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Texture-Based Modeling of Sheet Metal Forming and Springback

V. Schulze, A. Bertram, T. Bohlke, A. Krawietz

In this paper the application of a crystal plasticity modet body-centered cubic crystals in the simulation of a
sheet metal forming process is discussed. The material Inpadameters are identified by a combination of a
texture approximation procedure and a conventional part@mielentification scheme. In the application of a cup
drawing process the model shows an improvement of the srainearing prediction as well as the qualitative
springback results in comparison with a conventional pmeanological model.

1 Introduction

The simulation of sheet metal forming has become an imptidahfor the evaluation and optimization of forming
processes. An important aspect to increase the accurate cfitulations is the improvement of the material
modeling. At present the material behavior is typically rled by phenomenological material equations which
do not take into account the evolving mechanical anisotchm/to a deformation induced texture development.

In the last years several phenomenological models haveduggyested for the description of plastically anisotropic
materials (see, e.g., Hill, 1948; Barlat and Lian, 1989 ]&aat al., 1991, 1997, 2003, 2005). Many of these models
are based on linear transformations of the stress tensahargbplication of the theory of isotropic tensor functions
(Barlat et al., 2007). These phenomenological models lysaasume that the anisotropy is initially known and
generally constant during deformation. The missing mieohanical information is compensated by the fact that
the computational effort of such an approach is fairly lolweTirst two models by Hill and Barlat are still standard
for sheet metal forming simulations in an industrial enmireent due to the ease of the model identification and
rather good correlations with practical measurements lgRiein, 2002).

In contrast to these approaches, crystal plasticity madetsporate the microscopic structure of the materialsThi
leads to the ability to predict the evolution of the macrgéctehavior due to changes on the micro-scale. This type
of models has been studied intensively in the last decadesedrly approaches by Sachs (1928) and Taylor (1938)
introduced relatively coarse assumptions on the intemactf the grains and, consequently, on the homogenization
of strains or stresses. The latter of these two models hasvaeely used (with some improvements (Bishop and
Hill, 1951a,b)) due to a good correlation with experimemid ¢ghe rather low computational costs of this model.
In an effort to release the restrictive assumption of theldrayodel, other models have been developed. One
of the first attempts was to relax certain of the constraiotspecific deformation modes, leading to the relaxed
constraint models (Honneff and Mecking, 1978; van Hout881% Kocks and Canova, 1981), which have been
refined further to enable the transition from the full to telaked constraint models (Tomé et al., 1984; van Houtte,
1988; Kocks and Necker, 1994). Another refinement for thetatyplasticity approach was the modeling of the
interaction of the grains with the matrix having the effeetproperties of the material. This was achieved by the
self consistent models (Eshelby, 1957; Kréner, 1961; Bugkg and Wu, 1962; Hill, 1965; Harren, 1991a,b). The
latest development to improve the accuracy of this appreehthe introduction of finite element simulations
on the micro-scale (Harren and Asaro, 1989; Bronkhorst.el @802; Kalidindi and Anand, 1992; Dawson et al.,
1994). The improvement of the model accuracy in these aphssahas the price of a drastic increase in the
computational effort, so that such micro-macro approaehesypically only used for virtual material tests.

A general way to reduce the degrees of freedom of a model lmasexystal plasticity is the use of texture compo-
nents (Wassermann, 1939; Bunge, 1993; Helming, 1996). titexomponent is a crystal orientation for which
the codf shows a (local) maximum in the elementary regionitsimeighborhood, the codf is decreasing in an
isotropic or anisotropic way. Raale¢ al. (2002) and Raabe and Roters (2004) introducedeaktire component
crystal plasticity methodefined by the simplification that each texture componenesdbed by only one dis-
crete crystal orientation. If a texture component is madi@hesuch a way, however, the mechanical anisotropy is
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significantly overestimated. Raabe et al. suggested thatdier to reduce this overestimation, the crystal orien-
tations used in the finite element simulation should - frotednation point to integration point - scatter around
the mean orientations of the texture components in ordeake into account the scattering of the crystallites
around the ideal components. Such an approach has the aigage that the scattering is only taken into account
on the average, i.e., if the whole sample is considered. llyottee mechanical anisotropy is still overestimated.
Furthermore, an approach based on discrete random digtrisiinduces a spurious mesh-dependence and does
not generally ensure a reproducibility of the numericaliltss Therefore, by Bohlke et al. (2006) it has been
suggested to model the gray texture by an isotropic textmgponent given by an isotropic plasticity model and

a corresponding volume fraction. Although this approaseguite good results it has the inherent disadvantage
that the evolution of the volume fraction of the isotropikttee component is rather difficult to model.

In addition to the pure phenomenological and the pure drgiaticity models there have been studies to combine
the low computational effort of the macro-model with the noyed accuracy of the crystal plasticity models.
In this course several ways have been pursued in order toaerenalytical functions to approximate the yield
surfaces derived by crystal plasticity models, using eithe main components or the full ODF (Montheillet et
al., 1985; Arminjon, 1985; Arminjon and Bacroix, 1990). @thmodels use a piecewise discretization for this
approximation (Maudlin et al., 1996). The drawback of thipmach is the assumption of full plasticity in the
deformation of the crystals, resulting in problems to sitelloading and unloading situations.

The model used in this study is aimed to predict sheet metalify operations and subsequent springback for
body-centered cubic crystals for medium sized finite eldmedels. For this aim we choose the Taylor assump-
tion combined with a rate-independent pencil glide defdiomamodel on the micro-scale as the crystal plasticity
model. The hardening on the micro-scale is described by agrhenological hardening law. Special emphasis
is given to approximate the initial texture with a low numioéicrystals by a specific approximation schema. In
order to reduce the anisotropy of the model, two differentet® for an isotropic background are examined and
the results are compared with experimental measurements.

Notation. Throughout the text a direct tensor notation is preferrede $calar product and the dyadic product
are denoted b - B = Sp(ATB) and A ® B, respectively. A linear mapping of 2nd-order tensors igtemi as

A = C[B]. Traceless tensors (deviators) are designated by a primeA. A superimposed bar indicates that
the quantity corresponds to the macroscale.

2 Constitutive Equations

Elastic law. In the sequel we rely on the multiplicative decompositiothefdeformation gradier into an elastic
partF'. and a plastic part¥',,, see e.g. (Lee, 1969; Mandel, 1974; Krawietz, 1986)

F=F.F, @

The plastic deformation is assumed to be volume preserviey thatF', is unimodular, i.e. its determinant
is equal to one. For rate-independent behavior, this deositipn can be derived from the concept of material
isomorphisms (Bertram, 1999, 2005).

Since the elastic strains are assumed to be small, any liekeéion between a generalized stress and a correspond-
ing generalized strain measure can be used for the forranlafithe elastic law. We apply the St.Venant-Kirchhoff
law formulated in terms of quantities with respect to theistudted configuration. Hence, the elastic law is given

by
S. =ClE.] (2)

with S, = det(F,)F_ o F_ " the 2nd Piola-Kirchhoff stress tenserthe Cauchy stress tensd, = (C, — I)/2
Green’s strain tensor ar@d, = F! F, the right (elastic) Cauchy-Green tensor.

Flow rule. The plastic flow is modeled by an evolution equation for thespt part of the deformation gradient

N
FPF;1: Zﬁ/ada(@na (3)
acA

with the slip ratey,, the slip directiond,, and the slip plane normai,, of the slip system. .4 denotes the set of
active slip systems) is the total number of slip systems.
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The yield condition in each glide system is given by a scadgiagion depending on the weighted shear strgss
and the critical resolved shear stre§s

¢a(7—aa7¢g): ‘Tal_TSZO- 4)

The weighted shear stressis determined by the projection of the weighted Mandel sttessoiZ. = C.S./ oo
into the slip system
Ta:Ze'da®na (5)

with gg being the mass density in the reference placement (Krawlie®9). If the yield condition and the loading
condition are equally fulfilled, the consistency condittmas to be satisfied for each active slip system

bo = |Ta| —7¢ = 0. (6)

Pencil glide. Body-centered cubic crystals (bcc) have 48 primary gliddesys. For a rate-independent material
law, an admissible combination of the glide systems has teltermined that satisfies the yield condition (4) and
the consistency condition (6). A systematic testing seqe@vould be very time consuming. For the case of bcc
crystals, this cumbersome procedure can be reduced by tiengencil glide model. Since the possible glide
planes are very close to each other, in this model all plareepassible glide planes if they have a normal being
orthogonal to the glide direction. This reduces the numbegtide systems to four.

In the context of pencil glide for given slip directioms, corresponding to the lattice directiofsl11), the slip
plane normalse,, are to be determined. The slip plane normal which is normalized and perpendicular to the
corresponding slip directiod,, is extremizing the shear stress given by (5). Hence the, can be determined
by the Lagrange multiplier method with the Lagrange funttio

E:Z6~da®na—)\da-na—g(na~na—1) @)

containing the Lagrange multipliersandu. The derivative with respect ta,, yields

oL

=Z!d, — My —pms =0 (8)
on,,

or equivalently
g = Zldy — M. (9)
The Lagrange multipliers. and i follow from n,, - d, = 0 andn,, - n, = 1, respectively. The first condition
implies
A=d, (Zdy). (20)
Hencen,, is
Mg = —Sq, sa =1 —-d,® da)ZIdm p=sall (11)
7!

For a given stress staté., eq. (11) determines a shear vector for each slip direeljonSince the vectos,, is
orthogonal to the glide directiod,,, one derives the result

Ta = Sa " Na = ||Sal] = p. (12)

Hardening rule. The hardening is modeled by a phenomenological approaeutmmsan accumulated slip in each
slip system. We assume that the critical weighted sheasssttedepends on a hardening parametedefined by

éa = (1 = @)a + qz;}/ﬂa (13)
B

wheregq is the ratio of self and latent hardening. The hardening eambdeled for example by the ansatz of Swift
7 = A1 (1+ Aza)" . (14)

In order to model a hardening behavior with a pronouncedlyiglit, the following ansatz is presently preferred

oo (vem (e a)) s
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where theA; andn are fitting parameters for the yield curvel; allows for a modeling of a pronounced yield
strength. Ford; = 0 the Swift ansatz is obtained.

Homogenization of the constitutive behaviorThe aim is to perform a finite element simulation on the mazaltes
and to simultaneously take into account the crystallografaxture on the grain scale. The relation between the
macroscopic and mesoscopic stress and strain measures citelomined, e.g., by Taylor type models (Taylor,
1938; Asaro, 1985; Mathur and Dawson, 1989). The Taylor hagseumes a homogeneous deformation field
through the microstructure of polycrystals. Thereforeaiisfies the strain compatibility, but not the stress datuil
rium at the grain boundaries. The Taylor model gives redslergualitative approximations of the crystallographic
texture evolution in many single-phase cubic materials,itis known to significantly overestimate the stresses
and the texture sharpness. Due to the general shortcomirigs daylor model, different approaches have been
discussed in the literature in order to improve the modetighe texture evolution. The most simple one is
based on a relaxation of certain constraints of the defooméield (RC Taylor models). A typical example is the
LAMEL model by van Houtte (1982), which has been developedraalict rolling textures. Roughly speaking,
the model takes a stack of two grains, which is compressetiparmits an inhomogeneous deformation. This
allows to satisfy the stress equilibrium for the shear seeswithin the flattening plane. The disadvantage of the
model is that it is only applicable for one specific deforraatmode. The GIA model (Crumbach et al., 2001) is
applicable for general deformation paths. Due to the mongptex modeling of the grain interaction the premises
for the texture prediction are better than for the LAMEL mibd€or a comparison see van Houtte et al. (2002,
2006). Another quite successful approach is given by thesabé self-consistent approximations of the local de-
formation behavior (e.g., Molinari et al., 1987), whichisBt the strain compatibility and the stress equilibrium
in an averaged sense. A purely numerical approach for adeld@@scription of the microstructure is given by the
representative volume element technique based on finiteeslis and crystal plasticity (Bronkhorst et al., 1992),
sometimes referred to as CPFEM (crystal plasticity finitsrent model). For a review of the aforementioned
methods with special emphasis to sheet metal forming seexttedlent review by Dawson et al. (2003). Since the
computational effort of homogenization schemes based arhoemogeneous strain fields is significantly higher
than that of the Taylor model, and since we aim to describalanmetal forming operation, Taylor's assumption of
a homogeneous deformation field is applied here, i.e.

F=F. (16)

A justification of this coarse assumption will only be possibased on the results discussed below. The effective
Cauchy stress is calculated as the volume average of thiakspesses with respect to the current volume. For
polycrystals consisting af/ grains with homogeneous orientation this yields

1 M
6:f/odv:Zc,ga',g, a7)

v v
B=1
wherecg is the volume fraction of graifd. This is equivalent to computing the effective 1st Piolaekhoff stress
tensor by volume averaging with respect to the initial ptaept.

Modeling of the gray texture. From the numerical point of view, large-scale computatibased on the Taylor
model are very time-intensive and storage-consuming ifctigstallographic texture is approximated by several
hundred discrete crystals. In the present work we use tWerdiit approaches in order to model the gray texture.
In the first approach, a small group of crystals having a pedkastic isotropy in the sense of the bounds by Voigt
and Reuss (Bertram et al., 2000; Bohlke, 2001; Bohlke andr&ar 2001) is used in the initial setup. In the
second approach an isotropic von Mises plasticity modéi figtitious volume fraction is used (hybrid model). In
this case the elastic law is given by eq. (2) wittbeing isotropic. The evolution d',, is modeled by a normality
rule

F,F,' =4N (18)
with e 5
N= 2 ~ 2¢ . 19
IZ. = 1Sel (19)
The yield condition is
1Sl — @O—F =0. (20)

138



3 Identification of Texture and Material Parameters

Texture measurement.The material used for the following examples are typicaifierdeep drawing steel grades.
The first material considered is DX53, a mild deep drawinglgravhile the second material is the high strength
low alloyed steel H340LAD. For the identification of a cryigtéasticity model, the initial texture of the material
has to be measured and approximated by the initial oriemtafi the crystals and their respective volume fraction.
In a second step the parameters for the elastic and plasistards are determined similar to a conventional
phenomenological model. The crystallographic texture afaerial can be measured by the scatter of a high
energy beam, such as x-rays, electron beams, or neutrorsh@athe crystal lattice (Bunge, 1993; Schumann et
al., 1991). In addition, different preparation methods barused in order to determine a representative texture of
a material with a texture gradient (Bunge and Welch, 1983ckye 980).

Since the model should be used for an industrial applicatiod due to the fact that only the orientation distribution
function is of interest for the following texture approxitiza, the steel sheets are measured by conventional x-
rays. A surface measurement is sufficient for the charaetibon of the material, because the texture thickness
gradients in the thin sheets (1 mm) under considerationeghgible.

Approximation of the initial texture. The approximation of the initial texture is of high import@nnot only

for the accuracy of the model but also for the computatioffaltein the consecutive finite element simulation.
Consequently, this approximation has been the field of apstiidies by several authors (Toth and Van Houtte,
1992; Kocks et al., 1991; Helming, 1996; Delannay et al. @@ho et al., 2004; Tarasiuk et al., 2004). Since these
methods either need special skills of the operator, argdedifor specific textures, or lead to approximations with
a large number of crystals, a different approximation sahenused in this work. This method is based on a mixed
integer quadratic approximation scheme using sharp coamsnvith a joint scatter width to approximate a given
texture (Bohlke et al., 2006). The advantage of this methdlat it can be applied to arbitrary crystal and texture
classes, the existence of an error bound for the approxdmagind the user-independence of the approximation
results. With this approximation the initial orientatiohtbe crystals as well as their respective volume fraction
can be determined in one optimization procedure.

Identification of the material parameters. Since the material model should be applied in an industrigiren-
ment, the identification of the model parameters has to Heqeed using only a small set of measurements. Due
to this condition, simple tension tests in three directimith respect to the rolling direction have been used to
characterize the material.

For the determination of the elastic material parametées\Young’s modulus has been measured°a8° and
90° with respect to the rolling direction, using tension test@mens of type 2 according to DIN-EN 10002-1.
For the determination of the Young’s modulus, the stressbleg® increased at a stress rate of 20 MPa/s. The
same approach has been used to determine the yield curvéiseandalue in the respective directions. For these
measurements, the tests have been performed at a globalrateaof 0.4%/s. The-value describes the ratio of
the strains in the width to the thickness direction

. In(b/by) _ In(b/bo) ’ 1)

In(t/to)  In((bolo)/(bl))

whereb is the width,t is the thickness antlis the length of the specimen. The indegenotes the initial value of
the respective parameter. The results of these tensiaaesgiven in Table 1.

Material Angle wrt. | Fin GPa Rpo2(*Rerr) | rvalue
RD in MPa
DX53D+Z 0° 179 159 2,02
DX53D+Z 45° 196 166 1,54
DX53D+Z 9C° 190 164 2,39
H340LAD 0° 201 381* 0.78
H340LAD 45° 203 379 1,07
H340LAD arr 210 401 1,10

Table 1: Measured material parameters
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For the approximation of the gray texture two approachesuseel. The first approach (1ISO12) is the use of a
small group of 12 crystals having initially a perfect elasthisotropy (Bertram et al., 2000; Béhlke and Bertram,
2001). While the elastic behaviour of cubic crystals is dateed by three texture coefficients (Bunge, 1993),
the determination of the plastic parameters needs furihefficients. Consequently, the plastic behaviour of this
group is not perfectly isotropic.

A macroscopic von Mises model on the micro scale is used isghend approach to approximate a single isotropic
crystal. This model has two advantages: Firstly, it is pethfasotropic, with respect to both the elastic and plastic
behaviour. Secondly, the computational effort is dranadliicreduced compared with the crystal group. For
simplicty, we assumed a constant isotropic volume fraafianng the deformation process.

The approximation of the isotropic volume fraction is penfied by a least square fit of the distribution of the
r-values. A good initial estimation for this volume fractigngiven by the approximation procedure for the initial
texture. A modification of the volume fraction of the grayttee has only influence on the height of the@alues
but not on the distribution of the minimal and the maximal magles, which are determined by the orientation
and respective weight of the crystals.

Using the measurement of the Young’s modulus in the threeztiims and taking into account the material and
crystal symmetry, the missing elastic parameters can lrdated. For that purpose, we consider the harmonic
decomposition of the stiffness tengdrof one individual cubic crystal (Bohlke, 2001)

C =3KP; +2GP, + H, (22)
where )
Pr=cIol, Py =1° — P, (23)
are the two isotropic projectors governing isotropic linelastic behavior and
1
H = 5 (A3 —A2) (2I° +1® 1 — 5D) (24)
with
3
D=Y 9,99,09,24, (25)
a=1

is the harmonic part of the decomposition. The bulk modiusnd the shear moduls of the isotropic part can
be determined by the eigenvalugsof the stiffness tensor of the single crystak = A1, 2G = 2\3/5 + 3A3/5.

I is the 2nd-order identity tensal? is the 4th-order identity tensor on symmetric 2nd-ordest¢es. The purely
anisotropic parD of the decomposition depends on the lattice vegjqrsSince the measured elasticity parameters
represent effective material properties and the mode$ifgsed on the Taylor assumption, we compute the Voigt
average of the elasticity tensor in the context of smalirsstaOne obtains

CYC = 3KP, + 2GP, + H'Y (26)
with
1 M
H = = (s =) @I +T®1-5DY), DY =) csD(gh). (27)
B=1
In the case of the approximation of the gray texture by theM@es model, the corresponding stiffness tensor is

given by
CMI = 3KP, + 2GPs. (28)

The total elasticity tensor is then
CY = ey CYC + cp CMT (29)

wherec),s is the volume fraction of the isotropic background. Using tapproach, the von Mises model is
consistently identified, and the number of elastic pararadtebe identified is kept constant. Due to the nonlin-
earity of the resulting equations and the accuracy of thieitexneasurement, the approximation is performed by a
least square optimization procedure using a simplex alyarivith bounds for the allowable values of the elastic
parameters.
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The approximation of the plastic response of the crystaloie by the adjustment of four parameters according
to a hardening law (15). Furthermore, the initial harderpagameters, ; of the crystals have to be determined.
For this approximation, the three yield curve measuremangsised. The calibration is performed in the range of
a homogeneous deformation of the sample specimen. For grexamation, the tension test is simulated and the
parameters are calibrated by a sequential approximatlmmse. In the case of the hybrid model, the isotropic part
is first adjusted to the average yield curve of all three dioas

Fin () = oo (p) + 20’454(@) + 90 (90) (30)

After this approximation, the plastic parameters of thestalg are determined. The results of this procedure are
given in Table 2 and Table 3.

E G v q Ay Ay As n &o Viso
in GPa | in GPa GPa
Al16112 | 110.30| 94.90 | 0.3542| 1.4 | 0.0278| 404.400| 0.0 | 0.281 | 0.0039228| 0.72
A48112 | 113.27| 94.49 | 0.3474| 1.4 | 0.0294| 412.590| 0.0 | 0.269 | 0.0330004| 0.71
A80I112 | 113.20| 94.47 | 0.3476| 1.4 | 0.0294| 413.365| 0.0 | 0.269| 0.0330349| 0.71
Al6M | 114.88| 94.99 | 0.3302| 1.4 | 0.0299| 410.090| 0.0 | 0.275| 0.0330500| 0.56
A32M | 114.35| 94.82 | 0.3320| 1.4 | 0.0292| 409.970| 0.0 | 0.270| 0.0330500| 0.54
A48M | 111.60| 95.00 | 0.3415| 1.4 | 0.0271| 400.147| 0.0 | 0.278| 0.0326575| 0.54
A64M | 113.97| 94.71 | 0.3304| 1.4 | 0.0291| 414.920| 0.0 | 0.270 | 0.0330500| 0.52
A80M | 114.30| 94.81 | 0.3307| 1.4 | 0.0292| 409.960| 0.0 | 0.270| 0.0330400| 0.52
A96M | 113.75| 94.63 | 0.3334| 1.4 | 0.0292| 409.940| 0.0 | 0.270| 0.0330400| 0.50

Table 2: Material parameters of DX53 D+Z

E G v q Ay Ao Az n o Viso
in GPa | in GPa GPa
B16112 | 115.58| 116.16| 0.3146| 1.4 | 0.1414| 1712.5| 1.504 | 0.07 | 2.636E-04| 0.97
B48I112 | 115.54| 95.18 | 0.4404| 1.4 | 0.1410| 1712.5| 1.506 | 0.07 | 3.619E-04| 0.94
B80I12 | 115.54| 101.79| 0.3952| 1.4 | 0.1410| 1712.5| 1.506 | 0.07 | 4.609E-04| 0.92
B16M | 145.60| 95.25 | 0.3589| 1.4 | 0.1319| 1688.0| 0.800 | 0.07 | 2.600E-04| 0.92
B32M | 148.50| 95.20 | 0.3477| 1.4 | 0.1319| 1687.8| 0.803 | 0.07 | 2.589E-04| 0.89
B48M | 143.05| 95.20 | 0.3630| 1.4 | 0.1303| 1697.8| 0.803 | 0.07 | 2.49E-04 | 0.85
B64M | 145.25| 95.20 | 0.3413| 1.4 | 0.1317| 1697.0| 0.800| 0.07 | 2.589E-04| 0.83
B8OM | 145.15| 95.20 | 0.3571| 1.4 | 0.1319| 1687.7| 0.803 | 0.07 | 2.598E-04| 0.83
B96M | 146.71| 95.20 | 0.3509| 1.4 | 0.1310| 1691.6| 0.724 | 0.07 | 2.650E-04| 0.79

Table 3: Material parameters of H340LAD

4 Application to Deep Drawing and Springback

Previous work. The earing of a cylindrical cup drawn from a circular blankaisesult of the anisotropy of the
material and therefore a measure for the accuracy of therimateodel. One result of this study is the fact that
Hill's quadratic yield criterion (Hill, 1948) is unable ta@dict more than 4 ears. While this is sufficient for typical
steels, it is insufficient for aluminum, which can form up t@&s. In order to be able to predict this behavior,
more sophisticated models have been derived and testedeBE®93); Yoon and Hong (2006) have used the
cup drawing procedure to test yield surfaces of Barlat 2803, 2005) for aluminum. Also the crystal plasticity
based models have been evaluated using this method: Hu(2988B) evaluated the influence of the friction, the
blank holder force and the element type on the earing withth farder plastic strain rate potential derived from
the texture of the material. The combination of a plastieptal with a microstructural based hardening model
has been used by Li et al. (2003) to simulate the cup drawirgn dF-steel. Engler and Hirsch (2007) studied the
influence of different textures on the earing profile bothezkpentally and by the simulation based on a visco-
plastic self-consistent model. Recent studies used thikadgo numerically determine the influence of certain
texture components in steel by a texture based crystaligitgghodel (Raabe et al., 2005) and the influence of
texture gradients in on the accuracy of such models (Tikkig\et al., 2008).
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The springback behavior is a measure for the ability of a rhtmleredict the internal stresses in the material
correctly. The simulation with finite elements started wsimple processes, such as plane bending processes
(Makinouchi, 1984; Mattiasson et al., 1995) or hat-prof{M&goner and He, 1996). More complex and realistic
shapes have been used in the following years to study theendéuof different parameters (i.e. the number
of integration points in thickness direction, influence étfon, element size, contact formulation), such as the
studies by Hu et al. (1998); Valente and Traversa (1999);dWagand He (1996); Xu et al. (2004). In the work by
Rohleder (2002) a comparison of commercial forming codeshieen performed and suggestions for simulation
parameters are derived from simple drawing processesl)ssmall process chains (deep drawing and cutting)
up to complex deep drawing operations with several formiegsof a typical automotive part. In the paper by
Yoshida and Uemori (2003) it was shown that the incorponatibthe deformation induced anisotropy improves
the accuracy of the springback prediction of a u-shapedtstre. The work by Andersson (2005) evaluated the
springback behavior of different steels on a front side memalb a car, using the Barlat 1989 model. This study
reveals the influence of the modeling of the draw-beads ogithelation results for complex forming operations.
The Barlat 1989 model was also used as one yield criteridmaistudy by Dongjuan et al. (2006) which compared
the standard isotropic hardening with a nonlinear kinecrtegrdening law as well as other yield criteria (Hill 1948)
in a 2D example. The study by Wagoner (2007) was focused oquastion of the number of integration points
needed for a certain accuracy of the springback resultsigdke information of these earlier work, the number of
integration points and the contact handling have been chose¢his study.

Experimental work. For the verification of the material model, a deep drawing ¢és circular cup is used.
Subsequent to the deep drawing, the cups are cut into siickthase rings are opened so that the springback of
the part can be evaluated (Rohleder, 2002). The cup has &ttiaof 150 mm and a drawing depth of 91.8 mm.
The die radius is 6.5 mm while the punch radius is 8.5 mm. Eidushows the tool in the experimental setup.
During the drawing process, the blank holder force is se0®IN and the punch velocity to 30 mm/s. In order to
reach the necessary drawing depth, a lubricant is used.

Figure 1: Cup drawing tool setup

For the model verification, the strain field and the cup geoynahd in particular the shape of the rim are measured
by optical means.
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Figure 2: Springback experiment: cup, rings, open rings

For the springback evaluation, a group of cups is first slinggrings and then opened by wire-EDM. The diameter
of the rings prior and after the opening is determined by ditajppmeasurement. The change of the ring diameter
is a measure for the internal stresses in the part after tharig process (Rohleder, 2002). The three steps of the
springback evaluation are shown in Fig. 2. It can be seerttieaamount of the diameter change depends on the
position of the ring within the cup. The diameter of the rilngs been calculated by a least square approximation
of an ideal circle to the normal projection of the measurerpeints onto the cutting plane.

Simulation of a deep drawing process.For the simulation of the deep drawing process, the CAD-gonof

the tools is meshed with shell elements on the contact sgfathe shells belonging to the tools are rigid bodies
that are only used for the contact determination. For thasea it is necessary to avoid angles higher thaf
between the normals of neighboring shell elements. Thekbdamodeled by deformable shell elements. The
elements used here are underintegrated Belytschko-lag-{Fallquist, 1998) elements, which are routinely used
in industrial simulations.

The crystal plasticity model is to be compared with a stathdzeiterial model used for deep drawing simulations in
industry. This model is a three parameter Barlat 1989 mdékaillét and Lian, 1989), which has been implemented
in LS-Dyna (Hallquist, 1998). This model can be used with apomentm = 2 resulting in a von Mises-Hill
type yield behavior with an additional shear-stress infteerAs an alternative for bcc materials, the exponent is
to be set tan = 6 (Hallquist, 1998). This model is able to take into accouetitnplane anisotropy by using the
r-values at°, 45° and90° with respect to the rolling direction. For the yield curvee taverage yield curve in the
rolling direction is used with a tangent linear extrapaatup to a true straip = 1.

Due to the material and process symmetry it is necessaryrolate at least one half of the cup for the deep
drawing process (Fig. 3), since the springback process higsone symmetry plane. For the reduction of the
computational costs, the simulation has been performectadaptive mesh refinement. Furthermore, the tool
velocity is increased. The tool speed is increased contisiyowith a sinusoidal function to the maximum and

reduced in the same way.

The contacts between the tool and the blank are taken intwatevith normal and tangential nodal forces. The
stiffness of the tools is modeled by a penalty contact lamgesithe model is used for the springback evaluation.
The friction between the interacting surfaces is approsétidy a Coulomb law with static friction coefficients for
each interface.

Simulation of the springback. For the springback simulation it is of high importance to rapgmate the stress
distribution in the thickness direction of the shell. Thésdone by the use of 7 or 9 integrations points in the
thickness direction during the deep drawing simulation #redsubsequent springback calculation. These values
are chosen according to the results of other studies by éRehl 2002). After the initial forming operation, the
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Figure 3: FEM model for the deep drawing simulation

model is interactively cut into the rings using Dynaform.r Bee crystal plasticity model, the user variables are
mapped after the geometrical cutting procedure to the neshrimean initialization run.

In order to simulate the cutting, the symmetry boundary @@rds on one side of the ring are released, while on
the other side all rigid body motions are permitted for the akan implicit integration scheme. The position of
the nodes at the end of the deformation is then projectedtbatoutting plane and approximated by an ideal circle
to determine the diameter change in the same way as the egrdadl values are determined.

Results. For the simulation of the deep drawing process, differemfigarations of the crystals are used. The
abbreviations are as follows. The letter at the beginnirth@hame characterizes the material, A is DX53D+Z and
B is H340LAD. The following number characterizes the amaafntrystals used to approximate the anisotropic
part of the initial texture. In case of the application of #%012-configuration for the approximation of the
isotropic background (1), an additional group of 12 crysialused, therefore the overall number of crystals in this
case is the sum of both groups. In case of the hybrid model My, the ‘isotropic background’ is added to the
group. The last digit characterizes the number of integngtioints in thickness direction. For reference, the Barlat
1989 model is characterized similarly. The first number isa¢tp the exponent, and the "B" stands for the Barlat
1989 model.

For the friction coefficient, a value @f = 0,075 for DX53D+Z andy. = 0,070 for H340LAD has been measured
and used for the simulation. The penalty parameter is equhktsuggested value for LS-Dyna (Hallquist, 1998).
The results of strain distributions for DX53D+Z are giverFig. 4 - 7. The strain cuts show a distinct increase in
the accuracy of the prediction of the major and minor straerapared with the reference model.

Considering the prediction of the earing, the result is ionpd by the application of the crystal plasticity model in
combination with the von Mises model for the background.yQné model with 16 crystals is unable to reproduce
the shape of the earing after the deformation (Fig. 8). Fenmbdels with 32 or more crystals, the result is in good
agreement with the measurements. The mean error of the ftlagein is reduced from more than 3.3 mm in the
reference model to less than 1.6 mm with the crystal modédis. €aring height predicted by the Barlat models is
in the range of more than 10 mm while it is less than 4 mm withhtjlerid models with more than 32 crystals,
and, therefore, within the range of the measurements (3,607 mm).

The application of the ISO12 model for the isotropic backmb results in quite different findings. With an
increasing number of crystals, the shape of the earing sviaore from the measurements (Fig. 9). The reason
for this behavior is the weighting factor used for the crigstathis group. The overall isotropic volume fraction is
decreasing with an increasing number of crystals. Howe¥¢he same time the individual weight of these crystals
is reduced. Therefore, the relative weight of the 1ISO121gris increasing. Consequently, the earing is dominated
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by the shape generated by these crystals.

The results of the springback evaluation are given in Figl1ltand Table 4. The measurements show a closing of
the lowest ring (4) after the opening cut. The maximum di@mistobserved at the second highest ring (2), while
the highest ring has a slightly smaller diameter.

Distance from bottom 15mm | 35mm | 55mm | 75 mm
rinmm | rinmm | 7inmm | 7inmm
Meas. \ 73,4 \ 86,3 \ 88,4 \ 87,7
A2B7 76,4 96,5 106,4 110,2
A2B9 76,3 96,1 99,1 107,8
A6B7 74,4 89,0 93,6 100,1
A6B9 73,8 89,3 93,4 98,1
Al1617 75,0 89,8 90,9 93,9
Al6M7 74,7 92,0 95,0 95,9
A16M9 74,7 88,8 92,5 95,0
A32M7 74,1 90,7 92,9 95,0
A4817 75,0 89,8 91,0 85,4
A48M7 74,1 90,9 92,6 94,6
A48M9 74,2 89,1 91,3 93,5
AB4M7 74,3 91,5 94,2 95,6
A80I17 75,0 89,8 90,7 84,6
A80M7 74,1 91,3 93,4 95,6
AB0M9 74,3 91,5 93,5 94,9
A96M7 74,3 91,2 93,3 95,6

Table 4: Results of the springback simulation with DX53D+Z

The crystal models with 7 integration points in thicknesgclion give a good prediction of the springback. The
closing of ring 4 is predicted well by all crystal plasticityodels, while the Barlat 1989 model with the exponent
of m = 2 fails to predict this behavior. In contrast to the measurmeall simulations predict the maximum
diameter at the highest ring (1), however, the differeneta/ben ring 1 and 2 are small with the crystal plasticity
model in combination with the von Mises model. The maximabeof the crystal models is also smaller than the
one of the Barlat 1989 model.
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Figure 4: Major strain in rolling direction (isotropic vonisés component, DX53)
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Figure 5: Minor strain in rolling direction (isotropic vonises component, DX53)
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Figure 11: Springback results of DX53D+Z: Distribution bétring radii, Barlat 1989 model (9 IP), crystal model
with von Mises background (9 IP), crystal model with ISO12kground (7 IP)

The increase of the number of integration points in thickrdisection increases the accuracy of the solution for
both model types. The qualitative results of the simulatiare not affected by this change. The application of the
ISO12-group improves the springback prediction for DX5ZDWith this approach the position of the maximal
diameter is predicted well by the models with 48 (A4817) afctcB/stals (A8017).

For the second material, the strain cuts are shown in Fig.152 The values of the minor strain are slightly better
with the crystal plasticity model while the results for thajor strain are within the range of the reference model.
The earing prediction (Fig. 16 and 17) of the crystal modehgher than the measurement.

The use of the reference models increases this overpmdicé/hile these models predict the maximum flange
draw-in at90° with respect to the rolling direction, the crystal modelsdict a nearly equal flange draw-in (it
and90° similar to the measurements. The mean error of the crystdeitaads less than 1.5 mm compared with
more than 2 mm in case of the reference model.

In the springback measurement, the lowest ring opens signify for H340LAD (Fig. 18- 19). This behavior is
not well predicted by the Barlat models. In fact far= 2 a slight closing is predicted. The simulation with the
crystal models always predicts an opening of the lowest rifilge maximum value for the ring diameter is also
located at the second highest ring (2). This is well estiohdte the crystal plasticity models. The Barlat 1989
model withm = 2 fails to predict this finding, while the model withh = 6 shows a dramatic decrease of the
opening for the highest ring.

The increase in the number of integration points does nat hay significant effect for this material. The results

of the springback evaluation are given in Table 5. The usétieedSO12-group for the isotropic background shifts
the maximal diameter to the third ring resulting in a dedr@aaccuracy of the predicted diameter distribution.
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Hencky-Strain in %

Distance from bottom 15mm | 35mm | 55mm | 75 mm
rinmm | rinmm | rinmm | rin mm
Meas. \ 79,7 \ 93,3 \ 95,7 \ 93,6
B2B7 75,2 94,6 99,5 101,6
B2B9 75,5 95,8 97,2 98,2
B6B7 75,5 95,9 102,4 83,3
B6B9 75,5 90,9 100,0 103,1
B1617 76,9 90,6 92,1 89,3
B16M7 76,7 92,6 93,1 89,3
B16M9 76,9 90,6 92,1 89,3
B32M7 76,9 93,0 93,6 90,1
B4817 77,2 90,8 92,3 89,1
B48M7 77,0 92,2 93,5 89,3
B48M9 77,2 90,8 92,3 89,2
B64M7 77,0 93,9 94,8 92,5
B8017 80,4 93,1 92,1 88,5
B8OM7 77,1 92,6 92,9 89,2
B8OM9 77,4 91,9 92,4 89,5
B96M7 77,2 92,7 93,4 89,6

Table 5: Results of the springback simulation with H340LAD
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Figure 12: Major strain in rolling direction (isotropic vdises component, H340)
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Figure 15: Major strain in rolling direction (ISO12 backgra, H340)
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Figure 16: Earing profile for models with isotropic von Misesnmponent (H340)
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Figure 19: Springback results of H340LAD: Distribution bétring radii: Barlat 1989 model (9 IP), crystal model
with von Mises background (9 IP), crystal model with ISO12kggound (7 1P)

Discussion. The evaluation of the model behavior during a deep drawilnggss and a subsequent cutting and
springback operation shows that the number of crystal®adth small has only a minor influence on the simu-
lation accuracy. The results of the strain distribution rearly equal for all configurations under consideration.
The application of the crystal plasticity model slightlypnoves the predictions compared to the conventional
macroscopic model.

With respect to the earing, the model with the lowest numlberystals had to be rejected, since it was not able
to reproduce the overall shape of the measured values. The isarue for the application of the ISO12-model
for the isotropic background (gray texture) of the initiekture. The resulting earing shapes are dominated by
this group, nearly independent of the other crystals. Thmukition accuracy with respect to the location of the
extreme values as well as the earing height is improved ygusiis model. The number of integration points
in the thickness direction of the shell elements does not lzay significant impact on the simulation accuracy
with respect to the strains and the earing results. Thetsearg within the range of other studies (Tikhovskiy et
al., 2008). In this study the influence of the texture gratigexamined. In the considered materials, the texture
gradient between the surface and the center are small &H006), so that the effort for the model setup can
be reduced without a significant loss of accuracy. It alsevsttbe influence of the different initial textures on the
earing shape, similar to the study of (Raabe et al., 2005).

Considering the springback results, it can be stated tleatrystal plasticity model is able to reproduce correctly
the qualitative development of the springback. While thel®a¥989 model is not able to predict the material

dependent opening and closing of the lowest ring, this isegeld by the new model. The overall error of the con-

ventional model is also higher than the one of the crystatjgily model. Comparing the error of the springback

prediction with the theoretical values that can be expefrtad the number of used integration points (Wagoner,
2007), we find that for the first material the maximum erronise=ding this limit, while in the second case the

deviation is less than expectable. This shows that in theptmntoading situation of a deep drawing process other
factors (such as the friction) also have an influence on thelation results. The increase of the number of inte-
gration points has also different results: While the resuftrioves for the first material, it is slightly less accurate
for the second. This corresponds also to the oscillationreaif the error (Wagoner, 2007).

The number of crystals does not have any significant impattt@simulation accuracy. Even with only 16 crystals,
the qualitative agreement of the simulation results is gdde application of the ISO12-group seems to shift the
position of the maximum diameter towards a less straine@iposwhich increases the accuracy for material 1
and decreases it for material 2.

154



Taking all these results into consideration, the crysdfitity model is able to improve the simulation accuracy fo
the given case with only 32 crystals for the approximatiothefisotropic background. The option to approximate
the background with the 1ISO12 group is less favorable sinegieh larger number of crystals would be needed
for the background approximation, and the individual weigfithese crystals would have to be of the same order
as the weights for the other crystals in order not to domittaesvolution of the anisotropy.

Limitations. Due to the application of the Pencil-Glide model for the fiadeformation, different shear stresses

in different glide systems, for instance due to twinning fi@ghand Jomas, 1990), cannot be simulated. Also the
formation of shear bands that influence the texture evaiufiuggan et al., 1999; Leffers, 1999) and, therefore,
this anisotropy is not included in this model.

The Taylor assumption that is used for the homogenizatianédble to accommodate inhomogeneous deformation
fields that can be observed in real materials (Boas and Hargse1948). Also the influence of the orientation of
neighboring grains on the deformation mode cannot be destivith this model. The textures simulated with the
Taylor assumption tend to be sharper than the experimeskalres and develop stable components such as the
Taylor component which cannot be observed (Dawson and Béautb98). The study by van Houtte et al. (2005)
shows also the lack of this model in the course of the devedoprof rolling textures.

The model uses a small group of crystals with volume frastiarhich are not equally distributed. This can lead to
an overestimation of the influence of certain crystals orotrerall model behavior, as observed for instance with
the ISO12-group crystal. This negative influence, howdseninor, as long as the volume fractions of the crystals
have the same order of magnitude. The use of the isotroplgbawnd can also introduce problems since this part
of the model remains isotropic under any deformation precé&is is in contrast to the real material, in which
the isotropic background consists of a large number of atyghat can develop a certain texture and therefore
anisotropic material properties.

5 Conclusions

The study has shown how crystallographic information caimbarporated into a continuum mechanical modeling
of sheet metal forming. Based on a specific optimization mehea low-dimensional description of the texture
is obtained. The model is able to increase the simulatiomracy for a typical deep drawing process with a
subsequent springback evaluation. The simulation reatétin good agreement with the measurements, if at least
32 crystals are used. For the model identification, a texteasurement is needed in addition to the conventional
tension tests in three directions of the blank. Thereftremeasurement effort is not increased dramatically. Even
with such a reduced modeling, the computational effort carag with the Barlat 1989 model is increased by two
orders of magnitude. Therefore, such a model will be avkdlabthe near future only with parallel computing as
well as for mid size problems.
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