TECHNISCHE MECHANIK, Band 28, Heft 1, (2008), 3 — 12
Manuskripteingang: 31. August 2007

Experimental and Numerical Investigation of Size Effects in Polyurethane
Adhesive Sealings

M. Johlitz, H. Steeb, S. Diebels, J. Batal, W. Possart

In our contribution we present an extended continuum-based material model which is able to capture size effects
in adhesive bonds. The model is based on the introduction of a scalar-valued structure parameter and its related
postulated balance equation. On the experimental side we perform shear tests on polyurethane bonds of anodised
aluminium by using different shear rates and different thicknesses of the bonded joints. The results of these shear
tests show a thickness-dependent stiffness behaviour of the specimens. Finally the obtained experimental data are
Jitted with the extended material model. The introduced model parameters are identified by using an optimisation
tool based on biologic evolution strategies.

1 Introduction

Adhesives are able to produce boundary layers when they contact substrates (Sanctuary et al., 2003; Kriiger et al.,
2004; Bouchet et al., 2002; Bouchet and Roche, 2002; Fata, 2005). There are different physical reasons for these
boundary layers which are not yet understood in detail. However they can have a significant influence on the
effective mechanical behaviour of the joints which, in our case, is reflected in the form of a size effect thinner is
weaker as observed by several shear experiments, cf. Diebels et al. (2007). These experiments were performed
by using anodised aluminium substrates which were glued together with a polyurethane (PUR) composed of three
monomers from the Bayer AG. Different bonding thicknesses from 78 pm up to 2270 pm were investigated. Al-
though this polyurethane elastomer shows a typical rate-dependent viscoelastic material behaviour, we restrict
discussion to the basic elasticity in this contribution. The rate dependent behaviour of the adhesive layers will be
investigated separately in an upcoming paper. Recapitulating, one can say that the macroscopic stiffness of bonds
may depend on their thickness, on the substrate and on the surface treatment thereof. This renders the traditional
description of bonded joints mechanical behaviour with macroscopic bulk material models impossible.

Therefore we have developed an extended phenomenological macroscopic material model which is able to capture
the above described phenomena. The model is based on the introduction of a scalar-valued structure parameter
% and its related balance equation. This structure parameter describes local properties without going into detail
and without the need of knowing the processes in the microstructure respectively. Conceptually the modelling ap-
proach with an additional degree of freedom is based on the work of Capriz (1980), Capriz et al. (1982), Svendsen
(1999, 2001), Steeb and Diebels (2004) and Diebels et al. (2005, 2007). Hence the structure parameter describes
the observed size effect in an abstract manner and it controls the mechanical stiffness behaviour of the bond. For
very thick bonds the bulk value of the used PUR is achieved, for thin bonds the boundary layer is dominating the
material behaviour as will be shown in the following investigations. The introduced model parameters are at least
identified by solving the inhomogenieous boundary value problem in combination with a parameter identification
tool based on biologic evolution strategy methods, cf. Rechenberg (1973) and Schwefel (1995). The paper closes
with a conclusion and an outlook.

2 Sample Preparation, Setup and Experimental Results

In this chapter we introduce the sample preparation and the experimental setup of our shear test.

The polymer is a two-part system formed by polyaddition of Bayer Desmodur CD® (89 % diphenylmethane-4,4’-
diisocyanate, 11 % urethoneimine triisocyanate additive) with a polyol mixture of Bayer Desmophen 2060 BD®
(linear polypropylene ether diol) and Bayer Desmophen 1380 BT® (branched polypropylene ether triol) in the
stoichiometric ratio of isocyanate (NCQO) and hydroxyl groups, cf. figure 1 for chemical structures in detail.
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Figure 1: Diphenylmethane-4,4’-diisocyanate (upper left), linear polypropylene ether diol (lower left) and
branched polypropylene ether triol (right)

The components are stored and mixed in desiccated air within a glove box to avoid parasitic reactions of the
isocyanate groups with water. After thoroughly stirring the components, the batch is vacuum-degassed at 2 torr
for 10 minutes. Testing this step with the single components, no significant mass loss was detected. The resulting
mixture is homogeneous and free of bubbles.

The chemical reaction of Desmophen 2060 BD® with Desmodur CD® results in linear chains while Desmophen
1380 BT® contributes cross-links because of its trifunctionality. Hence the mechanical behaviour of the polymer
glue can be adjusted by the mixing ratio of triol and diol. In this case we set the ratio of functional groups to
OHyriol @ OHgiol = 80 : 20. The resulting material behaviour of the polymer can be described as a typical
viscoelastic elastomer at room temperature.

Figure 2: Preparated shear sample (left) and experimental setup of the shear test (right)

For the preparation of PU adhesive joints, aluminium blocks (AIMg3) are spark-eroded into halves (cf. Fig.
2). The resulting surfaces have an excellent fit and are free of burs. The halves are ultrasonically-degreased in
acetone, etched (1-molar NaOH, 10 min.), pickled (20 % HNO3, 1 min.), rinsed with distilled water and ethanol,
and finally vacuum-dried in an oven at 120° C. The samples are then anodised for 2 hours in 5 % oxalic acid at a
current of 0.1 A/cm?. During anodisation the acid was chilled to approximately 35° C. After further rinsing and
vacuumdrying, spacers are positioned between the non-bonded surfaces. The halves are then prefixed with screws.



In this state the width of the gap between the halves was precisely measured with a Quadra-Check microscope.
Finally, before bonding, the prepared shear samples were kept in dried air within the glove box for 1 day. Thus,
adsorbed water from the surface dried. The joint was then formed with the above PUR mixture, vacuum degassed
twice, cross-linked at RT for 72h and post-cured at 50° C for another hour. 34 specimens were made, having
bonding thicknesses between 78 pum and 2270 ym. The maximum deviation in parallelism of the joints was 1.5%.
The basis of the experimental investigation is a frame shear machine RS5 from the company GIESA. Since this
machine has no sufficient time resolution (only 1 Hz) it was enhanced by a custom made sensor system. Figure 2
(right) shows the experimental setup with all components. A force sensor with a range of 10kN at a resolution of
1 N and an inductive displacement sensor with a range of 2 mm at a resolution of 1 um are fixed in the centerline
of the sample. They are able to transfer data with a sampling rate of up to 1 kHz. Consequentely, the effective
shear strain vy can be calculated by the ratio of the measured deformation v and the bond thickness 4. Furthermore
the effective shear stress 7 is calculated by the ratio of the measured force f and the area of the adhesive joint
A. At first, the relation between constant shear rates and the bond thickness was investigated in order to define
and calculate thickness-dependent constant shear rates which do not activate the time dependency of the material.
Figure 3 shows a part of the obtained results for illustration. In the left graph one can see the experimental data
of the stress-strain behaviour of the PUR under isothermal and quasi-static conditions. The right graph shows the
calculated slope of all obtained stress-strain lines which is defined as the effective shear modulus yi.p;. These
effective moduli ji.¢p == 07/07| =g are plotted versus the bond thickness A. Both pictures perform a significant
size effect in the form thinner is weaker. To simplify matters the received relation between the effective modulus
and the bonding thickness was fitted mathematically via a nonlinear regression as seen in figure 3, right (solid line).
This approach will be helpful in the parameter identification procedure as will be demonstrated later.
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Figure 3: Experimental results: Stress-stain behaviour of different samples for the basic elasticity (left) and effec-
tive shear modulus versus bonding thickness (right)

As a main result from the experimental investigation we find a strong size effect in the form thinner is weaker, i.e.
the effective stiffness is a function of the layer thickness. Bulk properties are obtained only if the layers are 2 mm
or thicker.

3 Modelling Aspects

In this chapter we present a phenomenological continuum mechanical model which is able to describe the above
mentioned size effects.

The starting point are the experimental results and characteristics of the bulk material. From quasi-static tests
the bulk behaviour is characterized to be hyperelastic. The model parameters are obtained from uniaxial tension
tests and from shear tests performed on specimens with a thick poylurethane layer (A > 2000 ym) to diminish
the influence of boundary layers near the substrates in relation to the stiffness of the complete bond. In this case,
the parameters can be identified by using a commercial fitting tool with respect to the analytical solution of the
homogeneous boundary value problem. Afterwards we focus on the experimental results of the shear tests which
show a significant strong size effect in the form smaller is weaker. It becomes evident that a classical continuum
mechanical theory is not able to model this effect. Extended continuum theories in the meaning of Eringen (1999)



also only allow to model size effects in the form smaller is stiffer. Our experimental results require the modelling
of a weakening effect so that we present an exended continuum mechanical model based on the introduction
of a dimensionless scalar-valued structure parameter x(x,t) and its postulated balance equation. This structure
parameter abstractly summarises the effect of the local processes taking place close to the surface of the substrates.
The advantage of such a phenomenological approach is the fact that it does not require a detailed knowledge of the
physical and chemical processes governing the formation of the boundary layer. Furthermore this approach is able
to model both forms of size effects depending on the choice of the boundary condition of the structure parameter.

The model has two primary variables, the vector-valued displacement field u(x, ¢) and the scalar-valued structure
parameter k(x, ). For each quantity a balance equation is postulated. This yields the balance of momentum

divT = 0 (D

and an additional balance for the structure parameter «

divs + & = 0. Q)

In this connection we restrict ourselves to the quasi-static case under isothermal conditions without considering
long-range effects for both quantities. The symbols introduced in (1) and (2) are the Cauchy stress tensor T, the
vector-valued flux S related to x and a production term 4. Note that equation (2) possesses the same structure as
the balance of equilibrated forces introduced by Goodman and Cowin (1972).

There are different possibilities to motivate the above described additional balance. Another approach is starting
with an extended balance of energy so that the additional balance (2) is derived from invariance requirements,
cf. Capriz (1980); Capriz et al. (1982); Svendsen (2001) or from thermodynamical considerations, cf. Steeb and
Diebels (2004). Here we strictly follow the approach of the postulate.

Following the usual arguments the balance of energy is split into a mechanical part and the balance of internal
energy.

pe=T:D+S grad i — kK. 3)

Herein p ¢ stands for the time derivative of the internal energy density and T : D is the stress power. A dot
represents a single contraction between the basis vectors of the tensor bases whereas a colon means a double
contraction. The coupling of the balance of internal energy with the balance of entropy including the Legendre
transformation yields the extended Clausius-Planck inequality

—pU4+T:D+S -grad s —hi>0. @)

In this inequality the term p 0 expresses the time derivative of the free Helmholtz energy density with W as the
specific free Helmholtz energy. Before evaluating the entropy principle it is necessary to choose a set of process
variables. This is done for the simplest way in the form

S = {B, k, grad k}. ®)

In (5) B is the left Cauchy-Green deformation tensor calculated from the deformation gradient F according to

B=F F', F=1I+ Gradu (©6)

Here the identity tensor I is introduced and the gradient operator Grad(e) is a measurement with respect to the
position vector X of the reference configuration whereas grad(e) is the gradient operator with respect to the
position vector x of the current configuration. The displacement field u = x — X is computed by the difference
of the two position vectors. The symbol ()7 refers to the transposed tensor.

The evaluation of the entropy principle corresponding to the classical argumentation of Coleman and Noll (1963)



is leading to the following set of constitutive equations which can be computed from the partial derivations of the
specific free Helmholtz energy function ¥ to
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In order to include the experimentally observed size effect it is necessary to choose an adequate free energy function
V. For numerical reasons, but without constraining the developed theory, we apply a volumetric-isochoric split
of the free energy function W, cf. Flory (1961). Due to the fact that our investigated polyurethane is almost
incompressible this approach does not cause unphysical results as demonstrated in the work of Ehlers and Eipper
(1999) for compressible materials.

The starting point is the multiplicative decomposition of the deformation gradient F into a volumetric and an
isochoric part, cf. Flory (1961), according to

F-J'F & F=J 3F, (8)

whereas det F = 1 and J = detF = +/det B stands for the Jacobian. Hence the complete volumetric defor-
mation is described by the term J 3. The computation of the isochoric left Cauchy-Green tensor B and its related
isochoric first invariant Ig results in

B—J B Ig=J 31g. ©)

The free Helmholtz energy density has to be chosen according to the experimental results. For simplicity we opted
for an additiv decomposition, cf. Diebels et al. (2007).

pO\Ij - \Ijisa(IB) =+ \Ijval(*]) =+ \Ijstruct(’{a grad ’{) =+ \chouple(’{a IB) (10)

The first term on the right side of equation (10) represents the standard free energy density term of the incompress-
ible Neo-Hooke material

Wiso = %/‘L (TB - 3)7 (11)

while

Uy = 2K ((J — 1)? + (InJ)?) (12)

is a polyconvex volumetrical extension term formulated in the Jacobian J. In this context we introduce the bulk
modulus K and the shear modulus ;¢ as material parameters describing the mechanical bulk behaviour of the
polyurethane. For quasi-incompressible materials K has to be much larger than the shear modulus ;.. One can say
that it acts like a penalty term.

The mathematical expression concerning the structure parameter « and its gradient grad x is assumed to be as
simple as possible, i.e. a quadratic ansatz is chosen:

Uaruct = 3 ak’ + & (grad k). (13)

Equation (13) introduces the additional model parameters o and £. Furthermore, the most important part of the
free Helmholtz energy function is the coupling term which allows to combine the investigated balance equation on
a constitutive level. This part is chosen to be



\chouple = 6(¢H - 1) (TB - 3) (14)

introducing further model parameters 6 and ¢. The motivation of this term becomes clear when evaluating (11) —
(14) according to (7). This yields the constitutive equations for the Cauchy stress tensor T, the flux vector S and
the scalar production term 4 in the following form

T = J'GKW? —J+WnI+ (g + 26(¢" — 1)) Biso),
S = Jl¢grad &, (15)
A = —Jfl(ou{Jr(S(b” In (I —3))

Note that the equations in (15) are formulated with respect to the current configuration. Here we make the re-
strictions that the term p + 2 (¢" — 1) has to be greater than 0 not to loose the stiffness of the system and that
the parameter ¢ has to be greater than 1. The second order tensor B;;, is the abbreviation for the mathematical
expression

Bio = B-1Igl =J ¥ B-1J 3Igl. (16)

By studying the constitutive equations one can give a first explanation of the functionality of the structure parameter
 and its related equations. As can be seen k is coupling inside the macroscopic material law. This means in detail
that x specifically influences the macroscopic deformation measure. Once the structure parameter equals O there
is no influence and bulk behaviour is obtained. For k > 0 and x < 0 we get decreased and increased stiffness,
respectively.

4 Numerical Realisation and Parameter Identification

In this section we briefly describe the numerical implementation of the extended material model. For details con-
cerning the numerical implementation into a coupled Finite Element framework we refer to the work of Steeb and
Diebels (2004).

The balance equations (1), (2) as well as the constitutive equations (15) lead to a set of coupled differential equa-
tions for the displacement field u and for the structure parameter <. Both Dirichlet and Neumann boundary
conditions can be prescribed on the boundary I' for the variables u and . The specification of the boundary values
entails the following standard mathematical expressions

u = unonl% ad t = tonlYy
, (17)
Kk = KRonl% and s = 35 on 'y
with
LUK =THUTR =dB  with THENTR=0 and TENI{E=10 (18)

Starting with the balance equations (1), (2) the weak form results from mathematical considerations for the balance
of momentum in

/T:gradéudV:/ t-duda, (19)
B aB

and for the additional balance of the structure parameter in
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with the test functions du and §x respectively. These weak forms were implemented in the finite element solver
PANDAS, Ehlers and Ellsiepen (1998), while solving them numerically with a coupled multifield Galerkin finite
element method, Steeb and Diebels (2004), in combination with the constitutive relations (15).

In the present case, we prescribe the usual Dirichlet and Neumann data for the displacement field u according to
the corresponding shear experiments. For the field of the structure parameter x we prescribe only Dirichlet bound-
ary conditions in the form £ = 1 or K = —1 subject to stiffening or weakening size effects which are observed
in the experimental investigations. Here we choose k = —1 at the boundaries close to the substrates meeting the
observed weakening effect. Therefore, the dimensionless value x characterises the properties of the adhesive bond
between the polymer and the substrate and its influence with respect to the boundary layer. The assumption of
the values of the Dirichlet boundary conditions of the scalar structure parameter is arbitrary. Therefore k = —1
characterises PUR on anodised aluminium. We intend to use modified values for the boundary conditions of the
structure parameter when using substrates or other treated surfaces. Note again, that the phenomenological ap-
proach does not require a detailed explanation of the physical and chemical processes taking place in the boundary
layer near the substrates.

Finally the presented model has to be adapted to the experimental data given by the performed tests (cf. figure 3).
Data were obtained in uniaxial tension tests and in shear tests.

The strategy of the identification is a two-step procedure: First, the bulk parameters ;2 and K' > p are determined
from tension tests and from shear tests for very thick adhesive sealings.

Second, the additional model parameters «, &, § and ¢ are determined by using the data which we obtained from
the shear tests in the form of a size effect. The procedural method will be explained after a short introduction into
the used parameter identification tool.

In this paper we use a flexible tool for the identification based on a genetic algorithm, cf. Schwefel (1995). Starting
point of the procedure is the generation of N sets of parameters P; = {ay, &;, 0; ¢; } which are chosen arbitrarily.
These parameter sets are the so-called parents. For each of the parents the model is evaluated according to the
boundary value problem which corresponds to the performed experiment. An objective function () is defined as
the sum of the squares of differences between measured data f.., and computed data f,,,,q4¢:, that is

Q = > (feup = Frnoaet(Pi))*. @1)

K

Our goal is to minimise the objective function ¢ with respect to the model parameters P. Therefore, a certain
number M of the NV parents is chosen leading to the smallest values of ¢). From these parents a new generation is
generated which is called children. The children are generated according to principles of evolution, i. €. parameters
of different parents are re-combined, some of the parameters are slightly changed, some are chosen arbitrarily by a
random number generation. If N children are generated these children form the next generation and the algorithm
starts again. The procedure is continued until the objective function reaches its global minimum.

In our case, the parameter were identified as follows:

First of all we identified the shear modulus ;¢ = 1.70 MPa by using the data of the performed uniaxial tension tests
in combination with the analytical solution of this test. We took into account incompressible material behaviour
and a commercial fitting tool. Accordingly we made a numerical study of the influence of the bulk modulus
K >» p and found that K = 500 MPa is the value which is able to describe a nearly incompressible material
behaviour.

We verified these values by further investigations with our identification tool based on evolution strategies. There-
fore we set & = O for the whole domain and k¥ = 0 at the boundaries. This means that no boundary layer is
present which would be able to produce a size effect.

Then we generated six boundary value problems with the bonding thickness of 100 pm, 200 pm, 300 pm, 500 pm,
1000 pm and 2000 pm, respectively, close to the real shear experiments. The optimisation function was formulated
in the effective shear modulus . ;. Therefore we calculated the experimental values according to figure 3, right.
Accordingly the above described procedure was started. It turned out that the model parameter £ is not sensitive
with respect to the solution of the balance of momentum and that the additional balance of the structure parameter
is only controlled by the ratio of the parameter « to the parameter £. For this reasons the parameter £ was fixed
and set to £ = 1 MPa.

Following, the procedure was started again and the optimum output of the remaining model parameters «, &
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Figure 4: Effective shear modulus fi. ¢ r [MPa] versus bonding thickness & [pm], comparison of the experimental
data and numerical simulation.

and ¢ was found after 70-100 generations. The values were found to be o = 35000 MPa, § = 1.82 MPa and
¢ =1.89[—].

Hence, we simulated the shear experiments with the extended model including the identified paramters and com-
pared it to the experimental results. Figure 4 shows the effective shear moduli p.f; versus the corresponding
bonding thickness for the experiments and for the simulations. One can say that the model excellently describes
the observed size effect. The extrapolations of the simulations to a bonding thickness of 2500 ym and 80 pm,
respectively, also shows an adequate agreement with the experimental data.

5 Conclusion and Outlook

It is well-known from literature that the modelling of adhesive bonds is very difficult with respect to the thickness-
dependent stiffness behaviour of such a joint depending on the used polymer (glue) and the substrates. The in-
fluence of the surface treatment of the joining partners also significantly influences the mechanical behaviour of a
sealing.

In the present contribution we investigated a polyurethane system with commercial components from the Bayer
AG which was applied to anodised aluminium substrates. We prepared adhesive joints with a bonding thickness
from 78 pm to 2270 pm. With these specimens shear tests up to finite deformation were performed. The exper-
imental results show a strong size effect in the form thinner is weaker. To express this observed phenomenon in
material parameters means that the effective shear modulus of a polymer film between two substrates decreases
with the thickness of the bond.

In order to model this experimentally observed effect we developed a phenomenological approach via a scalar-
valued structure parameter  and its related balance which is able to describe local microstructural effects in an
abstract manner. The extended continuum mechanical material model allows to map stiffening and weakening
effects due to the choice of the boundary condition of the structure parameter.

The parameters of the model were identified by a tool which is based on biologic evolution strategies. This pro-
gram was used in combination with a nonlinear finite element analysis. Finally, this combination was appropriate
to identify the model parameters as shown in numerical simulations.

Future work will focus on the viscoelastic material behaviour of the bonded joints in conjunction with the size
effect. Experiments have already shown that this size effect is not only governing the basic elasticity part of the
investigated polyurethane. In fact, first experiments have attested that the time-dependent viscoelastic material
behaviour is also thickness-dependent.

10



Acknowledgement

The authors acknowledge the financial support by the German Science Foundation DFG under the grants Di 430/5-
1 and Po 577/17-1.

References

Bouchet, I.; Roche, A. A.: The formation of epoxy/metal interphases: Mechanisms and their role in practical
adhesion. J. Adhesion, 78, (2002), 799-830.

Bouchet, J.; Roche, A. A.; Jacquelin, E.: How do residual stresses and interphase mechanical properties affect
practical adhesion of epoxy diamine/metallic substrate system. J. Adhesion Sci. Technol., 12, (2002), 1603—
1623.

Capriz, G.: Continua with Microstructures. Springer (1980).

Capriz, G.; Podio-Guidugli, P.; Williams, W.: On balance equations for materials with affine structure. Meccanica,
17, (1982), 80-84.

Coleman, B. D.; Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch.
Rational Mech. An., 13, (1963), 167-178.

Diebels, S.; Johlitz, M.; Steeb, H.; Possart, W.; Batal, J.: A macroscopic model of the interphase in thin polymer
films based on an order parameter approach. J. Phys.: Conf. Ser., 62, (2007), 34-42.

Diebels, S.; Steeb, H.; Possart, W.: Effects of the interphase on the mechanical behaviour of thin adhesive films —
a modeling approach. In: W. Possart, ed., Adhesion — Current Research and Applications, John Wiley & Sons
(2005).

Ehlers, W.; Eipper, G.: Finite elastic deformations in liquid-saturated and empty porous solids. Transport Porous
Med., 34, (1999), 179-191.

Ehlers, W.; Ellsiepen, P.: PANDAS: Ein FE-System zur Simulation von Sonderproblemen der Bodenmechanik.
In: P. Wriggers; U. Meillner; E. Stein; W. Wunderlich, eds., Finite Elemente in der Baupraxis: Modellierung,
Berechnung und Konstruktion, Beitrdge zur Tagung FEM 98 an der TU Darmstadt am 5. und 6. Mdrz 1998,
Ernst & Sohn (1998).

Eringen, C.: Microcontinuum Field Theories, Vol. I: Foundations and Solids. Springer-Verlag (1999).

Fata, D.: Epoxidsysteme im Verbund mit rostfreien Stihlen — Vernetzung und Alterung. Universitit des Saarlandes
(2005).

Flory, P. J.: Thermodynamic relations for hight elastic materials. Thin Solid Films, 57, (1961), 829-838.

Goodman, M. A.; Cowin, S. C.: A continuum theory for granular materials. Arch. Rat. Mech. Anal., 44, (1972),
249-266.

Kriiger, J. K.; Possart, W.; Bactavachalou, R.; Miiller, U.; Britz, T.; Santuary, R.; Alnot, P.: Gradient of the
mechanical modulus in glass—epoxy—metal joints as measured by Brillouin microscopy. J. Adhesion, 80, (2004),
585-599.

Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution
(1973).

Sanctuary, R.; Bactavatchalou, R.; Miiller, U.; Possart, W.; Alnot, P.; Kriiger, J. K.: Acoustic profilometry within
polymers as performed by Brillouin microscopy. J. Physics D: Appl. Phys., 36, (2003), 2738-2742.

Schwefel, H. P.: Evolution and Optimum Seeking. John Wiley & Sons (1995).

11



Steeb, H.; Diebels, S.: Modeling thin films applying an extended continuum theory based on a scalar-valued order
parameter — part I: Isothermal case. Int. J. Solids Structures, 41, (2004), 5071-5085.

Svendsen, B.: On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom. Con-
tinuum Mech. Therm., 4, (1999), 247-262.

Svendsen, B.: On the continuum modeling of materials with kinematic structure. Acta Mech., 152, (2001), 49-80.

Addresses: Prof. Dr.-Ing. Stefan Diebels, Lehrstuhl fiir Technische Mechanik, Universitit des Saarlandes und
Prof. Dr. -rer. nat. habil. Wullf Possart, Lehrstuhl fiir Adhésion und Interphasen in Polymeren, Universitéit des
Saarlandes, D-66041 Saarbriicken.

email: s.diebels@mx.uni-saarland.de

12



