharge, which has
never appeared in particles used in the classical mechanics. It is shown that the motion of this particle in an empty
space has a spiral trajectory, and for some initial conditions a circular trajectory. It is thus shown that in inertial
reference frames, the motion of an isolated particle (point-body) does not necessarily follow a linear path.

The concept of actions is developed by Zhilin (1994a, 1995b,2001b, 2002a, 2003c) based on an axiom which
supplementsGalileo’s23 Principle of Inertia, generalizing it to the bodies of general kind. This axiom states that
in an inertial reference system an isolated closed body moves in such a way that its momentum and momentum
of momentum remain invariant. Further, both the forces and the torques are introduced into consideration, and the
force acting upon a body is defined as the reason for the changeof the momentum of this body, and the torque,
acting upon a body as a reason of the change of the angular momentum. The set of vectors - the force vector and
the moment vector - are calledaction.

The concept of the internal energy of a body, consisting of point-bodies of general kind, see Zhilin (1994a, 1995b,
2001b, 2002a, 2003c), is developed; the axioms for the internal energy to be satisfied are formulated. The princi-
pally new idea is to distinguish the additivity of mass from the additivity of bodies. The kinetic energy of a body
is additive by its mass. At the same time, the internal energyof a body is additive to sub-bodies of which the
body under consideration consists of, but, generally speaking, it is not an additive function of mass. In Cayley’s
problem, the paradox, related to the loss of energy, is resolved in Zhilin (2003c).

Basic concepts of thermodynamics (internal energy, temperature, and entropy) are introduced in Zhilin (2002a,
2003c) on elementary examples of mechanics of discrete systems. The definition of both the temperature concepts
and the entropy are given by means of purely mechanical arguments, based on the use of a special mathematical
formulation of the energy balance.

22Jean Bernard Ĺeon Foucault (1819-1868); French physicist
23Galileo Galilei (1564-1642); Italian physicist, astronomer, astrologer, and philosopher
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5 Other Problems

Zhilin was involved in discussions not only in the theories of rods, plates and shells and rigid body dynamics. He
also considered the general problems of continuum mechanics and electrodynamics.

5.1 Electrodynamics

Zhilin investigated the invariance properties of the Maxwell24 equations in Zhilin (1993, 1994b), while some
modifications of these equations were proposed in Zhilin (1996c,a, 1997a). In his investigations he used some
mechanical analogies between solutions of the equations ofthe rigid body dynamics and the Maxwell equations.
It is shown in Zhilin (2006e), that the mathematical description of an elastic continuum of two-spin particles of a
special type is reduced to the classical Maxwell equations.The mechanical analogy proposed above allows to state
unambiguously that the vector of the electric field is axial,and the vector of the magnetic field is polar.

At the end of the XIXth century Kelvin25 described a structure of an ether responsible, in his opinion, for the true
(non-induced) magnetism, consisting of rotating particles. A specific kind of Kelvin medium (ether) is considered:
the particles of this medium cannot perform translational motion, but have spinor motions. Kelvin could not write
the mathematical equations of such motion, because the formulation of the rotation (turn) tensor, a carrier of a
spinor motion, was not available at the time. In Zhilin (1996c), the basic equations of this particular Kelvin medium
are presented, and it is shown that they present a certain combination of the equations of Klein26-Gordon27 and
Schr̈odinger28. At small rotational velocities of particles, the equations of this Kelvin medium are reduced to the
equations of Klein-Gordon, and at large velocities to the Schrödinger equation. It is significant that both equations
lie in the frame of Quantum Mechanics.

The theory of a non-linear elastic Kelvin medium the particles of which perform translational and rotational mo-
tions, with large displacements and rotations, and may freely rotate about their axes of symmetry, has been pro-
posed. The exact analogy is established between the equations for a particular case of Kelvin medium and the
equations of elastic ferromagnetic insulators in the approximation of quasimagnetostatics in Grekova and Zhilin
(1998, 2000, 2001). It is shown that the existing theories ofmagnetoelastic materials did not take into account
one of the couplings between magnetic and elastic subsystem, which is allowed by fundamental principles. This
coupling is important for the description of the magnetoacoustic resonance, and may manifest itself in non-linear
theory as well as in the linear one for the case of anisotropicmaterials.

A special representation of the equations of piezoelasticity are presented in Kolpakov and Zhilin (2002); Zhilin
and Kolpakov (2006). These equations contain as particularcases several theories, and two among them are new.
The proposed general theory is based on the model of a micro-polar continuum.

5.2 Inelastic Media

A general approach for the construction of the theory of inelastic media is proposed in Zhilin (2001a, 2002b);
Altenbach et al. (2003b,a); Zhilin (2003a, 2004). The main attention is pointed out to a clear introduction of basic
concepts such as strain measures, internal energy, temperature, and chemical potentials. Polar and non-polar media
are considered. The originality of the suggested approach is the following. The spatial description is used where
the fundamental laws are formulated for open systems. A new handling of the equation of the energy balance is
offered, where the entropy and the chemical potential are introduced by means of purely mechanical quantities. The
internal energy is given in a form, which is at the same time applicable for gaseous, liquid, and solid states. Phase
transitions in the medium are described without introducing any supplementary conditions; a solid-solid phase
transition can also be described in these terms. The materials under consideration have a finite tensile strength; this
means that the constitutive equations satisfy the condition of the strong ellipticity.

When constructing the general theory of inelastic media there was used thespatial description, see Zhilin (2001a,
2002b, 2003a, 2004), where a certain fixed domain of a frame ofreference contains different medium particles at

24James Clerk Maxwell (1831-1879); Scottish mathematician and theoretical physicist
25William Thomson, 1st Baron Kelvin (1824-1907); British mathematical physicist and engineer
26Oskar Klein (1894-1977); Swedish theoretical physicist
27Walter Gordon (1893-1939); German physicist
28Erwin Rudolf Josef Alexander Schrödinger (1887-1961); Austrian physicist
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different instants. Due to the use of the spatial description, a theory is constructed where the concept of a smooth
differential manifold is not used. Until then, such theories were developed only for fluids. For the first time such
a theory is built for solids, where the stress deviator is non-zero. In addition, the spatial description is applied to
a medium consisting of particles with rotational degrees offreedom. A new definition of a material derivative,
containing only objective operators, is given. This definition, when using a moving co-ordinate system, does not
contradict to the Galileo’s principle of inertia, see Zhilin (2002b).

A new theory of elasto-plastic bodies is developed in Zhilin(2002b, 2003a). The theory is based on the description
of the non-elastic properties by the phase transitions in the materials. The definition of the phase transition is given
in the following way. Two material characteristics are related to their densities: the solid fraction, defined as a
number of particles in a unit volume on the particle volume, and the porosity (void fraction), defined as a negative
solid fraction. A solid has several stable states corresponding to different values of the solid fraction. The transition
from one stable state to another is a typical phase transition. A constitutive equation describing the solid fraction
changes near the phase transition point is suggested.

5.3 Theory of Constitutive Equations of Complex Media

The characteristics of state, corresponding to temperature, entropy, and chemical potential, are presented in Zhilin
(2001a, 2002b, 2003a, 2004) from pure mechanical considerations, by means of a special mathematical formu-
lation of the energy balance equation, obtained by a separation of the stress tensors into elastic and dissipative
components. The second law of thermodynamics gives additional limitations for the introduced characteristics,
and this completes their formal definition. The reduced equation of energy balance is obtained in terms of the
free energy. The main purpose of this equation is to determine the arguments on which the free energy depends.
It is shown that defining first the internal energy, and then the entropy and chemical potential, is impossible. All
these quantities should be introduced simultaneously. To set the relations between the internal energy, entropy,
the chemical potential, the pressure, etc., the reduced equation of energy balance is used. It is shown that the
free energy is a function of temperature, density of particles, and strain measures, where all these arguments are
independent. The Cauchy29-Green30 relations relating entropy, chemical potential and tensors of elastic stresses
with temperature, density of particles and measures of deformation are obtained. Hence the concrete definition
of the constitutive equations requires the setting of only the free energy. The equations characterizing the role of
entropy and chemical potential in the formation of the internal energy are obtained. Constitutive equations for the
vector of energy flux are offered in Zhilin (2003a). In a particular case these equations give the analogue of the
Fourier31-Stokes32 law.

The micro-polar theory for binary media initiated by Zhilinis developed in Altenbach et al. (2003a,b). The medium
consists of liquid drops and fibres. The liquid is assumed to be viscous and non-polar, but with a non-symmetric
stress tensor. The fibres are described by non-symmetric tensors of force and couple stresses. The forces of viscous
friction are taken into account. The second law of thermodynamics is formulated in the form of two inequalities,
where the components of the binary media can have different temperatures.

The general theory of granular media with particles able to join (consolidate) is developed in Zhilin (2001a, 2002b).
The particles possess translational and rotational degrees of freedom. For an isotropic material with small displace-
ments and isothermal strains, the theory of consolidating granular media is presented in a closed form in Zhilin
(2001a). Instead of the tensor of viscous stresses, which isfrequently used in the literature, the antisymmetric
stress tensor is introduced in Zhilin (2001a) and for this tensor the Coulomb friction law is applied. For the couple
stress tensor the viscous friction law is used.
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Wiercigroch, M.; Zhilin, P. A.: On the Painlevé paradoxes. In:Proc. of the XXVII Summer School “Analysis and
synthesis of nonlinear mechanical vibration systems”, pages 1–22, St. Petersburg (2000).

Zhilin, P. A.: Axisymmetric deformation of a cylindrical shell, supported by frames (in Russ.).Izvestiya AN SSSR.
Mekhanika tverdogo tela (Transactions of the Academy of Sciences of the USSR. Mechanics of Solids), Nr. 5,
(1966), 139–142.

Zhilin, P. A.: General theory of ribbed shells (in Russ.).Trudy CKTI (Transactions of Central Boiler Turbine
Institute), Nr. 88, (1968), 46–70.

Zhilin, P. A.: Linear theory of ribbed shells (in Russ.).Izvestiya AN SSSR. Mekhanika tverdogo tela (Transactions
of the Academy of Sciences of the USSR. Mechanics of Solids), Nr. 4, (1970), 150–162.

Zhilin, P. A.: Two-dimensional deformable continuum. Mathematical theory and physical interpretations (in
Russ.).Izvestiya AN SSSR. Mekhanika tverdogo tela (Transactions of the Academy of Sciences of the USSR.
Mechanics of Solids), Nr. 6, (1972), 207–208.

Zhilin, P. A.: Mechanics of deformable enriched surfaces (in Russ.). In:Transactions of the 9th Soviet conference
on the theory of shells and plates, pages 48–54, Sudostroenie, Leningrad (1975a).

131



Zhilin, P. A.: Mechanics of deformable surfaces. Report Nr.89, The Danish Center for Appl. Math. and Mech.
(1975b).

Zhilin, P. A.: Mechanics of deformable directed surfaces.Int. J. Solids & Structures, 12, (1976), 635–648.

Zhilin, P. A.: General theory of constitutive equations in the linear theory of elastic shells (in Russ.).Izvestiya AN
SSSR. Mekhanika tverdogo tela (Transactions of the Academyof Sciences of the USSR. Mechanics of Solids),
Nr. 3, (1978), 190.

Zhilin, P. A.: Axisymmetric bending of a flexible circular plate under large displacements (in Russ.). In:Trudy LPI
(Trans. Leningrad Polytechnical Institute) - Vichislitelnie metodi v mekhanike i upravlenii (Numerical methods
in mechanics and control theory), Nr. 388, pages 97–106, Leningrad Polytechnical Institute(1982a).

Zhilin, P. A.: Basic equations of non-classical theory of shells (in Russ.). In:Trudy LPI (Trans. Leningrad Poly-
technical Institute) - Dinamika i prochnost mashin (Dynamics and strength of machines), Nr. 386, pages 29–46,
Leningrad Polytechnical Institute (1982b).

Zhilin, P. A.: Axisymmetrical bending of a circular plate under large displacements (in Russ.).Izvestiya AN SSSR.
Mekhanika tverdogo tela (Transactions of the Academy of Sciences of the USSR. Mechanics of Solids), Nr. 3,
(1984), 138–144.

Zhilin, P. A.: The turn-tensor in description of the kinematics of a rigid body (in Russ.). In:Trudy SPbGTU
(Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya (Mechanics and Control
Processes), Nr. 443, pages 100–121, St. Petersburg State Technical University (1992a).

Zhilin, P. A.: The view on Poisson’s and Kirchhoff’s theories of plates in terms of modern theory of plates (in
Russ.).Izvestiya RAN. Mekhanika tverdogo tela (Transactions of the Russian Academy of Sciences. Mechanics
of Solids), Nr. 3, (1992b), 48–64.

Zhilin, P. A.: The relativistic principle of Galilei and theMaxwell’s equations (in Russ.). St. Petersburg State
Technical University, St. Petersburg (1993).

Zhilin, P. A.: Main structures and laws of rational mechanics (in Russ.). In:Proc. of the 1st Soviet Union Meeting
for Heads of Departments of Theoretical Mechanics, pages 23–45, VIKI, St. Petersburg (1994a).

Zhilin, P. A.: The relativistic principle of Galilei and theMaxwell’s equations (in Russ.). In:Trudy SPbGTU
(Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya (Mechanics and Control
Processes), Nr. 448, pages 3–38, St. Petersburg State Technical University (1994b).

Zhilin, P. A.: A new approach to the analysis of Euler-Poinsot problem.ZAMM, 75, S1, (1995a), 133–134.

Zhilin, P. A.: Basic concepts and fundamental laws of rational mechanics (in Russ.). In:Proc. of XXII Summer
School - Seminar “Analysis and synthesis of nonlinear mechanical vibration systems”, pages 10–36, St. Peters-
burg (1995b).

Zhilin, P. A.: On the classical theory of plates and the Kelvin-Tait transformation (in Russ.).Izvestiya RAN.
Mekhanika tverdogo tela (Transactions of the Russian Academy of Sciences. Mechanics of Solids), Nr. 4,
(1995c), 133–140.

Zhilin, P. A.: Spin motions and stability of equilibrium configurations of thin elastic rods (in Russ.). In:Trudy
SPbGTU (Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya (Mechanics
and Control Processes), Nr. 458, pages 56–73, St. Petersburg State Technical University (1995d).

Zhilin, P. A.: Classical and modified electrodynamics (in Russ.). In: Proc. of Int. Conf. “New Ideas in Natural
Sciences”, vol. I - Physics, pages 73–82, St. Petersburg (1996a).

Zhilin, P. A.: A new approach to the analysis of free rotations of rigid bodies.ZAMM, 76, 4, (1996b), 187–204.

Zhilin, P. A.: Reality and mechanics (in Russ.). In:Proc. of XXII Summer School - Seminar “Analysis and synthesis
of nonlinear mechanical vibration systems”, pages 6–49, St. Petersburg (1996c).

Zhilin, P. A.: Rotations of rigid body with small angles of nutation.ZAMM, 76, S2, (1996d), 711–712.

Zhilin, P. A.: Classical and modified electrodynamics (in Russ.). In: Proc. of the IV International Conference
“Problems of Space, Time, and Motion” dedicated to the 350thanniversary of Leibniz, vol. 2, pages 29–42, St.
Petersburg (1997a).

132



Zhilin, P. A.: Dynamic forms of equilibrium bar compressed by a dead force. In:Proc. of 1st Int. Conf. Control of
Oscillations and Chaos, vol. 3, pages 399–402 (1997b).

Zhilin, P. A.: Dynamics and stability of equilibrium positions of a rigid body on an elastic foundation (in Russ.). In:
Proc. of XXIV Summer School - Seminar “Analysis and synthesis of nonlinear mechanical vibration systems”,
pages 90–122, St. Petersburg (1997c).

Zhilin, P. A.: A general model of rigid body oscillator (in Russ.). In: Proc. of the XXV-XXVI Summer Schools
“Analysis and synthesis of nonlinear mechanical vibrationsystems”, vol. 1, pages 288–314, St. Petersburg
(1998).

Zhilin, P. A.: Dynamics of the two rotors gyrostat on a nonlinear elastic foundation.ZAMM, 79, S2, (1999),
399–400.

Zhilin, P. A.: Rigid body oscillator: a general model and some results.Acta Mechanica, 142, (2000), 169–193.

Zhilin, P. A.: Basic equations of the theory of non-elastic media (in Russ.). In:Proc. of XXVIII Summer School -
Conference “Advanced Problems in Mechanics”, pages 14–58, St. Petersburg (2001a).

Zhilin, P. A.: Theoretical Mechanics (in Russ.). St. Petersburg State Polytechnical University (2001b).

Zhilin, P. A.: Vectors and Second-rank Tensors in Three-dimensional Space (in Russ.). St. Petersburg State Poly-
technical University (2001c).

Zhilin, P. A.: Basic postulates of the Eulerian mechanics (in Russ.). In:Proc. of XXIX Summer School - Conference
“Advanced Problems in Mechanics”, pages 641–675, St. Petersburg (2002a).

Zhilin, P. A.: Phase Transitions and General Theory of Elasto-Plastic Bodies. In:Proc. of XXIX Summer School -
Conference “Advanced Problems in Mechanics”, pages 36–48, St. Petersburg (2002b).

Zhilin, P. A.: Mathematical theory of inelastic media (in Russ.).Uspekhi mechaniki (Advances in mechanics), 2,
4, (2003a), 3–36.

Zhilin, P. A.: Modified theory of symmetry for tensors and their invariants.Izvestiya VUZov. Severo-Kavkazskii
region. Estestvennye nauki (Transactions of Universities. South of Russia. Natural sciences). Special issue “Non-
linear Problems of Continuum Mechanics”, Special issue “Natural Sciences”, (2003b), 176–195.

Zhilin, P. A.: Theoretical Mechanics. Fundamental Laws of Mechanics (in Russ.). St. Petersburg State Polytechni-
cal University, St. Petersburg (2003c).

Zhilin, P. A.: On the general theory of non-elastic media (inRuss.). In: Trudy SPbGTU (Trans. of St. Peters-
burg State Technical University) - Mekhanika materialov i prochnost’ konstrukcii (Mechanics of materials and
strength of structural elements), Nr. 489, pages 8–27, St. Petersburg State Technical University (2004).

Zhilin, P. A.: Symmetries and orthogonal invariants in oriented space. In:Proc. of XXXII Summer School - Con-
ference “Advanced Problems in Mechanics”, pages 470–483, St. Petersburg (2005).

Zhilin, P. A.: Applied Mechanics. Foundations of the Theory of Shells (in Russ.). St. Petersburg State Polytechnical
University (2006a).

Zhilin, P. A.: Applied Mechanics. Theory of Thin Elastic Rods (in Russ.). St. Petersburg State Polytechnical Uni-
versity (2006b).

Zhilin, P. A.: Nonlinear theory of thin rods. In: D. A. Indeitsev; E. A. Ivanova; A. M. Krivtsov, eds.,Advanced
Problems in Mechanics, vol. 2, pages 227–249, Institute for Problems in Mechanical Engineering of Russian
Academy of Sciences, St. Petersburg (2006c).

Zhilin, P. A.: Rotation of a rigid body with a fixed point: the Lagrange case (in Russ.). In: D. A. Indeitsev; E. A.
Ivanova; A. M. Krivtsov, eds.,Advanced Problems in Mechanics, vol. 1, pages 241–255, Institute for Problems
in Mechanical Engineering of Russian Academy of Sciences, St. Petersburg (2006d).

Zhilin, P. A.: The main direction of the development of mechanics for XXI century. In: D. A. Indeitsev; E. A.
Ivanova; A. M. Krivtsov, eds.,Advanced Problems in Mechanics, vol. 2, pages 112–125, Institute for Problems
in Mechanical Engineering of Russian Academy of Sciences, St. Petersburg (2006e).

133



Zhilin, P. A.: Theory of thin elastic rods (in Russ.). In: D. A. Indeitsev; E. A. Ivanova; A. M. Krivtsov, eds.,
Advanced Problems in Mechanics, vol. 1, pages 256–297, Institute for Problems in Mechanical Engineering of
Russian Academy of Sciences, St. Petersburg (2007).

Zhilin, P. A.; Il’icheva, T. A.: Oscillation spectra and forms of a rectangular parallelepiped obtained by the three-
dimensional theory of elasticity and the theory of shells (in Russ.).Izvestiya AN SSSR. Mekhanika tverdogo tela
(Transactions of the Academy of Sciences of the USSR. Mechanics of Solids), Nr. 2, (1980), 94–103.

Zhilin, P. A.; Il’icheva, T. A.: Applicability of Timoshenko-type theories to localized plate loading (in Russ.).
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fisiki (Journal of Applied Mechanics and Technical Physics),
25, 1, (1984), 135–140.

Zhilin, P. A.; Kolpakov, Y. E.: A micro-polar theory for piezoelectric materials. In: D. A. Indeitsev; E. A. Ivanova;
A. M. Krivtsov, eds.,Advanced Problems in Mechanics, vol. 2, pages 250–261, Institute for Problems in Me-
chanical Engineering of Russian Academy of Sciences, St. Petersburg (2006).

Zhilin, P. A.; Konyushevskaya, R. M.; Palmov, V. A.; Chvartatsky, R. V.: On design of the stress-strain state of
discharge chambers of Tokamak panels (in Russ.). P-OM-05501–13, NIIEFA (Research Institute of Electro-
physical Apparatus), Leningrad (1982).

Zhilin, P. A.; Mikheev, V. I.: Toroidal shell with meridional ribs for design of hydroturbine spirals (in Russ.).Trudy
CKTI (Transactions of Central Boiler Turbine Institute), Nr. 88, (1968), 91–99.

Zhilin, P. A.; Sergeyev, A. D.: Experimental investigationof the stability of a cantilever rod under torsion (in Russ.).
In: Trudy SPbGTU (Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya
(Mechanics and Control Processes), Nr. 446, pages 174–175, St. Petersburg State Technical University (1993a).

Zhilin, P. A.; Sergeyev, A. D.: Twisting of an elastic cantilever rod by a torque subjected at a free end (in Russ.).
St. Petersburg State Technical University, St. Petersburg(1993b).

Zhilin, P. A.; Sergeyev, A. D.: Equilibrium and stability ofa thin rod subjected to a conservative moment (in Russ.).
In: Trudy SPbGTU (Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya
(Mechanics and Control Processes), Nr. 448, pages 47–56, St. Petersburg State Technical University (1994).

Zhilin, P. A.; Sergeyev, A. D.; Tovstik, T. P.: Nonlinear theory of rods and its application (in Russ.). In:Proc.
of XXIV Summer School - Seminar “Analysis and synthesis of nonlinear mechanical vibration systems”, pages
313–337, St. Petersburg (1997).

Zhilin, P. A.; Skvorcov, V. R.: Description of the simple edge effect by shell theory and by the three-dimensional
theory of elasticity (in Russ.).Izvestiya AN SSSR. Mekhanika tverdogo tela (Transactions of the Academy of
Sciences of the USSR. Mechanics of Solids), Nr. 5, (1983), 134–144.

Zhilin, P. A.; Sorokin, S. A.: The motion of gyrostat on nonlinear elastic foundation.ZAMM, 78, S2, (1998),
837–838.

Zhilin, P. A.; Tovstik, T. P.: Rotation of a rigid body based on an inertial rod (in Russ.). In:Trudy SPbGTU
(Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya (Mechanics and Control
Processes), Nr. 458, pages 78–83, St. Petersburg State Technical University (1995).

Zhilin, P. A.; Zhilina, O. P.: On the Coulomb’s laws of friction and the Painlev́e paradoxes (in Russ.). In:Trudy
SPbGTU (Trans. of St. Petersburg State Technical University) - Mekhanika i processy upravleniya (Mechanics
and Control Processes), Nr. 446, pages 52–81, St. Petersburg State Technical University (1993).

Zubov, L. M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997).

Zubov, L. M.: Semi-inverse solutions in nonlinear theory ofelastic shells.Arch. Mech., 53, 4-5, (2001), 599–610.

Addresses:Prof. Dr.-Ing.habil. Holm Altenbach, Lehrstuhl für Technische Mechanik, Zentrum für Ingenieurwis-
senschaften, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany; Prof. Dr. Victor A. Eremeyev,
South Scientific Center, Russian Academy of Sciences, Chekhova st., 41, Rostov-on-Don, 344006, Russia; Prof.
Dr. Dmitry A. Indeitsev, Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol-
shoy pr. V. O., 61, St. Petersburg, 199178, Russia; Prof. Dr.Elena A. Ivanova & Prof. Dr. Anton M. Krivtsov,
Dep. of Theoretical Mechanics, Faculty of Physics and Mechanics, St. Petersburg State Polytechnical University,
Polytekhnicheskaya St. 29, 195251 St. Petersburg, Russia
Corresponding author’s email:holm.altenbach@iw.uni-halle.de, ivanova@ei5063.spb.edu

134


