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Kinematically Extended Continuum Theories: Correlation Between
Microscopical Deformation and Macroscopical Strain Measures

T. Ebinger, H. Steeb, S. Diebels

The present work investigates the correlation between atacopical deformation modes and microscopical de-
formation modes. Thereby, the macroscopical deformasarpresented by the strain-like quantities of the ac-
cording macroscopical continuum theory while the micrgscal deformation is expressed in the form of a Taylor
series expansion. The use of an energy criterion makessilgedo derive a quantitative relation between micro-

scopical and macroscopical deformation. The procedurgidiad to different kinematically extended continuum
theories on the macroscopical level. The investigation hedy to select an optimal macroscopical continuum the-
ory instead of choosing a theory based on phenomenolodisgwations, whereby the optimal theory ist that one,
which reflects the microscopical deformation behavioutt.b&ke microscopical deformation behaviour depends
on the topology of the microstructure under consideratibhus, the optimal theory is affected by the topology of
the microstructure.

1 Motivation

The deformation behaviour of a material body of dimendionith inherent microstructure of dimensiémrcan be
described either on a microscopical scale resolving thengéy of the microstructure with inherent microscopical
material parameters or on a macroscopical scale by an ajpgegontinuum theory. While the macroscopic
continuum theory assumes — as the name implies — that theiahatady is continuous, the theory may be extended
accounting for the discontinuity of the material body. Thienmscopical deformation can be expressed in the form
of a Taylor series expansion for the displacement figtd(x, )*, cf. Forest and Sab (1998); Forest (1999); Forest
et al. (2000).

From a macroscopical point of view, the volume under studyughbe relatively large to be representative in a
statistical sense. By contrast from a microscopical pdiniew, which motivates the Taylor series expansion, the
volume should be relatively small, so that the expansionbsatruncated after terms of a certain order while the
contribution of the higher order terms can be neglected.s@ening both aspects, the smallest material body is
investigated, which is able to reflect the basic deformatiemaviour. Accepting that this material body may not be
representative in a statistical sense, according to H@&7lwe call it Testing Volume Element (TVE). The TVE
is required to reflect the fundamental deformation behavadthe microstructure, but it does not necessarily have
to be representative allowing for smaller volume elementagared to a Representative Volume Element (RVE)
as discussed hy, e. g., Nemat-Nasser and Hori (1993).

Depending on the continuum model describing the deformatiehaviour on the macroscopical level, several
terms of the Taylor series expansion correspond to stilenguantities on the macroscopical level while other
terms are not reflected by the continuum theory. E. g., in #s2 of the standard Boltzmann continuum theory
only the linear terms of the expansion are considered on tmaacopical level while all terms of higher order
are neglected. Regarding that the selection of a macrasoopitinuum theory reduces the number of permit-
ted deformation modes, the question arises, which may bbakemacroscopic continuum theory for a certain
microstructure with known topology. Usually the macroscamntinuum theory is chosen based on phenomeno-
logical observations like, e. g., size effects. Sometirheshoice is motivated by the underlying local deformation
behaviour of the microstructure as, e. g., in the case ofujaammedia, where the Cosserat continuum theory
Cosserat and Cosserat (1909) is chosen according to tlserexdtion of the single grains. However, quite often
the macroscopical continuum theory is chosen based on pteraogical observations as in the case of foam-like
microstructures, where the Cosserat theory is used to reflecsize effects observed in material testing. If the

Imicroscopic quantities are marked by supersdrip}™, macroscopic quantities by supersciipt)? .

64



macroscopical continuum theory is chosen without conatitar of the microscopical deformation behaviour, it
may occur that the macroscopical continuum theory is abteftect deformation modes which are not observed
on the microscopical level, while modes seeming to be ingmbron that level are not considered on the macro-
scopical level. Obviously this will lead into difficultiesif identifying the material parameters of such a material
with inherent length scale, because a certain stiffnes$das assigned to a certain deformation mode not really
being sensitive.

The present work demonstrates that the selection of the@stecontinuum theory is affected by the microscopic
deformation behaviour of the TVE. Thereby, we restrict eluss to kinematically extended continuum theories,
which means gradient-based continuum theories, namelgabend gradientheory (Germain (1973)and the
micromorphic continuum theory including the restrictedes i. e., the Cosserat (Cosserat and Cosserat (1909))
or micropolar continuum theory and the microstretch theboy an overview of kinematically extended continuum
theories see Eringen (1999), Capriz (1980) and referentasbtberein. In the following we use the abbreviation
"MMM theories” introduced by Eringen (1999) for the micrompbic, microstretch and micropolar continuum
theories. However, in contrast to Eringen’s definition & thicrostretch theory, which allows only for an extra
volumetric deformation (scalar quantity), we refer to thienwstretch theory as the theory, which is able to reflect
an extra directional stretch deformation (vector valueaniity).

2 Microscopical Deformation

Starting point of the considerations on the microscopieetl is the assumption that the local displacement field
u™ (x, t) of a certain domain, which can be identified with the Testiofukhe Element (TVE), is expressed in
the form of a Taylor series expansion

u” (x,t) = (a1 +asxr+az3y+asz+asr?+asgy? +ar 2 +agry+agrz+apyz+
a1 @3+ oyt +an3 2 o a?y a5y 2+ g 2+ anray? + aqs y 22+
a192x2+a20xyz+a21x4+a22y4+a2324+ag4$2y2+a25y222+a2622x2+...)ex+

(51 +52$+ﬁ§y+54%+55$2+56y2+ﬂ722+5850y+59£€2+ﬂ10y2’+
B2+ Biay® + B3 2 + Brax® y + Bis vz + Bis 22w + Birxy® + Bisy 22+
Biozx? 4 Poo wy z + Por & + Poo y* + Bz 2t + Boax? y? + Pos y? 2% 4 Pas 222 + ... ey +

(m+rr+yytyztra’+r6y’ +y72° HsTy +y9rz oy et

Y12 +y2 9P + 32 Fyarty+ syt 2+ e 2t e+ r ey + sy 22+

Y19 22% + Y202 Y 2 + Y21 ¥t + Y20yt + Y03 2t +ypa Y + o5 Y2 22 Hyee 22 4. e,

1)
Ensuring that the terms of lowest order, the constant teregsesent the barycentric displacement of the center

of gravity S, so that in the case of neglecting all higher order termsadt lthe displacement of this characteristic
point is reflected correctly, the coordinate system is htdgust to that point, see Figure 1.

Figure 1: Cuboid TVE (dimensioris d andh) and coordinate system
For the further investigations it is assumed that the tagppland material parameters are known for the TVE.

Thus, the deformed configuration can be calculated acogridirseveral terms of the Taylor series expansion
(eq. (1)). However, physically it is not reasonable to alfowthe application of Dirichlet boundary conditions in
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the interior of the TVE. So the displacement field is only présd on the boundary of the TVE, which yields
from a mathematical point of view a well-posed system of équa. From a physical point of view this yields the
advantage that only observable quantities are used. Tieeatite between the application of the displacement field
to the boundary only, and application of the displacemeid &gactly in every point of the TVE may be clarified
even for a homogeneous TVE of Boltzmann tpwhile in the first case the ratio between tensile stiffness$ a
shear stiffness has a strong influence on the deformed caoatiig for terms of quadratic order and higher (modes
demonstrating a combined stretch and shear deformatiomicrascopical level), in the second case the deformed
configuration is completely prescribed and therefore iedelent of the topology and also independent of material
parameters.

The according deformation modes for termsjadirection are visualised up to order three in Figure 2.

constant terms

mo_ 2
U, = Q0 Y 2

Figure 2: Deformation modes . -direction up to terms of order three

2The Boltzmann continuum theory is the classical continuueoip with three degrees of freedom at the material point. Atiog to the
balance of moment of momentum the stress tensor is symmetric.
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3 Macroscopical Deformation

Within continuum theories, only energy consuming defofaratmodes are of interest. The deformation modes
without consuming energy are the rigid body modes, namayritfiid body translation and the rigid body rota-
tion. These deformation modes have to be eliminated fronTéytor series expansion because they cannot be
corresponding candidates for macroscopical deformatiodes always consuming energy.

It is obvious that the rigid body displacement is represgbiethe constant terms of the Taylor series expansion.

For instancev; # 0 yields a horizontal rigid body displacement according ®fitame of reference presented in
Figure 1. Eliminating all rigid body displacement modes bardone by the restriction

a; == =0. 3

The rigid body rotations cannot be detected directly, beeasuperposition of terms of the Taylor series expansion
is needed to identify these modes. Using a geometrical apprdahe rotatiop™ (x, t) of the displacement field
u™ (x, t) can be calculated by

™ (x, t) = % rot u™ (x, t). (©)]

In the case of a rigid body rotation modg!™ (x, ¢) has to be constant but not equal to zero. Thus, while the
"rot” operator has involved only first derivatives, the termsrdkrest have to be linear. Inserting linear terms
u™!m (x, t) of the displacement in eq. (3) yields the constant rotatield o™ " (x, t)

<Pm,con (X, t) _ % (73 _ 54) e, + % (()44 — ")/2) €y -+ % (ﬂQ — Cl{3) e,. (4)

That means that a rigid body rotation appearssit~ (4, ay # 2 Or B2 # a3. As a consequence the condition
for the elimination of rigid body rotations is

v3 = Ba,
Qg - Y2, (5)
B2 = aa.

Thus, using a geometrical interpretation of the linear &riiney have to be symmetric while the skew symmetric
part has to vanish, which can be formulated using index iootdty

m,lin
i

(x. t)e; = u""" (x, 1) e; (6)

u J

m,lin
i

wherebyu (x, t) are the coefficients of the displacement veattr'™ (x, t).

The split into symmetric and skew symmetric part is visuigh Figure 3 for the linear shear deformation modes
within thee,-e, plane.

Considering the restrictions from the rigid body motiorg temaining microscopical deformation modes can now
be related to the macroscopic deformation modes of sevenéihtium theories. This will be done in the following
for each continuum theory separately.

3.1 Boltzmann Continuum Theory

Within the standard Boltzmann continuum theory, the lirseat strain tensos (x, t) is calculated directly from
the displacement field (x, ) by
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m 1 , 1
uy' = Pox uT=§(a3+ﬁg)x UZ":—é(Oég—ﬁg)x
(symmetric) (skewsymmetric)
Figure 3: Split of shear mode into symmetric and skew symmpé#rt
1 T
e(x,t)= 3 (grad u (x, t) + grad® u(x, t)). )

Calculating the right hand terngfad u (x, ¢)” of eq. (7) by inserting the Taylor series expansion of thepliice-
ment fieldu™ (x, t) according to eq. (1) yields

grad (U™ (x,t)) = (e +2asz+...)e; Qept+(az+2asy+...)e, Qey+(ay +2a72+...) e, Qe+
(Bo+20sx+...)ey, Qe+ (O3 +20sy+...)ey, e+ (Bs+2072+...)e, Qe+

(e +2vmr+..)e; Qe+ (3 +2v%y+...)e. Qe+ (u+2772+...)e.Qe,
(8)

for the microscopical displacement gradient distributiorhe macroscopical counterpart can be calculated by
taking the volume average of the microscopial distributibine volume average is defined by

()= [ (o) ©)
Q

wherebyV is the volume of the TVE.

Assuming that the TVE deforms homogeneously and that the fa&the shape of a cuboid, terms of odd order
vanish due to symmetry when the volume average of the miopisal strain distribution is computed

v / Azx"dv = v /Ay dv = v /Az dv=0 with n=1,35 ..., (10)
Q Q Q

wherebyA is a coordinate independent coefficient. Keeping in minthtleehave introduced a barycentric frame of
reference within the TVE, the linear terms would always shnwithout any requirement on symmetry. However,
this does not hold in general for higher order terms of odeord

Thus, calculating the macroscopical displacement gradien

(grad u (x, t))™ = (grad u™ (x, t)) (11)

by volume averaging of the microscopical displacementigradields

68



(grad u(x, )™ = (az+ a1 b*+ G oed® + FFarh®> +...)e; @ e,

(as+ Fawh?+ 5 oub* + Hosd* + .. )e, ®e,
(a4+ia13d2+%a15h2+%0¢19b2+.~ ex®ez
(Bo+ 5 B11 0>+ 35 Bre d® + 15 Bir B + ...

)

)

)

Je, ® ey
(Bs+ 3 B12h? + &5 b’ + L Bisd> +.. ) e, @ e,

)

)

)

)

(12)
(Ba+ B3 d®>+ 5 Bis W2+ 5 Bob> + .. ) e, ®e,
(2 +31m b+ H5red®+ Hnrh?+...
(vs+ 1m2h? + H7ab® + 5 nsd*+ ...
(a+ T nsd®+ S msh?+ 519 b? + ..

e, Xe,

+ o+ o+ o+ o+

e, ey

e, e,

wherebyb is the width of the TVE intoe,-direction, d the height intoe,-direction, andh the thickness in the
direction of depthe, as shown in Figure 1.

There are different approaches to reduce the number of termg. (12), however, all of them yield the same
result. The simplest approach is the consideration thahtiterial body is intended to have an infinitesimally small
extension, thus the dimensiobsd andh tend to zero. The second approach isdhgiori assumption that only
terms of linear order may be reflected by the Boltzmann cantimtheory, and therefore setting all coefficients
of the higher order terms to zero. The third approach can éedaout by making numerical experiments for
the TVE: for a fixed macroscopical displacement gradieng.eas = L a1b? = Laed? = L arh? =

... = constant, the energy needed to achieve the deformed configuratiobeaalculated using a linear elastic
material law. However, the numerical results (shown in iBact) demonstrate, that the term of lowest order
always needs the lowest energy. Looking for the energeaticaimum to achieve the equilibrium state, the term of
lowest order is taken as the winning term chosen to refleathaoscopic deformation. As mentioned before, all
three approaches lead to the same reduction of the macioakdizplacement gradient

(grad u(x, t))Mred = e, Re, +aze, ® e, +ase; Qe+
Baey,@e, + Fze, e, + e, e+ (13)
V2e: Qe +13€e, Rey e, Re,.

Inserting this reduced macroscopical displacement gnadiieo eq. (7) yields the relation of interest between
macroscopical deformatiast”’ and microscopical deformation represented by the Tayliesexpansion

eM = aye,@e,+as e, Qey+ay e, e, + 0 e,0e,+ 03 e,0e,+ 31 e,Qe,+72 e,Qe,+y3 e,Qe,+v1e,Qe,

(14)

whereby the symmetry condition of the strain tensor is alydalfilled by the restrictions from excluding rigid
body rotations according to eq. (5). That means that therglependent entries of the strain tensor directly
correspond to the six linear deformation modes of the Teséoies expansion (originally 9 linear terms minus 3
rigid body rotation constraints).

3.2 Second GradientTheory

In the case of theecond gradiertheory not only the gradient of the displacement field is @ered (eq. (7)), but
in addition to this also the second gradienis regarded as a strain-like quantity

k = grad (grad u). (15)

Inserting the displacement field in the form of the Tayloiegexpansion into the right hand side of eq. (15) yields
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grad (grad u™ (x, t))
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for the microscopical second gradient of the displacemeftt.fiThe macroscopical second gradient again can be
calculated by taking the volume average (eg. (9)) of the msimopical distribution

(grad (grad u (x, t)))M = (grad (grad u

" (x, 1)) 17

Using the same assumptions as before in the case of the Boitzcontinuum (cuboid shape of homogeneous
TVE) in connection with the considerations reducing the hanof terms (small size of TVE or a priori restriction
to quadratic terms now or energetical considerations),ntheroscopic curvature tensor in dependence of the
coefficients of the Taylor series expansion is found to be

205, Ve, Qe+ g€, ¥e, Vey+ajpe, Ve, ¥e,+ age; QW ey Qe+
2a6em®ey®ey+ g€, ey Ve, +ajpe; Ve, de,+ age, ¥e, Dey+
2a7ew®ez®ez+265ex®ew®ex+ ﬁ89m®ex®ey+610ex®ex®ez+
689x®ey®ex+2ﬂﬁew®ey®ey+ ﬂQe$®ey®ez+ﬂloex®ez®ex+
ﬂQex@)ez ®ey+26’7ex®ez®ez+2’y5ez®em®e$+ Y8 €x ®er®ey+
’Vloem@em@ez"’_ ’YSem®ey®em+2’YGez ®ey®ey+ 799m®ey®ez+
’Vloe:r@ez@ea:'i_ 796m®e2®ey+2fy7e$®ez®ez-

(18)

Due to Clairaut’s theorem (also called Schwarz’s theordms)tensor of third order is symmetric with respect to
the second and third base system. Thus, from the 27 overdficdents only 18 are independent, which directly
correspond to the 18 independent quadratic terms of th@iagties expansion.

3.3 MMM Theories

A completely different approach is chosen to identify thecaiding terms of the Taylor series expansion within the
MMM theories, which means the micromorphic continuum tlyesnmd the restrictive special cases. Based on the
assumption that the extra deformation is strongly relabetthé macroscopic deformation, the appropriate modes
of the expansion can be selected being able to reflect thig dgformation. To be more specific: the extra stretch
deformation, called (directional) microstretch, shoulsbarepresent directional volumetric deformation like the
macroscopic stretch mode, but it should be of course indépdrof the macroscopic mode. The same holds for
the extra shear mode called microshear and the extra notzdited micropolar deformation.

A non- homogeneous extra stretch into horizontal directiam be represented by the ternf§ = aq; 23, u* =
a5z y? andu™ = a6 2 22, However, splitting the second and third term into a voluieind a deviatoric part,
only the volumetric part is able to represent the directioniarostretch. The remaining modes being able to reflect
microstretch into horizontal direction are presented guFeé 4.

An energy criterion is used to select from the available nsdtiat one which will reflect the extra stretch defor-
mation. To make the modes presented in Figure 4 compard&eleoefficientsy; are chosen in such a way, that
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a) microstretch (1) b) microstretch (2)

1
3 u?:i(a15xy2+a16wz2)

ult = T
Figure 4: possible deformation modes reflecting micrositr@ito horizontal direction

a) microshear (1) b) microshear (2) c) microshear (3)

1 1 1
ul' = 3 (a12 + B11) y° uy' = B (a17 + Bis5) 2%y uy' = B (20 + Brg) y 2
um_l(a 3 m_l 2 m—l 2
v =73 12+ Bz Uy —5(0‘174'515)95?/ Uy —§(a20+516)$2

Figure 5: possible deformation modes reflecting microshéthin thee, /e,-plane

the macroscopic stretch derived by calculating the voluveesaye of the local stretch distribution is equal for both
modes. Calculation of the energy using a Finite Element @feee shows, that the mode on the left of Figure 4
is about two times stiffer than the mode on the right. Of ceutkis depends on the chosen material parameters,
especially on the relation between stiffness with respedtitetch and shear, but for a realistic set of material
parameters the left one will always be stiffer. Thus, logkior the energetical minimum to deform the TVE, the
deformation mode on the right hand side of Figure 4 is choseeftect the directional microstretch.

Analogously the same can be done for the microshear. Lockingrms able to represent a shear deformation
within thee, /e, -plane, which is not identical to the macroscopic shearmedtion, one finds the terms visualised
in Figure 5.

Again the energy criterion is used to choose the inhomogendeformation mode consuming the lowest amount
of energy as the deformation mode reflecting microshearreflyeto make the deformation modes comparable,
they are normalised in such a way that the macroscopic sleéamdation calculated by the volume average of the
local distribution is equal for the different modes. FE cddtions show that the first and third mode presented in
Figure 5 are about 1.5 times stiffer than the second modégasdhie second one is chosen to reflect the microshear
deformation.

Finally, this approach is also carried out for the micropalaformation. The deformation modes reflecting mi-

cropolar deformations should be closely related to the slgwmetric macroscopic shear deformation, whereby
it does not matter that this is a rigid body mode. The modesatiflg this rotational effect and being independent
of the macroscopic skew symmetric shear mode are presenkidure 6.

Performing a FE analysis to determine the energy neededhéode¢formation, whereby the modes are now nor-

malised so that the macroscopic skew symmetric shear dafanmcalculated by the volume average of the local
distribution is equal for the three modes presented in Eigurthe second mode of Figure 6 is about two times
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a) micropolar (1) b) micropolar (2) c) micropolar (3)

1 1 1
uy = 3 (o2 — Bi1) y° uy' = 3 (17 — Bis) 2y uy' = 3 (20 — Br6) y 2°
um——l(a — Br1) um——l(a — fis)x 2 um——l(a -3 ):cz2
y — T ld12 11 y — g laur 15) LY y T g \?20 16

Figure 6: possible deformation modes reflecting micropdédormation within thee,, /e, -plane

microstretch microshear micropolar

1
up =5 (15 Y + argx 2°) Uy = 3 (a17 + Bis) 2’y Uy = 3 (o2 — Bi1) y?
m o__ 1 2 m o__ 1 3
Uy = by (a17 +ﬂ15)my Uy = ) (0612 - /311)33

Figure 7: modes reflecting micromorphic extra deformation

stiffer than the first one, while the third one is about thieses stiffer than the first one. Thus, the first one is
chosen as the mode reflecting the micropolar deformation.

Comparing the underlying terms used for the representatidhe microshear and micropolar deformation, it is
interesting, that they are not basedtba same terms of the Taylor series expansion in terms offthengtric part
reflecting the microshear deformation and the skew symmmp#it reflecting the micropolar deformation.

Figure 7 shows an overview of the extra deformation moded imsthe following to reflect the extra higher order
deformation within the micromorphic continuum theory wilte restrictions due to symmetry of the microshear
mode and skew symmetry of the micropolar mode

a7 = Bis and arp = —p11. (19)

Within the micromorphic continuum theory these higher ordedes are reformulated by a total of 9 independent
variables. Using these variables in addition to the diggtant fielu as the master field within a FE formulation,
also the gradient of the independent variables has to ekist.the present approach that means, that also the
gradient of the micromorphic deformation modes has to beiged by the Taylor series expansion.

The simplest way to generate the required gradient modeg istégration of the higher order modes into the
several directions, which yields terms of fourth order. Tésults are presented in Table 1 for the microstretch
mode, in Table 2 for the microshear mode, and in Table 3 fontleeopolar deformation. Thereby, utilising the
symmetry and skew symmetry of the modes, the terms are esquressing new scaling factods.
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microstretch mode: ul = ay (zy? + x2?%)

. . . . 1 1
gradient mode inte,-direction: u”* = ap (5 x?y? + 5 z? 2?)

. . . . 1
gradient mode inte,-direction: ul' = ac (§ ryd + zy2?)

. . . . 1
gradient mode inte.-direction: u™ = ap (zy? 2 + 3% 23)

Table 1: gradient modes of horizontal microstretch

microshear mode: ut =apr’y u =apry’
. . . . m 1 4 m 155
gradient mode inte,-direction: u}' = ap 3 Yy uy =ap 3 7y

. . . . 1 1 .
gradient mode inte, -direction: ;" = ac 3 2y ul =g 3 zy?

gradient mode inte.-direction: u}' = aya*yz  w)' =apry’z

Table 2: gradient modes of microshear within thg'e,-plane

micropolar mode: u™ = ary? ut = —oga®
. . . . 1
gradient mode inte,-direction: ' =ayzy®  ul' =—ay 1 zt
. . . . 1
gradient mode inte,-direction: u}' = ax 1 yt uy' = —ag 3y
radient mode inte.-direction: w” =apy®z W = —ap 2’z
i Y Y

Table 3: gradient modes of micropolar deformation withia¢h/e,-plane

At the moment, terms of second order are not used to reprasmitromorphic continuum. However, the terms
of second order are able to describe similar effects as thestef fourth order. While the terms of second order
describe the gradient of the macroscopic first order ternesfdurth order terms describe the gradient of the mi-
croscopic third order terms. Thus, instead of using fourttenterms to describe the gradient of micromorphic
micromotion, the second order terms may be used withoutgithgrthe overall behaviour. This is in good agree-
ment with the energy criterion used before for the seleadomicromorphic modes: the energy per volume (and
therefore also the stiffness) of the second order termeasas quadratically with the size of the TVE while the
energy per volume of the fourth order terms increases aadigtiwith the size in the case of a homogeneous TVE.
That means that comparing modes of second order and foutér describing the same gradient-like effect, the
second order terms behave much softer in the case of a hoemgemVE. The second order gradient modes can
be generated by integration of the macroscopic deformatiodes into the several directions. Thereby it does not
matter that the macroscopic skew symmetric shear mode Hasitdegrated, because the skew symmetric shear
is indeed a zero energy mode, but the integrated second miakbgs are not zero energy modes. The integrated
modes derived from macroscopic (linear) deformation madegpresented in Tables 4, 5 and 6.

Only 18 independent modes of second order are availables, Tinelicalculated gradient modes of second order are
not linearly independent. E. g., superposition of gradientles of macroshear and skew symmetric shear mode
into e -direction yields the gradient mode of the macrostretch éntdirection. In principle two gradients can be

of second order terms while the third one has to be of fourtleioto guarantee independency. There is no special
argument to take a certain set of gradient modes as the tbésije mode, which means as that one with terms
of fourth order. However, it seems to be reasonable to takeaiocount the gradient modes of the macrostretch
mode, so that there is no a priori coupling between displacgsintoe; -direction and displacements intg-
direction. Furthermore, this has the advantage, that agaenergy criterion can be used to decide whether the
terms of second order represent the macroshear mode oratieigr modes of the skew symmetric shear mode.
Due to the relationship between the macroscopic symmatdcsew symmetric modes, for fixed the modes
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macrostretch mode: ul' =aax
. . L m 1,
gradient mode inte,-direction: u!' = apg 3 T

gradient mode inte,-direction: u}' =aczy

x

gradient mode inte,-direction: u!* =apxz

Table 4: gradient modes of horizontal macrostretch

macroshear mode: ul' =agy uy' =apT
. . . . 1
gradient mode inte,-direction: u})' =apzy uy' = ap 3 22
. . . . 1
gradient mode inte,-direction: u}' = ag 3 1> uy' = agry
gradient mode inte.-direction: ' =apyz uy' =apzz

Table 5: gradient modes of macroshear withinghge,-plane

skew symmetric shear mode: ul' =ajy uy' = —arx
. . . . 1
gradient mode inte,.-direction: " = ax = —ay = x>
z Y y 9
. , R, 1,
gradient mode inte,-direction: v}’ = ax QY uy=-akwy
radient mode inte-direction: u' = aryz Ul =—arcz
o Yy Y

Table 6: gradient modes of skew symmetric shear deformatithin thee, /e,-plane

are comparable. Thus, within a FE analysis the energy fogthdient modes according to the symmetric and

skew symmetric part can be calculated. The results showthibagradient modes according to the symmetric part
are always stiffer than the modes according to the skew syriopart. As a consequence modes of second order
are used to represent the gradient of the micropolar detamehile terms of fourth order are used to represent

the gradient of the microshear deformation.

Up to now the presented approach is restricted to quaktatigults describing the relation between certain modes
of the Taylor series expansion. For quantitative result®xplicit reformulation of the deformation modes is
needed. This step of reformulation is independent of theipus step of mode selection. Thus, there is again a lot
of freedom to choose an appropriate rule for the reformataita the form of new independent variables. The rule
presented in the following is only one possible choice anuthgrs.

Keeping in mind that the micromorphic deformation modessigting of the directional microstretch, the micros-
hear and the micropolar deformation are all of third orderery simple rule for the reformulation can be used,
which is

A= u(Tln,lbbc €, ® €. (20)

yielding the micromotion tensor with 9 independent coediits. The rule furthermore guarantees that the micro-
motion vanishes for modes of order lower than 3, and that flkeomotion itself also vanishes for modes of fourth
order taking the volume average (again under assumptiorcobaid symmetric TVE). For the representation of
the micromotion modes of second order as well as modes atfouder are used. Therefore, the integrated modes
of fourth order can not be used directly. The reformulatiole rmay use only second derivatives. The simplest
version of the rule is
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3
B=uy".€a ® € @ €. (22)

However, this rule is not able to represent the gradient detaly due to the symmetry with respect to the second
and third base system, i. e., it yields only 18 independeefficients while 27 are needed. This strong coupling
by Clairaut’s theorem has to be circumvented. This can,,éoegdone by taking the symmetric part of the first
derivative only and by calculating the second derivative

3 1
C= 5 (ug’bc + u?ac) e, Ve, e, (22)

which is symmetric with respect to the first and second bastesyalso yielding 18 independent coefficients only.
However, by a superposition of both rules, e. g., weightiothbrules by a factor of 0.5, a rule is defined which
yields the required 27 independent coefficients

3 3 3

1
(B + C) = (Z uam,l)c + - ug}ac) €, ¥ ep e, (23)

1
2 4

3 3
wherebyD represents the gradient of the micromotian The coefficients op contain fourth order terms, which
still depend on the position within the TVE. To avoid thise ¥olume average is taken. Finally one gets

3 3 1
D= < (1 uZ?bc + Z ug}ac) e, Ve, e >; (24)

which yields non-zero values only for the gradient mode$efrhicromotion.

In conclusion this approach enables the calculation of therkatical degrees of freedom based on the Taylor se-
ries expansion. Thereby the explicit calculation of theskimatical degrees of freedom may clarify which terms of
the expansion are associated with the macrodeformatiomérddeformation, respectively. This will be demon-
strated on the basis of the simplest restricted micromorpbntinuum theory, which is the Cosserat continuum
theory.

The linearised Cosserat strain tengsas given by

3
g = grad u+ E ‘@, (25)

3
wherebyE is the permutation tensau, the displacement field ard the field of extra-rotations. The terms of the
Taylor series expansion needed for the reflection of the et ossserat deformation are the linear terms and in
addition the micropolar terms including their gradientgaen in Table 6

u” (x,t) = (a1x+ G y+mz+ Gy’ —nlt
Gry+30yP+Gyz—sm2t —mrz—nsyz)e, +
Bry+Gao+&z+8&23— Qo+ (26)
Gyz+ 382+ &az— 3G —Gay—CGrz e, +

(mz+me+&y+mna®—ELy*+
mrz+smaitnsay— L&yt —Gyz—&Gay)e..

Compared to eq. 1 the coefficients in eq. 26 are reformulatétctude the symmetry and skew symmetry condi-
tions. Thereby the coefficiengs indicate a deformation mode within tlkg-e.-plane,n; within thee,-e,-plane,
and¢; within thee,-e,-plane.

In a next step the Cosserat strain tersads set equal to the volume average of the gradient of the atisphent
field expressed by the Taylor series expansion
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g:= (grad u (x, t)). (27)

Thereby the skew symmetric part of the Cosserat strain t@nisareflected by the micropolar deformation. How-
ever, there is no possibility to distinguish between thenskgmmetric part envolved by the gradient of the dis-
placement field and the a priori skew symmetric part due tertea-rotatiorg. Thus, the skew symmetric part
of the gradient of the displacement field is set to zero. Téimiagreement with the consideration that if all
micropolar effects vanish, the continuum theory reducestd the Boltzmann continuum theory, where the strain
tensor is symmetric

3
skw € :=E . (28)

For a homogeneous cuboidal TVE (edge lerdythe resulting skew symmetric part can be calculated uging®
In a last step the information about the extra-rotation Gaetiracted from the skew symmetric part using eqg. 28,
which gives

1 1 1
¢:ZngQex+Zn212ey+Z§2lzez~ (29)

4 Application to Microstructures

In the following the presented approach is applied to foffedint kinds of TVEs as shown in Figure 8. The first
one is a homogeneous TVE, the second a plated cross-like $8&tabled by shell elements, the third a cross-like
TVE assembled by beam elements, and the last one a TVE whistissh negative radical strain coefficient on
the macroscopical level due to the special topology of therestructure. In the following the last one will be
called the star-like TVE. For a better understanding of tleemanism responsible for the negative radical strain
coefficient, a two-dimensional sketch is presented on tite Hand side of Figure 8. The modes of interest chosen
by energetical considerations are applied to these TVEsscBiing the size of the TVEs it can be observed that
the energy per volume increases at different rates for fifiereint modes. This information is used to decide if the
deformation mode under consideration may play an importaaton a macroscopical level or not: if the energy
per volume increases very fast, the TVE is very stiff withpexs to the deformation mode, and so the load transfer
will be taken by weaker deformation modes consuming lesegygne

2-dim mechanism

homogeneous TVE lated TVE i _li
o] p cross-like TVE star-like TVE of star-like TVE

Figure 8: Microstructures under investigation

4.1 Homogeneous TVE

Table 7 shows the deformation modes, which are investigatéte following, and the corresponding numerical
results. All further modes not presented in the table carebenstructed from these modes using the symmetry
condition. The fifth up to the ninth column of the table ind&the macroscopic continuum theory the deformation
modes belong to. Thereby the following abbreviations aeeluBCT (Boltzmann continuum theon§GT(second
gradienttheory), M (micromorphic theory)u P (micropolar theory), andS (microstretch theory). "X” means
that the mode is used directly without any further reswictivithin a certain continumm theory. "C” means that
the mode is used indirectly requiring some extra conditionthe form of a superposition. This applies to the
gradient of the micropolar deformation (no. 15), which clsode understood as a superposition of the quadratic
modes (no. 3 to 7), and of course vice versa.
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no. | ul® =coy-... uy' = geometrical Interpretation BCT | SGT | uM | uP | uS | L =1 L =21 L =4I
1|z 0 classical stretch X X X X | X | 1.00 1.00 1.00
2|y x classical shear X X X X | X | 1.00 1.00 1.00
3| 2? 0 inhomogeneous stretch - X X - | X |1.00 4.00 16.00
reduced gradient, -dir. microstretch
42 0 curvature (1) - X | C | C| =100 4.00 16.00
5| xy 0 curvature (2) - X X C | X | 1.00 4.00 16.00
reduced gradient, -dir. microstretch
6|yz xz twist - X c | C| - 100 4.00 16.00
7| yz -T2z torsion - X X X - | 1.00 4.00 16.00
reduced gradierd,-dir. micropolar
8|23 0 microstretch (1) - - X | =] X ]1.00 16.00 256.00
% (x> +22%) |0 microstretch (2) - - X | = | X |(1.48) | (23.68) | (378.93)
943 3 microshear (1) - - X [ =] -=1@70) | @717) | (434.69)
22y xy? microshear (2) - — X - — | 1.00 16.00 256.00
3y 22 322 microshear (3) - - X | = | = 1493 (78.90) | (1262.45)
10 | ¢ —a3 micropolar (1) - - X | X | - |1.00 16.00 256.00
x2y —xy? micropolar (2) - - X | X | = ](@17) (34.66) | (554.56)
3y 22 —3x 22 micropolar (3) - - X | X | - ](841) (134.62) | (2153.97)
1 . . .
11| zy? % 4 gradiente,-dir. microshear (1) - - X - | = 1(2.89) (23.13) (11841.38)
1 . . .
3 2y g z2y? gradiente,-dir. microshear (2) - - X | -] - |100 64.00 4096.00
3xy 22 5 x2 22 gradiente,.-dir. microshear (3) - - X | = | - | (2.15) | (777.39) | (49753.28)
12 32 z° 2 gradiente,-dir. microshear (1) — — X | =1 -1(162 (103.98) | (6655.03)
22y z zy?z gradiente,-dir. microshear (2) - - X | -] = 1100 64.00 4096.00
y 2> x 23 gradiente,-dir. microshear (3) - - X | =1 =132 (84.71) | (5421.73)
13| zy? %14 gradiente,-dir. micropolar (1) - - X | X | - ]{014 {9.12 {583.73
1 . . .
3 2y —g z2y? gradiente,-dir. micropolar (2) - - X | X | = | {(0.06) | {(38.73)} | {(238.43)
3zy 22 -5 z2 2? gradiente,-dir. micropolar (3) - - X | X | = | {(0.74) | {(47.53)} | {(3042.20}
14 | 3 2 —x3 2 gradiente.-dir. micropolar (1) - - X | X | - [{054 | {3469 | {2220.14
22yz —zy?z gradiente,-dir. micropolar (2) - - X | X | = | {(0.61)} | {(39.29} | {(2514.51}
y 23 —z 23 gradiente.-dir. micropolar (3) - - X | X | — | {(0.84)} | {(53.93)} | {(3451.50}
15| zy —% z? reduced gradient,.-dir. micropolar - C X X | - | 1.00 4.00 16.00

Table 7: homogeneous TVE




The last three colums of Table 7 show the energy per volunwaileaied for different sizes of TVEs, wherelyis

the edge length of the cube used as TVE. The energy is noedaligh respect to the smallest TVE & [). The
results show that for the linear modes the energy per vol@mains constant for an increasing size of the TVE.
This means that these deformation modes are not able totrsifteceffects in the case of a homogeneous TVE
as expected from the Boltzmann continuum theory. The qtiadteformation modes scale quadratically with the
size of the TVE. This type of scaling is known from bendingthié diameter of a beam is scaled by a factor of
two, the cross section is increased by a factor of 4 and tfieests by a factor of 16. Calculating the energy per
area, a factor of 4 remains. The cubic modes scale with ther 8tdand the quartic modes with the ord®r So

in general a mode of orderscales with the ordex? (*—1),

As the results have shown, modes of the same order scalexaittiyethe same factor. Thus, itis always guaranteed
that the deformation modes reflecting microstretch, mioeas, and micropolar deformation for the smallest TVE
are always the same for an arbitrary size of the TVE.

For the microstretch, miscroshear, and micropolar modes &rto 10) the results are normalised with respect to
the respective weakest deformation mode of smallest sizis.allows for a direct comparison of the deformation
modes with respect to their stiffness. E. g., in the case@htfcrostretch the second mode is always about 1.48
times stiffer than the first mode. This factor is independ#rthe size of the TVE (differences occcur due to
truncation errors). While only one microstretch mode is eelday the macroscopic continuum theory, the weaker
mode is chosen while the stiffer one is rejected. Rejectiom mode is indicated within the table by values set
into round brackets "¢)". In the same way the results for microshear and micropaddormations are presented.
Thereby again the values of the rejected modes are set intal forackets.

Without competition the gradient of microstretch can bee#id by terms of second order instead of terms of
fourth order (no. 3 and 5). Thus, the results for fourth onsedes, which are able to reflect the gradient of
microstretch deformation, are not presented. Due to thepetition between the reduced gradient of second order
for microshear and micropolar deformation modes, the cetepiesults for the modes of fourth order are shown
(no. 11 to 14). Thereby, the results of no. 11 and 13 as welRentl 14 (the gradient of the symmetric and the
skew-symmetric part) are normalised with respect to theesaatue. So it can be directly seen that the gradient of
the micropolar deformation always behaves more weakly thamgradient of the microshear deformation. Thus,
the weaker deformation modes of fourth order (no. 13 and fe)eplaced by the corresponding modes of second
order (no. 15 and 7). Indicating that the fourth order mo@déigcting the gradient of micropolar deformation are
not used, the values are set in curly brackéte }”.

4.2 Plated TVE

The second TVE under consideration is the plated TVE as showigure 8.

While the TVE is not homogeneous, in a first step it is checkéukisignificant deformation mode for reflection of
microstretch, microshear and micropolar deformation glearwith the size of the TVE. Figure 9 shows the results
for microstretch, microshear, and micropolar deformatiarying the size of the TVE betwedn= [ andL = 101
(value atL = 21 calibrated to 1). While in the case of microstretch defororafor the smallest TVEI = [) the
mode presented in Figure 4 on the right is significant, fagdaTVEs (. > 21[) the mode in the same figure on
the left behaves weaker and therefore it is chosen to refliecostretch. The switch of the significant deformation
mode is indicated by the dashed vertical line. The sameteftetbe observed for the microshear and micropolar
deformation in Figure 9.

As already done before in the case of the homogeneous TVEsmeahtests are performed to calculate the energy
associated with the certain deformation modes. Howevethfe example the energy is normalised with respect to
the TVE of sizel, = 21 because the smallest TVEE & [) is acting an extra role: for some deformation modes the
smallest TVE is significantly weaker than expected from #wsults from larger TVEs indicating a change of the
load carrying behaviour. In these cases the smallest TVitesahe load by bending while for larger TVEs also
stretching of the plates is involved. Furthermore the sesall VE is not able to reflect the gradient of the second
microshear and second micropolar deformation modedptdirection because the displacement on the boundary
of the TVE is zero. The changing load carrying behaviour caisden quite well in Figure 9 for the microshear
and for the micropolar deformation, but it appears also thepmodes, e. g., no. 6 and 7 (twist and torsional
deformation) presented in Table 8.

Due to the special role of the smallest TVE, itis now size dejeat which is the significant mode for the reflection
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Influence of TVE size for microstretch deformation
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Figure 9: Influence of TVE size (plated microstructure)
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no. | u* =« uy' = geometrical Interpretation BCT | SGT | uM | uP | uS | L =1 L=2] L=4] L=238I
1|z 0 classical stretch X X X | X | X | 1.00 1.00 1.00 1.00
2|y x classical shear X X X | X | X |1.00 1.00 1.00 1.00
3] 22 0 inhomogeneous stretch - X X — | X | 0.248 1.0 4.300 18.524
reduced gradiend,.-dir. microstretch
4 1 42 0 curvature (1) - X C C | — ]0.243 1.0 4.140 16.906
5| xy 0 curvature (2) - X X C | X | 0.149 1.0 4.463 18.432
reduced gradierd, -dir. microstretch
6|yz Tz twist - X C C | — | 4.445e-6 1.0 5.001 21.011
7T|yz —xz torsion - X X | X | — | 5.352e-6 1.0 5.000 20.983
reduced gradierd_-dir. micropolar
8 | a3 0 microstretch (1) - - X | = | X | (0.063) 1.0 16.107 261.674
g (xy>+x2%) | 0 microstretch (2) - - | X | = | X |0.040 (1.099) | (22.087) (375.521)
CRR% 3 microshear (1) - - X [ -] = 1(0.107) (1.782) | (28.710) (463.387)
x%y xy? microshear (2) - - X | = | = | (0.048) 1.0 17.810 313.475
3y 22 3122 microshear (3) - - | X | = | - | 3.938e-6 (2.597) | (70.555) (1278.448)
10 | ¢° —3 micropolar (1) - - X | X | = | (0.040) 1.0 16.894 286.583
22y —zy? micropolar (2) - - | X | X | = | (0.125) (2.967) | (55.451) (966.893)
3y 22 —3x 22 micropolar (3) - - | X | X | = | 3.414e-6 (5.541) | (116.200) | (2021.054)
1 . . .
11| xy? % 4 gradiente,.-dir. microshear (1) - - X - | = | (0.043) (2.991) (226.908) (15800.057)
é 2y g z2 o> gradiente,-dir. microshear (2) - - X | - | -1 (0.012) 1.0 74.918 5416.187
3wy 22 5 x? 22 gradiente,.-dir. microshear (3) - - X | = | = | 2892e-7 (7.173) | (836.737) | (62690.413)
12 [ 432 23z gradiente,-dir. microshear (1) - - X - | = | (2.468e-7) (1.232) (108.392) (7668.498)
22y z zy?z gradiente,-dir. microshear (2) - - X | -1 =10 1.0 81.281 5811.952
yz3 z 23 gradiente,-dir. microshear (3) - - X | = | - | 35727 (0.774) | (80.688) (6099.541)
13 | x93 411 zt gradiente,.-dir. micropolar (1) - - X | X | = | {(0.023} {1.553 {132.19§ {9578.835
1 . . .
3 =3y —g z?y? gradiente,-dir. micropolar (2) - - X | X | = | {(0.010} {(0.900) | {(70.620} | {(5002.239)
3wyz? -5 x? 2? gradiente,-dir. micropolar (3) - - | X | X | = |{2.892e-7 | {(6.233) | {(636.539} | {(45751.178)
14 | 3 2 —z3 2 gradiente.-dir. micropolar (1) - - X | X | - [{(2.438e-7) | {0.258 | {30.642 {2482.035
22y z —xy?z gradiente,-dir. micropolar (2) - - X | X | =] {-)} {(0.955)} | {(77.675)} | {(5379.838)
yz3 —x 23 gradiente,-dir. micropolar (3) - - X | X | — | {1.333e-% | {(0.709)} | {(58.348)} | {(4051.920)
15| zy —% z? reduced gradierd, -dir. micropolar - C X X — 1 0.140 1.0 4.455 18.299

Table 8: plated TVE




of microstretch, microshear and micropolar deformaticab{@ 8, no. 8, 9 and 10) also presented in Figure 9. The
values corresponding to the significant modes are presevitedut brackets while the other modes are set into
brackets. This setting of brackets is also applied to thdigra of the corresponding mode: if the micromode is
not significant and therefore set into brackets, then atsgriddients are set into brackets. This may lead to the
result that the gradient of the micromode is not represenjete weakest deformation mode as can be seen for the
gradient intoe_-direction of the microshear mode (no. 12). Another appnosould be to decide independently
which may be the significant gradient of microshear defoionadigain using the energy criterion.

As before in the case of the homogeneous TVE, the gradienesofithe micropolar deformation (Table 8, no.
13 and 14) are always weaker than the gradient modes of theshiear deformation (Table 8, no. 11 and 12) in
the sense of consuming less energy. Thus, instead of thihforder modes (no. 13 and 14) the according second
order modes are used (no. 7 and 15).

Comparing the results for the plated TVE (Table 8) with theutts for the homogeneous TVE (Table 7) one can
observe that the values scale with about the same factondoeasing sizes of the TVE (excluding the smallest
plated TVE). Thus, the principal deformation behaviourtaf plated TVE is approximately the same as that one
of the homogeneous TVE.

4.3 Cross-like TVE

The third TVE under consideration is a cross-like TVE as ghowrigure 8.

Again itis checked in a first step if the significant deformaatimode for reflection of microstretch, microshear, and
micropolar deformation changes with the size of the TVEuUFégLO shows the results varying the size of the TVE
betweenL = [ andL = 10/ (smallest value calibrated to 1). In the case of microdtréipper part of Figure 10)
for small TVEs ( < L < 3]) the mode presented on the right hand side of Figure 4 isfgignt. For larger
TVESs (L > 41) the mode in the same figure on the left hand side behaves naadt¢herefore is chosen to reflect
microstretch.

The same effect can be observed for microshear and microgelarmations as shown in the middle of Figure 10
and the lower part of the same figure. In the case of microsive@micropolar deformation, three modes are,
respectively, available to reflect the deformation, seei€id and Figure 6.

Considering the effect that the deformation mode of intedtepends on the size of the TVE, the according results
for the cross-like microstructure are presented in Tablagplying the procedure with respect to the Boltzmann

continuum theory on the macroscopic scale, moments on thedaoy of the TVE cannot be handled by the ho-

mogenization procedure. Thus, in this case under congiderainges at all beam ends on the boundary of the
TVE, while in all other cases the rotational boundary cdodi are calculated from the gradient of the displace-
ment field (eq. (3)).

Again the gradient modes of the micropolar deformation [@&h no. 13 and 14) are weaker than the gradient
modes of the microshear deformation (Table 9, no. 11 andtli2ast for the appropriate significant deformation
mode. Thus, instead of the fourth order modes (no. 13 andHelgccording second order modes are used again
(no. 7 and 15) as before for the homogeneous TVE and the plated

4.4 Star-like TVE (TVE with Negative Radical Strain Coefficient)

The last numerical example concerns the star-like TVE piteskin Figure 8, whereby for a better understanding
also the underlying 2-dimensional mechanism is presenié@ main difference with respect to the previously
discussed cross-like TVE, is the load carrying by bendisteiad of by stretching of the beam elements. Thus, the
recent TVE behaves much more softly with respect to thecstireg of the TVE. While the load is always carried
by bending, it is not possible that the principal load cargybehaviour is changed when the size of the TVE is
variied.

Again one observes that the significant mode representingpsiretch, microshear, and micropolar deformation
depends on the size of the TVE (Figure 11).

By taking a look on the gradient of the microshear and miclapdeformation (Table 10), one remarks that
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Influence of TVE size for microstretch deformation
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no. | ul’ = a; - uy' = - geometrical Interpretation BCT | SGT | uM | uP | uS | L =1 L=2] L =41 L =28l

la| =z 0 classical stretch X - - - | — | 1.000 1.000 1.000 1.000

2aly x classical shear X - - - | = | 1.000 1.000 1.000 1.000

1b | z 0 classical stretch - X X | X | X |1.00 1.000 1.000 1.000

2b |y x classical shear - X X X | X | 1.600 1.0 0.687 0.540

3| 2? 0 inhomogeneous stretch - X X - | X | 0.304 1.0 7.751 60.512
reduced gradient, -dir. microstretch
4 | 42 0 curvature (1) - X cC | C| - ]0.182 1.0 3.136 9.509
5| zy 0 curvature (2) - X X C | X | 2.065e-4 1.0 4.998 20.987
reduced gradier,-dir. microstretch
6|yz xz twist - X cC | C| - |0.0238 1.000 3.293 10.524
7| yz —xz torsion - X X X — 1 0.235 1.000 3.658 13.033
reduced gradierd_-dir. micropolar
8|3 0 microstretch (1) - - [ X | = [ X [(0111) (1.776) | 28.420 455.205
g (xy? +22%) |0 microstretch (2) - - X - | X | = 1.0 (32.966) (608.202)
943 z3 microshear (1) - — | X | =] =1(0.041) (2.009) | 34.064 433.975
22y xy? microshear (2) - - X | - | - 0014 1.0 (50.747) (2105.386)
3y 2> 3x 22 microshear (3) - - X | -1 =106 (2.778) | (57.394) (832.700)

10 | 43 23 micropolar (1) - — [ TX X | = 1(0.033) 1.0 20.499 288.931
2y —xy? micropolar (2) - - | x | x| = ]0.027 (4.386) | (191.903) (6559.345)
3y 22 —3z 22 micropolar (3) - - X | X | = |(0.109) (18.907) | (281.529) (3279.548)

11| zy? %x‘l gradiente,-dir. microshear (1) - - X - | = | (5.020e-5) (12.0) 355.263 32472.107
1 . . .

3 3y g 2 y? gradiente,-dir. microshear (2) - - X | =] = |2213e-5 1.717 (138.882) (9590.917)
3xy 22 5 z? 22 gradiente,.-dir. microshear (3) - - X | =1 =106 (8.741) | (1786.215) | (142013.310)

12 [ 32 a2 gradiente_-dir. microshear (1) - - X | — | - | (0.003) (2.671) | 224.068 11999.897
22y z zy?z gradiente,-dir. microshear (2) - - X | = =-1- 1.610 (460.303) (83253.231)
y 23 x 23 gradiente-dir. microshear (3) - - X | -1 =106 (1.0 (102.561) (6153.479)

1 . . .

13 | x93 —% zt gradiente,-dir. micropolar (1) - - X | X | = | {(5.020e-5) | {0.977} | {352.90Q {32343.116
% 2y fg z2y? gradiente,-dir. micropolar (2) - - X | X | = | {2.213e-5 | {(1.723)} | {(139.882)} | {(9685.859)
3xy 2> -5 z? 22 gradiente,.-dir. micropolar (3) - - X | X | = [ {)} {(8.711)} | {(1781.450) | {(141728.853)

14| 32 —232 gradiente,-dir. micropolar (1) - - X | X | - [ {(0.003)} {0.686; | {67.07% {4111.03¢
22y z —xy?z gradiente -dir. micropolar (2) - - X | X | - |{- {(2.589)} | {(627.504} | {(97133.229)
yz3 —z 23 gradiente,-dir. micropolar (3) - - X | X | = | {(0.007) {(1.334) | {(107.125} | {(6127.210)

1 . . .
15| zy —3 z? reduced gradierd,-dir. micropolar - C X | X | = | 2.083e-4 1.0 4.999 20.996

Table 9: cross-like TVE
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S8

no. | ul’ = a; - uy' = geometrical Interpretation BCT | SGT | uM | uP | uS | L =1 L =21 L =4I L =38l
la| =z 0 classical stretch - - - | — | 1.000 1.000 1.000 1.000
2aly x classical shear - - - | = | 1.000 1.000 1.000 1.000
1b | z 0 classical stretch X X X | X | 1.00 1.000 1.000 1.000
2b |y x classical shear X X X | X | 1444 1.000 0.719 0.590
3| 22 0 inhomogeneous stretch X X - | X | 0312 1.000 6.026 28.316
reduced gradient, -dir. microstretch
41 42 0 curvature (1) X cC | C | - |0.202 1.000 3.201 9.983
5|2y 0 curvature (2) X X C | X |0.011 1.000 5.106 21.371
reduced gradiend, -dir. microstretch
6|yz Tz twist X C C — | 0.019 1.000 3.454 11.781
7| yz —xz torsion X X X — | 0.189 1.000 4.077 15.190
reduced gradierd_-dir. micropolar
8 3 0 microstretch (1) — | "X | =] X [ (0.100) (1.678) | 27.114 446.067
g (xy?+22%) |0 microstretch (2) - X - | X | = 1.000 (30.726) (558.392)
9 [ 43 3 microshear (1) — | X [ = =1(0.078) (2.893) | (44.273) (570.962)
22y zy? microshear (2) - | X | = | - |o0.011 1.000 30.079 658.735
3y 22 3z 22 microshear (3) - X | =1 =10 (3.370) | (71.265) (1127.673)
10 | 43 —z3 micropolar (1) - — | X [ X | =1(0.025) 1.000 18.856 256.632
22y —zy? micropolar (2) - - | X | X | - |0.019 (3.263) | (121.187) (2582.830)
3y 22 —3x 22 micropolar (3) — - X | X | = | (0.099) (4.944) | (80.879) (1147.874)
11| 2y % 4 gradiente,.-dir. microshear (1) - - X - | = | (0.002) (2.434) (382.437) (28913.608)
1 . . .
3 3y g z?y? gradiente,-dir. microshear (2) - - X | = | — | 7.459e-4 | 1.000 98.256 7944.588
3zy 22 5 z? 2* gradiente,-dir. microshear (3) - - X | -] -1 (8.342) | (1526.638) | (14184.297)
12 32 32 gradiente,-dir. microshear (1) - - X | = | = | (0.003) (3.126) | (238.419) (13083.981)
22y z zy?z gradiente,-dir. microshear (2) - - X | =] =1- 1.288 200.887 13744.223
y 2 x> gradiente,-dir. microshear (3) - - X | =1 =10 (1.0) (89.225) (5806.042)
13 | x93 —% zt gradiente,-dir. micropolar (1) - - X | X | = | {0.002} | {1.123 | {248.42¢ {21220.670
é 3y fg 2 9? gradiente,-dir. micropolar (2) - — | X | X | = | {7.459e-4 | {(1.374) | {(192.691} | {(17028.628)
3zyz? -5 z? 22 gradiente,-dir. micropolar (3) - - X | X | = [ {-)} {(5.801)} | {(1130.658) | {(94613.614)
14 | 432 —13 2 gradiente.-dir. micropolar (1) - - X | X | - [{(.004)} | {0.787 | {74.025 {4593.780
22yz —zy?z gradiente -dir. micropolar (2) - - X | X | = |{ {(2.249)} | {(444.169} | {(19025.146)
yz3 —z 23 gradiente..-dir. micropolar (3) - - X | X | = | {(0.007)} | {(1.609) | {(124.464} | {(7066.160})
1 . . .
15| zy —3 z? reduced gradierd,-dir. micropolar — C X | X | — | 0.016 1.000 5.230 22.430
Table 10: star-like TVE




the gradient intae,-direction of the microshear deformation (no. 11) is softean that one of the micropolar
deformation (no. 13) even for large sizes of the TVE. Thugdntrast to the examples before, using the energy
criterion, the gradient of the microshear deformation (id) should be substituted by the according mode of
second order. However, while for the component italirection it is exactly inverse, in analogy to the contingo
TVE the gradient of the micropolar deformation is represdrdy terms of second order, while the gradient of the
microshear deformation is reflected by terms of fourth order

5 Conclusion

The numerical investigation of TVEs of different sizes givieformation about the importance of the several defor-
mation modes under consideration. This information cap techoose the continuum theory on a macroscopic
level, which is able to reflect the recent effects.

Furthermore the considerations can be used to determinesthéred minimum size of a TVE reflecting the
principal deformation behaviour. As shown in the examples smallest TVE under consideration does not reflect
the principal deformation behaviour due to differencesi@load carrying behaviour changing the size of the TVE.

The present kinematically based approach prescribingtidi boundary conditions leads to an overestimation
of the overall effective stiffness (Voigt bound). Thus, tygproach can be improved using periodic boundary
conditions.
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