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Kinematically Extended Continuum Theories: Correlation Between
Microscopical Deformation and Macroscopical Strain Measures

T. Ebinger, H. Steeb, S. Diebels

The present work investigates the correlation between macrocscopical deformation modes and microscopical de-
formation modes. Thereby, the macroscopical deformation is represented by the strain-like quantities of the ac-
cording macroscopical continuum theory while the microscopical deformation is expressed in the form of a Taylor
series expansion. The use of an energy criterion makes it possible to derive a quantitative relation between micro-
scopical and macroscopical deformation. The procedure is applied to different kinematically extended continuum
theories on the macroscopical level. The investigation mayhelp to select an optimal macroscopical continuum the-
ory instead of choosing a theory based on phenomenological observations, whereby the optimal theory ist that one,
which reflects the microscopical deformation behaviour best. The microscopical deformation behaviour depends
on the topology of the microstructure under consideration.Thus, the optimal theory is affected by the topology of
the microstructure.

1 Motivation

The deformation behaviour of a material body of dimensionL with inherent microstructure of dimensionl can be
described either on a microscopical scale resolving the geometry of the microstructure with inherent microscopical
material parameters or on a macroscopical scale by an appropriate continuum theory. While the macroscopic
continuum theory assumes – as the name implies – that the material body is continuous, the theory may be extended
accounting for the discontinuity of the material body. The microscopical deformation can be expressed in the form
of a Taylor series expansion for the displacement fieldu

m (x, t)1, cf. Forest and Sab (1998); Forest (1999); Forest
et al. (2000).

From a macroscopical point of view, the volume under study should be relatively large to be representative in a
statistical sense. By contrast from a microscopical point of view, which motivates the Taylor series expansion, the
volume should be relatively small, so that the expansion canbe truncated after terms of a certain order while the
contribution of the higher order terms can be neglected. Considering both aspects, the smallest material body is
investigated, which is able to reflect the basic deformationbehaviour. Accepting that this material body may not be
representative in a statistical sense, according to Huet (1997) we call it Testing Volume Element (TVE). The TVE
is required to reflect the fundamental deformation behaviour of the microstructure, but it does not necessarily have
to be representative allowing for smaller volume elements compared to a Representative Volume Element (RVE)
as discussed by, e. g., Nemat-Nasser and Hori (1993).

Depending on the continuum model describing the deformation behaviour on the macroscopical level, several
terms of the Taylor series expansion correspond to strain-like quantities on the macroscopical level while other
terms are not reflected by the continuum theory. E. g., in the case of the standard Boltzmann continuum theory
only the linear terms of the expansion are considered on the macroscopical level while all terms of higher order
are neglected. Regarding that the selection of a macroscopic continuum theory reduces the number of permit-
ted deformation modes, the question arises, which may be thebest macroscopic continuum theory for a certain
microstructure with known topology. Usually the macroscopic continuum theory is chosen based on phenomeno-
logical observations like, e. g., size effects. Sometimes the choice is motivated by the underlying local deformation
behaviour of the microstructure as, e. g., in the case of granular media, where the Cosserat continuum theory
Cosserat and Cosserat (1909) is chosen according to the extra rotation of the single grains. However, quite often
the macroscopical continuum theory is chosen based on phenomenological observations as in the case of foam-like
microstructures, where the Cosserat theory is used to reflect the size effects observed in material testing. If the

1microscopic quantities are marked by superscript( • )m, macroscopic quantities by superscript( • )M .

64



macroscopical continuum theory is chosen without consideration of the microscopical deformation behaviour, it
may occur that the macroscopical continuum theory is able toreflect deformation modes which are not observed
on the microscopical level, while modes seeming to be important on that level are not considered on the macro-
scopical level. Obviously this will lead into difficulties for identifying the material parameters of such a material
with inherent length scale, because a certain stiffness hasto be assigned to a certain deformation mode not really
being sensitive.

The present work demonstrates that the selection of the extended continuum theory is affected by the microscopic
deformation behaviour of the TVE. Thereby, we restrict ourselves to kinematically extended continuum theories,
which means gradient-based continuum theories, namely thesecond gradienttheory (Germain (1973))and the
micromorphic continuum theory including the restricted cases, i. e., the Cosserat (Cosserat and Cosserat (1909))
or micropolar continuum theory and the microstretch theory. For an overview of kinematically extended continuum
theories see Eringen (1999), Capriz (1980) and references cited therein. In the following we use the abbreviation
”MMM theories” introduced by Eringen (1999) for the micromorphic, microstretch and micropolar continuum
theories. However, in contrast to Eringen’s definition of the microstretch theory, which allows only for an extra
volumetric deformation (scalar quantity), we refer to the microstretch theory as the theory, which is able to reflect
an extra directional stretch deformation (vector valued quantity).

2 Microscopical Deformation

Starting point of the considerations on the microscopical level is the assumption that the local displacement field
u

m (x, t) of a certain domain, which can be identified with the Testing Volume Element (TVE), is expressed in
the form of a Taylor series expansion

u
m (x, t) = (α1 + α2 x + α3 y + α4 z + α5 x2 + α6 y2 + α7 z2 + α8 x y + α9 x z + α10 y z+

α11 x3 + α12 y3 + α13 z3 + α14 x2 y + α15 y2 z + α16 z2 x + α17 x y2 + α18 y z2+
α19 z x2 + α20 x y z + α21 x4 + α22 y4 + α23 z4 + α24 x2 y2 + α25 y2 z2 + α26 z2 x2 + . . . ) ex +

(β1 + β2 x + β3 y + β4 z + β5 x2 + β6 y2 + β7 z2 + β8 x y + β9 x z + β10 y z+
β11 x3 + β12 y3 + β13 z3 + β14 x2 y + β15 y2 z + β16 z2 x + β17 x y2 + β18 y z2+
β19 z x2 + β20 x y z + β21 x4 + β22 y4 + β23 z4 + β24 x2 y2 + β25 y2 z2 + β26 z2 x2 + . . . ) ey +

(γ1 + γ2 x + γ3 y + γ4 z + γ5 x2 + γ6 y2 + γ7 z2 + γ8 x y + γ9 x z + γ10 y z+
γ11 x3 + γ12 y3 + γ13 z3 + γ14 x2 y + γ15 y2 z + γ16 z2 x + γ17 x y2 + γ18 y z2+
γ19 z x2 + γ20 x y z + γ21 x4 + γ22 y4 + γ23 z4 + γ24 x2 y2 + γ25 y2 z2 + γ26 z2 x2 + . . . ) ez.

(1)

Ensuring that the terms of lowest order, the constant terms,represent the barycentric displacement of the center
of gravity S, so that in the case of neglecting all higher order terms at least the displacement of this characteristic
point is reflected correctly, the coordinate system is attached just to that point, see Figure 1.
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h
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Figure 1: Cuboid TVE (dimensionsb, d andh) and coordinate system

For the further investigations it is assumed that the topology and material parameters are known for the TVE.
Thus, the deformed configuration can be calculated according to several terms of the Taylor series expansion
(eq. (1)). However, physically it is not reasonable to allowfor the application of Dirichlet boundary conditions in
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the interior of the TVE. So the displacement field is only prescribed on the boundary of the TVE, which yields
from a mathematical point of view a well-posed system of equations. From a physical point of view this yields the
advantage that only observable quantities are used. The difference between the application of the displacement field
to the boundary only, and application of the displacement field exactly in every point of the TVE may be clarified
even for a homogeneous TVE of Boltzmann type2: while in the first case the ratio between tensile stiffness and
shear stiffness has a strong influence on the deformed configuration for terms of quadratic order and higher (modes
demonstrating a combined stretch and shear deformation on amicroscopical level), in the second case the deformed
configuration is completely prescribed and therefore independent of the topology and also independent of material
parameters.

The according deformation modes for terms inex-direction are visualised up to order three in Figure 2.

constant terms

linear terms

quadratic terms

cubic terms

um
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x = α8 x y um
x = α9 x z um
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x = α19 y2 z um

x = α20 y z2

Figure 2: Deformation modes inex-direction up to terms of order three

2The Boltzmann continuum theory is the classical continuum theory with three degrees of freedom at the material point. According to the
balance of moment of momentum the stress tensor is symmetric.
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3 Macroscopical Deformation

Within continuum theories, only energy consuming deformation modes are of interest. The deformation modes
without consuming energy are the rigid body modes, namely the rigid body translation and the rigid body rota-
tion. These deformation modes have to be eliminated from theTaylor series expansion because they cannot be
corresponding candidates for macroscopical deformation modes always consuming energy.

It is obvious that the rigid body displacement is represented by the constant terms of the Taylor series expansion.
For instanceα1 6= 0 yields a horizontal rigid body displacement according to the frame of reference presented in
Figure 1. Eliminating all rigid body displacement modes canbe done by the restriction

α1 = β1 = γ1 = 0. (2)

The rigid body rotations cannot be detected directly, because a superposition of terms of the Taylor series expansion
is needed to identify these modes. Using a geometrical approach, the rotationϕm (x, t) of the displacement field
u

m (x, t) can be calculated by

ϕ
m (x, t) =

1

2
rot u

m (x, t). (3)

In the case of a rigid body rotation mode,ϕ
m (x, t) has to be constant but not equal to zero. Thus, while the

”rot” operator has involved only first derivatives, the terms of interest have to be linear. Inserting linear terms
u

m,lin (x, t) of the displacement in eq. (3) yields the constant rotation fieldϕ
m,con (x, t)

ϕ
m,con (x, t) =

1

2
(γ3 − β4) ex +

1

2
(α4 − γ2) ey +

1

2
(β2 − α3) ez. (4)

That means that a rigid body rotation appears ifγ3 6= β4, α4 6= γ2 or β2 6= α3. As a consequence the condition
for the elimination of rigid body rotations is

γ3 = β4,
α4 = γ2,
β2 = α3.

(5)

Thus, using a geometrical interpretation of the linear terms, they have to be symmetric while the skew symmetric
part has to vanish, which can be formulated using index notation by

um,lin
i (x, t) ej = um,lin

j (x, t) ei (6)

wherebyum,lin
i (x, t) are the coefficients of the displacement vectoru

m,lin (x, t).

The split into symmetric and skew symmetric part is visualised in Figure 3 for the linear shear deformation modes
within theex-ey plane.

Considering the restrictions from the rigid body motion, the remaining microscopical deformation modes can now
be related to the macroscopic deformation modes of several continuum theories. This will be done in the following
for each continuum theory separately.

3.1 Boltzmann Continuum Theory

Within the standard Boltzmann continuum theory, the linearised strain tensorε (x, t) is calculated directly from
the displacement fieldu (x, t) by
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Figure 3: Split of shear mode into symmetric and skew symmetric part

ε (x, t) =
1

2
(grad u (x, t) + gradT

u (x, t)). (7)

Calculating the right hand term ”grad u (x, t)” of eq. (7) by inserting the Taylor series expansion of the displace-
ment fieldum (x, t) according to eq. (1) yields

grad (um (x, t)) = (α2 + 2α5 x + . . .) ex ⊗ ex+(α3 + 2α6 y + . . .) ex ⊗ ey+(α4 + 2α7 z + . . .) ex ⊗ ez+
(β2 + 2β5 x + . . .) ey ⊗ ex+ (β3 + 2β6 y + . . .) ey ⊗ ey+ (β4 + 2β7 z + . . .) ey ⊗ ez+
(γ2 + 2 γ5 x + . . .) ez ⊗ ex+ (γ3 + 2 γ6 y + . . .) ez ⊗ ey+ (γ4 + 2 γ7 z + . . .) ez ⊗ ez

(8)

for the microscopical displacement gradient distribution. The macroscopical counterpart can be calculated by
taking the volume average of the microscopial distribution. The volume average is defined by

〈 • 〉 =
1

V

∫

Ω

( • ) dv, (9)

wherebyV is the volume of the TVE.

Assuming that the TVE deforms homogeneously and that the TVEhas the shape of a cuboid, terms of odd order
vanish due to symmetry when the volume average of the microscopical strain distribution is computed

1

V

∫

Ω

Axn dv =
1

V

∫

Ω

Ayn dv =
1

V

∫

Ω

Azn dv = 0 with n = 1, 3, 5, . . . , (10)

wherebyA is a coordinate independent coefficient. Keeping in mind that we have introduced a barycentric frame of
reference within the TVE, the linear terms would always vanish without any requirement on symmetry. However,
this does not hold in general for higher order terms of odd order.

Thus, calculating the macroscopical displacement gradient

(grad u (x, t))M = 〈 grad u
m (x, t) 〉 (11)

by volume averaging of the microscopical displacement gradient yields
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(grad u (x, t))M = (α2 + 1
4 α11 b2 + 1

12 α16 d2 + 1
12 α17 h2 + . . .) ex ⊗ ex +

(α3 + 1
4 α12 h2 + 1

12 α14 b2 + 1
12 α18 d2 + . . .) ex ⊗ ey +

(α4 + 1
4 α13 d2 + 1

12 α15 h2 + 1
12 α19 b2 + . . .) ex ⊗ ez +

(β2 + 1
4 β11 b2 + 1

12 β16 d2 + 1
12 β17 h2 + . . .) ey ⊗ ex +

(β3 + 1
4 β12 h2 + 1

12 β14 b2 + 1
12 β18 d2 + . . .) ey ⊗ ey +

(β4 + 1
4 β13 d2 + 1

12 β15 h2 + 1
12 β19 b2 + . . .) ey ⊗ ez +

(γ2 + 1
4 γ11 b2 + 1

12 γ16 d2 + 1
12 γ17 h2 + . . .) ez ⊗ ex +

(γ3 + 1
4 γ12 h2 + 1

12 γ14 b2 + 1
12 γ18 d2 + . . .) ez ⊗ ey +

(γ4 + 1
4 γ13 d2 + 1

12 γ15 h2 + 1
12 γ19 b2 + . . .) ez ⊗ ez

(12)

wherebyb is the width of the TVE intoex-direction,d the height intoey-direction, andh the thickness in the
direction of depthez as shown in Figure 1.

There are different approaches to reduce the number of termsin eq. (12), however, all of them yield the same
result. The simplest approach is the consideration that thematerial body is intended to have an infinitesimally small
extension, thus the dimensionsb, d andh tend to zero. The second approach is thea priori assumption that only
terms of linear order may be reflected by the Boltzmann continuum theory, and therefore setting all coefficients
of the higher order terms to zero. The third approach can be carried out by making numerical experiments for
the TVE: for a fixed macroscopical displacement gradient, e.g., α2 = 1

4 α11 b2 = 1
12 α16 d2 = 1

12 α17 h2 =
. . . = constant, the energy needed to achieve the deformed configuration canbe calculated using a linear elastic
material law. However, the numerical results (shown in Section 4) demonstrate, that the term of lowest order
always needs the lowest energy. Looking for the energeticalminimum to achieve the equilibrium state, the term of
lowest order is taken as the winning term chosen to reflect themacroscopic deformation. As mentioned before, all
three approaches lead to the same reduction of the macroscopical displacement gradient

(grad u (x, t))M,red = α2 ex ⊗ ex + α3 ex ⊗ ey + α4 ex ⊗ ez+

β2 ey ⊗ ex + β3 ey ⊗ ey + β4 ey ⊗ ez+

γ2 ez ⊗ ex + γ3 ez ⊗ ey + γ4 ez ⊗ ez.

(13)

Inserting this reduced macroscopical displacement gradient into eq. (7) yields the relation of interest between
macroscopical deformationεM and microscopical deformation represented by the Taylor series expansion

ε
M = α2 ex⊗ex+α3 ex⊗ey+α4 ex⊗ez+β2 ey⊗ex+β3 ey⊗ey+β4 ey⊗ez+γ2 ez⊗ex+γ3 ez⊗ey+γ4 ez⊗ez

(14)

whereby the symmetry condition of the strain tensor is already fulfilled by the restrictions from excluding rigid
body rotations according to eq. (5). That means that the six independent entries of the strain tensor directly
correspond to the six linear deformation modes of the Taylorseries expansion (originally 9 linear terms minus 3
rigid body rotation constraints).

3.2 Second GradientTheory

In the case of thesecond gradienttheory not only the gradient of the displacement field is considered (eq. (7)), but
in addition to this also the second gradientκ is regarded as a strain-like quantity

κ = grad (grad u). (15)

Inserting the displacement field in the form of the Taylor series expansion into the right hand side of eq. (15) yields
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grad (grad u
m (x, t)) =(2α5 + 6α11 x + . . .) ex ⊗ ex ⊗ ex+ (α8 + 2α14 x + . . .) ex ⊗ ex ⊗ ey+

(α10 + 2α16 x + . . .) ex ⊗ ex ⊗ ez+ (α8 + 2α14 x + . . .) ex ⊗ ey ⊗ ex+
(2α6 + 6α12 y + . . .) ex ⊗ ey ⊗ ey+ (α9 + 2α15 y + . . .) ex ⊗ ey ⊗ ez+
(α10 + 2α16 x + . . .) ex ⊗ ez ⊗ ex+ (α9 + 2α15 y + . . .) ex ⊗ ez ⊗ ey+
(2α7 + 6α13 z + . . .) ex ⊗ ez ⊗ ez+(2β5 + 6β11 x + . . .) ex ⊗ ex ⊗ ex+

(β8 + 2β14 x + . . .) ex ⊗ ex ⊗ ey+ (β10 + 2β16 x + . . .) ex ⊗ ex ⊗ ez+
(β8 + 2β14 x + . . .) ex ⊗ ey ⊗ ex+(2β6 + 6β12 y + . . .) ex ⊗ ey ⊗ ey+
(β9 + 2β15 y + . . .) ex ⊗ ey ⊗ ez+ (β10 + 2β16 x + . . .) ex ⊗ ez ⊗ ex+
(β9 + 2β15 y + . . .) ex ⊗ ez ⊗ ey+(2β7 + 6β13 z + . . .) ex ⊗ ez ⊗ ez+

(2 γ5 + 6 γ11 x + . . .) ex ⊗ ex ⊗ ex+ (γ8 + 2 γ14 x + . . .) ex ⊗ ex ⊗ ey+
(γ10 + 2 γ16 x + . . .) ex ⊗ ex ⊗ ez+ (γ8 + 2 γ14 x + . . .) ex ⊗ ey ⊗ ex+
(2 γ6 + 6 γ12 y + . . .) ex ⊗ ey ⊗ ey+ (γ9 + 2 γ15 y + . . .) ex ⊗ ey ⊗ ez+
(γ10 + 2 γ16 x + . . .) ex ⊗ ez ⊗ ex+ (γ9 + 2 γ15 y + . . .) ex ⊗ ez ⊗ ey+
(2 γ7 + 6 γ13 z + . . .) ex ⊗ ez ⊗ ez

(16)

for the microscopical second gradient of the displacement field. The macroscopical second gradient again can be
calculated by taking the volume average (eq. (9)) of the microscopical distribution

(grad (grad u (x, t)))M = 〈 grad (grad u
m (x, t)) 〉. (17)

Using the same assumptions as before in the case of the Boltzmann continuum (cuboid shape of homogeneous
TVE) in connection with the considerations reducing the number of terms (small size of TVE or a priori restriction
to quadratic terms now or energetical considerations), themacroscopic curvature tensor in dependence of the
coefficients of the Taylor series expansion is found to be

κ
M = 2α5 ex ⊗ ex ⊗ ex+ α8 ex ⊗ ex ⊗ ey+ α10 ex ⊗ ex ⊗ ez+ α8 ex ⊗ ey ⊗ ex+

2α6 ex ⊗ ey ⊗ ey+ α9 ex ⊗ ey ⊗ ez+ α10 ex ⊗ ez ⊗ ex+ α9 ex ⊗ ez ⊗ ey+
2α7 ex ⊗ ez ⊗ ez+2β5 ex ⊗ ex ⊗ ex+ β8 ex ⊗ ex ⊗ ey+β10 ex ⊗ ex ⊗ ez+

β8 ex ⊗ ey ⊗ ex+2β6 ex ⊗ ey ⊗ ey+ β9 ex ⊗ ey ⊗ ez+β10 ex ⊗ ez ⊗ ex+
β9 ex ⊗ ez ⊗ ey+2β7 ex ⊗ ez ⊗ ez+2 γ5 ex ⊗ ex ⊗ ex+ γ8 ex ⊗ ex ⊗ ey+

γ10 ex ⊗ ex ⊗ ez+ γ8 ex ⊗ ey ⊗ ex+2 γ6 ex ⊗ ey ⊗ ey+ γ9 ex ⊗ ey ⊗ ez+
γ10 ex ⊗ ez ⊗ ex+ γ9 ex ⊗ ez ⊗ ey+2 γ7 ex ⊗ ez ⊗ ez .

(18)

Due to Clairaut’s theorem (also called Schwarz’s theorem) this tensor of third order is symmetric with respect to
the second and third base system. Thus, from the 27 overall coefficients only 18 are independent, which directly
correspond to the 18 independent quadratic terms of the Taylor series expansion.

3.3 MMM Theories

A completely different approach is chosen to identify the according terms of the Taylor series expansion within the
MMM theories, which means the micromorphic continuum theory and the restrictive special cases. Based on the
assumption that the extra deformation is strongly related to the macroscopic deformation, the appropriate modes
of the expansion can be selected being able to reflect this extra deformation. To be more specific: the extra stretch
deformation, called (directional) microstretch, should also represent directional volumetric deformation like the
macroscopic stretch mode, but it should be of course independent of the macroscopic mode. The same holds for
the extra shear mode called microshear and the extra rotation called micropolar deformation.

A non-homogeneous extra stretch into horizontal directioncan be represented by the termsum
x = α11 x3, um

x =
α15 x y2 andum

x = α16 x z2. However, splitting the second and third term into a volumetric and a deviatoric part,
only the volumetric part is able to represent the directional microstretch. The remaining modes being able to reflect
microstretch into horizontal direction are presented in Figure 4.

An energy criterion is used to select from the available modes that one which will reflect the extra stretch defor-
mation. To make the modes presented in Figure 4 comparable, the coefficientsαi are chosen in such a way, that
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a) b)microstretch (1) microstretch (2)

um
x = α11 x3 um

x =
1

2
(α15 x y2 + α16 x z2)

Figure 4: possible deformation modes reflecting microstretch into horizontal direction

a) b) c)microshear (1) microshear (2) microshear (3)

um
x =

1

2
(α12 + β11) y3

um
y =

1

2
(α12 + β11)x3

um
x =

1

2
(α17 + β15)x2 y

um
y =

1

2
(α17 + β15)x y2

um
x =

1

2
(α20 + β16) y z2

um
y =

1

2
(α20 + β16)x z2

Figure 5: possible deformation modes reflecting microshearwithin theex/ey-plane

the macroscopic stretch derived by calculating the volume average of the local stretch distribution is equal for both
modes. Calculation of the energy using a Finite Element (FE)code shows, that the mode on the left of Figure 4
is about two times stiffer than the mode on the right. Of course, this depends on the chosen material parameters,
especially on the relation between stiffness with respect to stretch and shear, but for a realistic set of material
parameters the left one will always be stiffer. Thus, looking for the energetical minimum to deform the TVE, the
deformation mode on the right hand side of Figure 4 is chosen to reflect the directional microstretch.

Analogously the same can be done for the microshear. Lookingat terms able to represent a shear deformation
within theex/ey-plane, which is not identical to the macroscopic shear deformation, one finds the terms visualised
in Figure 5.

Again the energy criterion is used to choose the inhomogeneous deformation mode consuming the lowest amount
of energy as the deformation mode reflecting microshear. Thereby, to make the deformation modes comparable,
they are normalised in such a way that the macroscopic shear deformation calculated by the volume average of the
local distribution is equal for the different modes. FE calculations show that the first and third mode presented in
Figure 5 are about 1.5 times stiffer than the second mode, so that the second one is chosen to reflect the microshear
deformation.

Finally, this approach is also carried out for the micropolar deformation. The deformation modes reflecting mi-
cropolar deformations should be closely related to the skewsymmetric macroscopic shear deformation, whereby
it does not matter that this is a rigid body mode. The modes reflecting this rotational effect and being independent
of the macroscopic skew symmetric shear mode are presented in Figure 6.

Performing a FE analysis to determine the energy needed for the deformation, whereby the modes are now nor-
malised so that the macroscopic skew symmetric shear deformation calculated by the volume average of the local
distribution is equal for the three modes presented in Figure 6, the second mode of Figure 6 is about two times

71



a) b) c)micropolar (1) micropolar (2) micropolar (3)

um
x =

1

2
(α12 − β11) y3

um
y = −

1

2
(α12 − β11)x3

um
x =

1

2
(α17 − β15)x2 y

um
y = −

1

2
(α17 − β15)x y2

um
x =

1

2
(α20 − β16) y z2

um
y = −

1

2
(α20 − β16)x z2

Figure 6: possible deformation modes reflecting micropolardeformation within theex/ey-plane

microstretch microshear micropolar

um
x =

1

2
(α15 x y2 + α16 x z2) um

x =
1

2
(α17 + β15)x2 y

um
y =

1

2
(α17 + β15)x y2

um
x =

1

2
(α12 − β11) y3

um
y = −

1

2
(α12 − β11)x3

Figure 7: modes reflecting micromorphic extra deformation

stiffer than the first one, while the third one is about three times stiffer than the first one. Thus, the first one is
chosen as the mode reflecting the micropolar deformation.

Comparing the underlying terms used for the representationof the microshear and micropolar deformation, it is
interesting, that they are not based onthe same terms of the Taylor series expansion in terms of the symmetric part
reflecting the microshear deformation and the skew symmetric part reflecting the micropolar deformation.

Figure 7 shows an overview of the extra deformation modes used in the following to reflect the extra higher order
deformation within the micromorphic continuum theory withthe restrictions due to symmetry of the microshear
mode and skew symmetry of the micropolar mode

α17 = β15 and α12 = −β11. (19)

Within the micromorphic continuum theory these higher order modes are reformulated by a total of 9 independent
variables. Using these variables in addition to the displacement fielu as the master field within a FE formulation,
also the gradient of the independent variables has to exist.For the present approach that means, that also the
gradient of the micromorphic deformation modes has to be provided by the Taylor series expansion.

The simplest way to generate the required gradient modes is by integration of the higher order modes into the
several directions, which yields terms of fourth order. Theresults are presented in Table 1 for the microstretch
mode, in Table 2 for the microshear mode, and in Table 3 for themicropolar deformation. Thereby, utilising the
symmetry and skew symmetry of the modes, the terms are expressed using new scaling factorsαi.
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microstretch mode: um
x = αA (x y2 + x z2)

gradient mode intoex-direction: um
x = αB (

1

2
x2 y2 +

1

2
x2 z2)

gradient mode intoey-direction: um
x = αC (

1

3
x y3 + x y z2)

gradient mode intoez-direction: um
x = αD (x y2 z +

1

3
x z3)

Table 1: gradient modes of horizontal microstretch

microshear mode: um
x = αE x2 y um

y = αE x y2

gradient mode intoex-direction: um
x = αF

1

3
x3 y um

y = αF

1

2
x2 y2

gradient mode intoey-direction: um
x = αG

1

2
x2 y2 um

y = αG

1

3
x y3

gradient mode intoez-direction: um
x = αH x2 y z um

y = αH x y2 z

Table 2: gradient modes of microshear within theex/ey-plane

micropolar mode: um
x = αI y3 um

y = −αI x3

gradient mode intoex-direction: um
x = αJ x y3 um

y = −αJ

1

4
x4

gradient mode intoey-direction: um
x = αK

1

4
y4 um

y = −αK x3 y

gradient mode intoez-direction: um
x = αL y3 z um

y = −αL x3 z

Table 3: gradient modes of micropolar deformation within theex/ey-plane

At the moment, terms of second order are not used to representa micromorphic continuum. However, the terms
of second order are able to describe similar effects as the terms of fourth order. While the terms of second order
describe the gradient of the macroscopic first order terms, the fourth order terms describe the gradient of the mi-
croscopic third order terms. Thus, instead of using fourth order terms to describe the gradient of micromorphic
micromotion, the second order terms may be used without changing the overall behaviour. This is in good agree-
ment with the energy criterion used before for the selectionof micromorphic modes: the energy per volume (and
therefore also the stiffness) of the second order terms increases quadratically with the size of the TVE while the
energy per volume of the fourth order terms increases quartically with the size in the case of a homogeneous TVE.
That means that comparing modes of second order and fourth order describing the same gradient-like effect, the
second order terms behave much softer in the case of a homogeneous TVE. The second order gradient modes can
be generated by integration of the macroscopic deformationmodes into the several directions. Thereby it does not
matter that the macroscopic skew symmetric shear mode has tobe integrated, because the skew symmetric shear
is indeed a zero energy mode, but the integrated second ordermodes are not zero energy modes. The integrated
modes derived from macroscopic (linear) deformation modesare presented in Tables 4, 5 and 6.

Only 18 independent modes of second order are available. Thus, the calculated gradient modes of second order are
not linearly independent. E. g., superposition of gradientmodes of macroshear and skew symmetric shear mode
into e1-direction yields the gradient mode of the macrostretch into e2-direction. In principle two gradients can be
of second order terms while the third one has to be of fourth order to guarantee independency. There is no special
argument to take a certain set of gradient modes as the third possible mode, which means as that one with terms
of fourth order. However, it seems to be reasonable to take into account the gradient modes of the macrostretch
mode, so that there is no a priori coupling between displacements intoe1-direction and displacements intoe2-
direction. Furthermore, this has the advantage, that againan energy criterion can be used to decide whether the
terms of second order represent the macroshear mode or the gradient modes of the skew symmetric shear mode.
Due to the relationship between the macroscopic symmetric and skew symmetric modes, for fixedαi the modes
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macrostretch mode: um
x = αA x

gradient mode intoex-direction: um
x = αB

1

2
x2

gradient mode intoey-direction: um
x = αC x y

gradient mode intoez-direction: um
x = αD x z

Table 4: gradient modes of horizontal macrostretch

macroshear mode: um
x = αE y um

y = αE x

gradient mode intoex-direction: um
x = αF x y um

y = αF

1

2
x2

gradient mode intoey-direction: um
x = αG

1

2
y2 um

y = αG x y

gradient mode intoez-direction: um
x = αH y z um

y = αH x z

Table 5: gradient modes of macroshear within theex/ey-plane

skew symmetric shear mode: um
x = αI y um

y = −αI x

gradient mode intoex-direction: um
x = αJ x y um

y = −αJ

1

2
x2

gradient mode intoey-direction: um
x = αK

1

2
y2 um

y = −αK x y

gradient mode intoez-direction: um
x = αL y z um

y = −αL x z

Table 6: gradient modes of skew symmetric shear deformationwithin theex/ey-plane

are comparable. Thus, within a FE analysis the energy for thegradient modes according to the symmetric and
skew symmetric part can be calculated. The results show thatthe gradient modes according to the symmetric part
are always stiffer than the modes according to the skew symmetric part. As a consequence modes of second order
are used to represent the gradient of the micropolar deformation while terms of fourth order are used to represent
the gradient of the microshear deformation.

Up to now the presented approach is restricted to qualitative results describing the relation between certain modes
of the Taylor series expansion. For quantitative results anexplicit reformulation of the deformation modes is
needed. This step of reformulation is independent of the previous step of mode selection. Thus, there is again a lot
of freedom to choose an appropriate rule for the reformulation in the form of new independent variables. The rule
presented in the following is only one possible choice amongothers.

Keeping in mind that the micromorphic deformation modes consisting of the directional microstretch, the micros-
hear and the micropolar deformation are all of third order, avery simple rule for the reformulation can be used,
which is

A = um
a,bbc ea ⊗ ec (20)

yielding the micromotion tensor with 9 independent coefficients. The rule furthermore guarantees that the micro-
motion vanishes for modes of order lower than 3, and that the micromotion itself also vanishes for modes of fourth
order taking the volume average (again under assumption of acuboid symmetric TVE). For the representation of
the micromotion modes of second order as well as modes of fourth order are used. Therefore, the integrated modes
of fourth order can not be used directly. The reformulation rule may use only second derivatives. The simplest
version of the rule is
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3

B= um
a,bc ea ⊗ eb ⊗ ec. (21)

However, this rule is not able to represent the gradient completely due to the symmetry with respect to the second
and third base system, i. e., it yields only 18 independent coefficients while 27 are needed. This strong coupling
by Clairaut’s theorem has to be circumvented. This can, e. g., be done by taking the symmetric part of the first
derivative only and by calculating the second derivative

3

C=
1

2
(um

a,bc + um
b,ac) ea ⊗ eb ⊗ ec, (22)

which is symmetric with respect to the first and second base system also yielding 18 independent coefficients only.
However, by a superposition of both rules, e. g., weighting both rules by a factor of 0.5, a rule is defined which
yields the required 27 independent coefficients

3

D=
1

2
(

3

B +
3

C) = (
3

4
um

a,bc +
1

4
um

b,ac) ea ⊗ eb ⊗ ec, (23)

whereby
3

D represents the gradient of the micromotionA. The coefficients of
3

D contain fourth order terms, which
still depend on the position within the TVE. To avoid this, the volume average is taken. Finally one gets

3

D= 〈 (
3

4
um

a,bc +
1

4
um

b,ac) ea ⊗ eb ⊗ ec 〉, (24)

which yields non-zero values only for the gradient modes of the micromotion.

In conclusion this approach enables the calculation of the kinematical degrees of freedom based on the Taylor se-
ries expansion. Thereby the explicit calculation of the kinematical degrees of freedom may clarify which terms of
the expansion are associated with the macrodeformation andmicrodeformation, respectively. This will be demon-
strated on the basis of the simplest restricted micromorphic continuum theory, which is the Cosserat continuum
theory.

The linearised Cosserat strain tensorε is given by

ε = grad u+
3

E ·ϕ, (25)

whereby
3

E is the permutation tensor,u the displacement field andϕ the field of extra-rotations. The terms of the
Taylor series expansion needed for the reflection of the complete Cossserat deformation are the linear terms and in
addition the micropolar terms including their gradients asgiven in Table 6

u
m (x, t) = (α1 x + ζ1 y + η1 z + ζ2 y3 − η2 z3+

ζ3 x y + 1
2 ζ4 y2 + ζ5 y z − 1

2 η3 z2 − η4 x z − η5 y z ) ex +

(β1 y + ζ1 x + ξ1 z + ξ2 z3 − ζ2 x3+
ξ3 y z + 1

2 ξ4 z2 + ξ5 x z − 1
2 ζ3 x2 − ζ4 x y − ζ5 x z ) ey +

(γ1 z + η1 x + ξ1 y + η2 x3 − ξ2 y3+
η3 x z + 1

2 η4 x2 + η5 x y − 1
2 ξ3 y2 − ξ4 y z − ξ5 x y ) ez.

(26)

Compared to eq. 1 the coefficients in eq. 26 are reformulated to include the symmetry and skew symmetry condi-
tions. Thereby the coefficientsξi indicate a deformation mode within theey-ez-plane,ηi within theex-ez-plane,
andζi within theex-ey-plane.

In a next step the Cosserat strain tensorε is set equal to the volume average of the gradient of the displacement
field expressed by the Taylor series expansion
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ε := 〈 grad u
m (x, t) 〉. (27)

Thereby the skew symmetric part of the Cosserat strain tensor ε is reflected by the micropolar deformation. How-
ever, there is no possibility to distinguish between the skew symmetric part envolved by the gradient of the dis-
placement field and the a priori skew symmetric part due to theextra-rotationϕ. Thus, the skew symmetric part
of the gradient of the displacement field is set to zero. This is in agreement with the consideration that if all
micropolar effects vanish, the continuum theory reduces toward the Boltzmann continuum theory, where the strain
tensor is symmetric

skw ε :=
3

E ·ϕ. (28)

For a homogeneous cuboidal TVE (edge lengthl) the resulting skew symmetric part can be calculated using eq. 25.
In a last step the information about the extra-rotation can be extracted from the skew symmetric part using eq. 28,
which gives

ϕ =
1

4
ξ2 l2 ex +

1

4
η2 l2 ey +

1

4
ζ2 l2 ez. (29)

4 Application to Microstructures

In the following the presented approach is applied to four different kinds of TVEs as shown in Figure 8. The first
one is a homogeneous TVE, the second a plated cross-like TVE assembled by shell elements, the third a cross-like
TVE assembled by beam elements, and the last one a TVE which shows a negative radical strain coefficient on
the macroscopical level due to the special topology of the microstructure. In the following the last one will be
called the star-like TVE. For a better understanding of the mechanism responsible for the negative radical strain
coefficient, a two-dimensional sketch is presented on the right hand side of Figure 8. The modes of interest chosen
by energetical considerations are applied to these TVEs. Byscaling the size of the TVEs it can be observed that
the energy per volume increases at different rates for the different modes. This information is used to decide if the
deformation mode under consideration may play an importantrole on a macroscopical level or not: if the energy
per volume increases very fast, the TVE is very stiff with respect to the deformation mode, and so the load transfer
will be taken by weaker deformation modes consuming less energy.

homogeneous TVE cross-like TVEplated TVE star-like TVE
2-dim mechanism
of star-like TVE

Figure 8: Microstructures under investigation

4.1 Homogeneous TVE

Table 7 shows the deformation modes, which are investigatedin the following, and the corresponding numerical
results. All further modes not presented in the table can be reconstructed from these modes using the symmetry
condition. The fifth up to the ninth column of the table indicate the macroscopic continuum theory the deformation
modes belong to. Thereby the following abbreviations are used: BCT (Boltzmann continuum theory),SGT(second
gradienttheory),µM (micromorphic theory),µP (micropolar theory), andµS (microstretch theory). ”X” means
that the mode is used directly without any further restriction within a certain continumm theory. ”C” means that
the mode is used indirectly requiring some extra conditionsin the form of a superposition. This applies to the
gradient of the micropolar deformation (no. 15), which can also be understood as a superposition of the quadratic
modes (no. 3 to 7), and of course vice versa.
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no. um
x = αi · . . . um

y = αi · . . . geometrical Interpretation BCT SGT µM µP µS L = l L = 2 l L = 4 l

1 x 0 classical stretch X X X X X 1.00 1.00 1.00
2 y x classical shear X X X X X 1.00 1.00 1.00
3 x2 0 inhomogeneous stretch – X X – X 1.00 4.00 16.00

reduced gradientex-dir. microstretch
4 y2 0 curvature (1) – X C C – 1.00 4.00 16.00
5 x y 0 curvature (2) – X X C X 1.00 4.00 16.00

reduced gradientey-dir. microstretch
6 y z x z twist – X C C – 1.00 4.00 16.00
7 y z −x z torsion – X X X – 1.00 4.00 16.00

reduced gradientez-dir. micropolar
8 x3 0 microstretch (1) – – X – X 1.00 16.00 256.00

3

2
(x y2 + x z2) 0 microstretch (2) – – X – X (1.48) (23.68) (378.93)

9 y3 x3 microshear (1) – – X – – (1.70) (27.17) (434.69)
x2 y x y2 microshear (2) – – X – – 1.00 16.00 256.00
3 y z2 3x z2 microshear (3) – – X – – (4.93) (78.90) (1262.45)

10 y3 −x3 micropolar (1) – – X X – 1.00 16.00 256.00
x2 y −x y2 micropolar (2) – – X X – (2.17) (34.66) (554.56)
3 y z2 −3x z2 micropolar (3) – – X X – (8.41) (134.62) (2153.97)

11 x y3 1

4
x4 gradientex-dir. microshear (1) – – X – – (2.89) (23.13) (11841.38)

1

3
x3 y

1

2
x2 y2 gradientex-dir. microshear (2) – – X – – 1.00 64.00 4096.00

3x y z2 3

2
x2 z2 gradientex-dir. microshear (3) – – X – – (12.15) (777.39) (49753.28)

12 y3 z x3 z gradientez-dir. microshear (1) – – X – – (1.62) (103.98) (6655.03)
x2 y z x y2 z gradientez-dir. microshear (2) – – X – – 1.00 64.00 4096.00
y z3 x z3 gradientez-dir. microshear (3) – – X – – (1.32) (84.71) (5421.73)

13 x y3 −
1

4
x4 gradientex-dir. micropolar (1) – – X X – {0.14} {9.12} {583.73}

1

3
x3 y −

1

2
x2 y2 gradientex-dir. micropolar (2) – – X X – {(0.06)} {(3.73)} {(238.43)}

3x y z2 −
3

2
x2 z2 gradientex-dir. micropolar (3) – – X X – {(0.74)} {(47.53)} {(3042.20)}

14 y3 z −x3 z gradientez-dir. micropolar (1) – – X X – {0.54} {34.69} {2220.14}
x2 y z −x y2 z gradientez-dir. micropolar (2) – – X X – {(0.61)} {(39.29)} {(2514.51)}
y z3 −x z3 gradientez-dir. micropolar (3) – – X X – {(0.84)} {(53.93)} {(3451.50)}

15 x y −
1

2
x2 reduced gradientex-dir. micropolar – C X X – 1.00 4.00 16.00

Table 7: homogeneous TVE
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The last three colums of Table 7 show the energy per volume calculated for different sizes of TVEs, wherebyL is
the edge length of the cube used as TVE. The energy is normalised with respect to the smallest TVE (L = l). The
results show that for the linear modes the energy per volume remains constant for an increasing size of the TVE.
This means that these deformation modes are not able to reflect size effects in the case of a homogeneous TVE
as expected from the Boltzmann continuum theory. The quadratic deformation modes scale quadratically with the
size of the TVE. This type of scaling is known from bending: ifthe diameter of a beam is scaled by a factor of
two, the cross section is increased by a factor of 4 and the stiffness by a factor of 16. Calculating the energy per
area, a factor of 4 remains. The cubic modes scale with the order 24, and the quartic modes with the order26. So
in general a mode of ordern scales with the order22 (n−1).

As the results have shown, modes of the same order scale with exactly the same factor. Thus, it is always guaranteed
that the deformation modes reflecting microstretch, microshear, and micropolar deformation for the smallest TVE
are always the same for an arbitrary size of the TVE.

For the microstretch, miscroshear, and micropolar modes (no. 8 to 10) the results are normalised with respect to
the respective weakest deformation mode of smallest size. This allows for a direct comparison of the deformation
modes with respect to their stiffness. E. g., in the case of the microstretch the second mode is always about 1.48
times stiffer than the first mode. This factor is independentof the size of the TVE (differences occcur due to
truncation errors). While only one microstretch mode is needed by the macroscopic continuum theory, the weaker
mode is chosen while the stiffer one is rejected. Rejection of a mode is indicated within the table by values set
into round brackets ”(• )”. In the same way the results for microshear and micropolardeformations are presented.
Thereby again the values of the rejected modes are set into round brackets.

Without competition the gradient of microstretch can be reflected by terms of second order instead of terms of
fourth order (no. 3 and 5). Thus, the results for fourth ordermodes, which are able to reflect the gradient of
microstretch deformation, are not presented. Due to the competition between the reduced gradient of second order
for microshear and micropolar deformation modes, the complete results for the modes of fourth order are shown
(no. 11 to 14). Thereby, the results of no. 11 and 13 as well as 12 and 14 (the gradient of the symmetric and the
skew-symmetric part) are normalised with respect to the same value. So it can be directly seen that the gradient of
the micropolar deformation always behaves more weakly thanthe gradient of the microshear deformation. Thus,
the weaker deformation modes of fourth order (no. 13 and 14) are replaced by the corresponding modes of second
order (no. 15 and 7). Indicating that the fourth order modes reflecting the gradient of micropolar deformation are
not used, the values are set in curly brackets ”{ • }”.

4.2 Plated TVE

The second TVE under consideration is the plated TVE as shownin Figure 8.

While the TVE is not homogeneous, in a first step it is checked ifthe significant deformation mode for reflection of
microstretch, microshear and micropolar deformation changes with the size of the TVE. Figure 9 shows the results
for microstretch, microshear, and micropolar deformationvarying the size of the TVE betweenL = l andL = 10 l
(value atL = 2 l calibrated to 1). While in the case of microstretch deformation for the smallest TVE (L = l) the
mode presented in Figure 4 on the right is significant, for larger TVEs (L ≥ 2 l) the mode in the same figure on
the left behaves weaker and therefore it is chosen to reflect microstretch. The switch of the significant deformation
mode is indicated by the dashed vertical line. The same effect can be observed for the microshear and micropolar
deformation in Figure 9.

As already done before in the case of the homogeneous TVE, numerical tests are performed to calculate the energy
associated with the certain deformation modes. However, for this example the energy is normalised with respect to
the TVE of sizeL = 2 l because the smallest TVE (L = l) is acting an extra role: for some deformation modes the
smallest TVE is significantly weaker than expected from the results from larger TVEs indicating a change of the
load carrying behaviour. In these cases the smallest TVE carries the load by bending while for larger TVEs also
stretching of the plates is involved. Furthermore the smallest TVE is not able to reflect the gradient of the second
microshear and second micropolar deformation mode intoex-direction because the displacement on the boundary
of the TVE is zero. The changing load carrying behaviour can be seen quite well in Figure 9 for the microshear
and for the micropolar deformation, but it appears also for other modes, e. g., no. 6 and 7 (twist and torsional
deformation) presented in Table 8.

Due to the special role of the smallest TVE, it is now size dependent which is the significant mode for the reflection
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um
x = αi x3

um
x =

1

2
αi x (y2 + z2) ∗ 3

um
x = αi y3 / um

y = αi x3

um
x = αi x2 y / um

y = αi x y2

um
x = αi y z2 ∗ 3 / um

y = αi x z2 ∗ 3

um
x = αi y3 / um

y = −αi x3

um
x = αi x2 y / um

y = −αi x y2

um
x = αi y z2 ∗ 3 / um

y = −αi x z2 ∗ 3

Influence of TVE size for microstretch deformation

Influence of TVE size for microshear deformation

Influence of TVE size for micropolar deformation
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Figure 9: Influence of TVE size (plated microstructure)

79



no. um
x = αi · . . . um

y = αi · . . . geometrical Interpretation BCT SGT µM µP µS L = l L = 2 l L = 4 l L = 8 l

1 x 0 classical stretch X X X X X 1.00 1.00 1.00 1.00
2 y x classical shear X X X X X 1.00 1.00 1.00 1.00
3 x2 0 inhomogeneous stretch – X X – X 0.248 1.0 4.300 18.524

reduced gradientex-dir. microstretch
4 y2 0 curvature (1) – X C C – 0.243 1.0 4.140 16.906
5 x y 0 curvature (2) – X X C X 0.149 1.0 4.463 18.432

reduced gradientey-dir. microstretch
6 y z x z twist – X C C – 4.445e-6 1.0 5.001 21.011
7 y z −x z torsion – X X X – 5.352e-6 1.0 5.000 20.983

reduced gradientez-dir. micropolar
8 x3 0 microstretch (1) – – X – X (0.063) 1.0 16.107 261.674

3

2
(x y2 + x z2) 0 microstretch (2) – – X – X 0.040 (1.099) (22.087) (375.521)

9 y3 x3 microshear (1) – – X – – (0.107) (1.782) (28.710) (463.387)
x2 y x y2 microshear (2) – – X – – (0.048) 1.0 17.810 313.475
3 y z2 3x z2 microshear (3) – – X – – 3.938e-6 (2.597) (70.555) (1278.448)

10 y3 −x3 micropolar (1) – – X X – (0.040) 1.0 16.894 286.583
x2 y −x y2 micropolar (2) – – X X – (0.125) (2.967) (55.451) (966.893)
3 y z2 −3x z2 micropolar (3) – – X X – 3.414e-6 (5.541) (116.200) (2021.054)

11 x y3 1

4
x4 gradientex-dir. microshear (1) – – X – – (0.043) (2.991) (226.908) (15800.057)

1

3
x3 y

1

2
x2 y2 gradientex-dir. microshear (2) – – X – – (0.012) 1.0 74.918 5416.187

3x y z2 3

2
x2 z2 gradientex-dir. microshear (3) – – X – – 2.892e-7 (7.173) (836.737) (62690.413)

12 y3 z x3 z gradientez-dir. microshear (1) – – X – – (2.468e-7) (1.232) (108.392) (7668.498)
x2 y z x y2 z gradientez-dir. microshear (2) – – X – – (–) 1.0 81.281 5811.952
y z3 x z3 gradientez-dir. microshear (3) – – X – – 3.572e-7 (0.774) (80.688) (6099.541)

13 x y3 −
1

4
x4 gradientex-dir. micropolar (1) – – X X – {(0.023)} {1.553} {132.198} {9578.835}

1

3
x3 y −

1

2
x2 y2 gradientex-dir. micropolar (2) – – X X – {(0.010)} {(0.900)} {(70.620)} {(5002.239)}

3x y z2 −
3

2
x2 z2 gradientex-dir. micropolar (3) – – X X – {2.892e-7} {(6.233)} {(636.539)} {(45751.178)}

14 y3 z −x3 z gradientez-dir. micropolar (1) – – X X – {(2.438e-7)} {0.251} {30.642} {2482.035}
x2 y z −x y2 z gradientez-dir. micropolar (2) – – X X – {(–)} {(0.955)} {(77.675)} {(5379.838)}
y z3 −x z3 gradientez-dir. micropolar (3) – – X X – {1.333e-7} {(0.709)} {(58.348)} {(4051.920)}

15 x y −
1

2
x2 reduced gradientex-dir. micropolar – C X X – 0.140 1.0 4.455 18.299

Table 8: plated TVE
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of microstretch, microshear and micropolar deformation (Table 8, no. 8, 9 and 10) also presented in Figure 9. The
values corresponding to the significant modes are presentedwithout brackets while the other modes are set into
brackets. This setting of brackets is also applied to the gradient of the corresponding mode: if the micromode is
not significant and therefore set into brackets, then also its gradients are set into brackets. This may lead to the
result that the gradient of the micromode is not representedby the weakest deformation mode as can be seen for the
gradient intoez-direction of the microshear mode (no. 12). Another approach would be to decide independently
which may be the significant gradient of microshear deformation again using the energy criterion.

As before in the case of the homogeneous TVE, the gradient modes of the micropolar deformation (Table 8, no.
13 and 14) are always weaker than the gradient modes of the microshear deformation (Table 8, no. 11 and 12) in
the sense of consuming less energy. Thus, instead of the fourth order modes (no. 13 and 14) the according second
order modes are used (no. 7 and 15).

Comparing the results for the plated TVE (Table 8) with the results for the homogeneous TVE (Table 7) one can
observe that the values scale with about the same factor for increasing sizes of the TVE (excluding the smallest
plated TVE). Thus, the principal deformation behaviour of the plated TVE is approximately the same as that one
of the homogeneous TVE.

4.3 Cross-like TVE

The third TVE under consideration is a cross-like TVE as shown in Figure 8.

Again it is checked in a first step if the significant deformation mode for reflection of microstretch, microshear, and
micropolar deformation changes with the size of the TVE. Figure 10 shows the results varying the size of the TVE
betweenL = l andL = 10 l (smallest value calibrated to 1). In the case of microstretch (upper part of Figure 10)
for small TVEs (l ≤ L ≤ 3 l) the mode presented on the right hand side of Figure 4 is significant. For larger
TVEs (L ≥ 4 l) the mode in the same figure on the left hand side behaves weaker and therefore is chosen to reflect
microstretch.

The same effect can be observed for microshear and micropolar deformations as shown in the middle of Figure 10
and the lower part of the same figure. In the case of microshearand micropolar deformation, three modes are,
respectively, available to reflect the deformation, see Figure 5 and Figure 6.

Considering the effect that the deformation mode of interest depends on the size of the TVE, the according results
for the cross-like microstructure are presented in Table 9.Applying the procedure with respect to the Boltzmann
continuum theory on the macroscopic scale, moments on the boundary of the TVE cannot be handled by the ho-
mogenization procedure. Thus, in this case under consideration hinges at all beam ends on the boundary of the
TVE, while in all other cases the rotational boundary conditions are calculated from the gradient of the displace-
ment field (eq. (3)).

Again the gradient modes of the micropolar deformation (Table 9, no. 13 and 14) are weaker than the gradient
modes of the microshear deformation (Table 9, no. 11 and 12) at least for the appropriate significant deformation
mode. Thus, instead of the fourth order modes (no. 13 and 14),the according second order modes are used again
(no. 7 and 15) as before for the homogeneous TVE and the platedTVE.

4.4 Star-like TVE (TVE with Negative Radical Strain Coefficient)

The last numerical example concerns the star-like TVE presented in Figure 8, whereby for a better understanding
also the underlying 2-dimensional mechanism is presented.The main difference with respect to the previously
discussed cross-like TVE, is the load carrying by bending instead of by stretching of the beam elements. Thus, the
recent TVE behaves much more softly with respect to the stretching of the TVE. While the load is always carried
by bending, it is not possible that the principal load carrying behaviour is changed when the size of the TVE is
variied.

Again one observes that the significant mode representing microstretch, microshear, and micropolar deformation
depends on the size of the TVE (Figure 11).

By taking a look on the gradient of the microshear and micropolar deformation (Table 10), one remarks that
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Figure 10: Influence of TVE size (cross-like microstructure)
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no. um
x = αi · . . . um

y = αi · . . . geometrical Interpretation BCT SGT µM µP µS L = l L = 2 l L = 4 l L = 8 l

1 a x 0 classical stretch X – – – – 1.000 1.000 1.000 1.000
2 a y x classical shear X – – – – 1.000 1.000 1.000 1.000
1 b x 0 classical stretch – X X X X 1.00 1.000 1.000 1.000
2 b y x classical shear – X X X X 1.600 1.0 0.687 0.540

3 x2 0 inhomogeneous stretch – X X – X 0.304 1.0 7.751 60.512
reduced gradientex-dir. microstretch

4 y2 0 curvature (1) – X C C – 0.182 1.0 3.136 9.509
5 x y 0 curvature (2) – X X C X 2.065e-4 1.0 4.998 20.987

reduced gradientey-dir. microstretch
6 y z x z twist – X C C – 0.023 1.000 3.293 10.524
7 y z −x z torsion – X X X – 0.235 1.000 3.658 13.033

reduced gradientez-dir. micropolar
8 x3 0 microstretch (1) – – X – X (0.111) (1.776) 28.420 455.205

3

2
(x y2 + x z2) 0 microstretch (2) – – X – X – 1.0 (32.966) (608.202)

9 y3 x3 microshear (1) – – X – – (0.041) (2.009) 34.064 433.975
x2 y x y2 microshear (2) – – X – – 0.014 1.0 (50.747) (2105.386)
3 y z2 3x z2 microshear (3) – – X – – (–) (2.778) (57.394) (832.700)

10 y3 −x3 micropolar (1) – – X X – (0.033) 1.0 20.499 288.931
x2 y −x y2 micropolar (2) – – X X – 0.027 (4.386) (191.903) (6559.345)
3 y z2 −3x z2 micropolar (3) – – X X – (0.109) (18.907) (281.529) (3279.548)

11 x y3 1

4
x4 gradientex-dir. microshear (1) – – X – – (5.020e-5) (1.0) 355.263 32472.107

1

3
x3 y

1

2
x2 y2 gradientex-dir. microshear (2) – – X – – 2.213e-5 1.717 (138.882) (9590.917)

3x y z2 3

2
x2 z2 gradientex-dir. microshear (3) – – X – – (–) (8.741) (1786.215) (142013.310)

12 y3 z x3 z gradientez-dir. microshear (1) – – X – – (0.003) (2.671) 224.068 11999.897
x2 y z x y2 z gradientez-dir. microshear (2) – – X – – – 1.610 (460.303) (83253.231)
y z3 x z3 gradientez-dir. microshear (3) – – X – – (–) (1.0) (102.561) (6153.479)

13 x y3 −
1

4
x4 gradientex-dir. micropolar (1) – – X X – {(5.020e-5)} {0.977} {352.900} {32343.116}

1

3
x3 y −

1

2
x2 y2 gradientex-dir. micropolar (2) – – X X – {2.213e-5} {(1.723)} {(139.882)} {(9685.859)}

3x y z2 −
3

2
x2 z2 gradientex-dir. micropolar (3) – – X X – {(–)} {(8.711)} {(1781.450)} {(141728.853)}

14 y3 z −x3 z gradientez-dir. micropolar (1) – – X X – {(0.003)} {0.686} {67.075} {4111.030}
x2 y z −x y2 z gradientez-dir. micropolar (2) – – X X – {–} {(2.589)} {(627.504)} {(97133.229)}
y z3 −x z3 gradientez-dir. micropolar (3) – – X X – {(0.007)} {(1.334)} {(107.125)} {(6127.210)}

15 x y −
1

2
x2 reduced gradientex-dir. micropolar – C X X – 2.083e-4 1.0 4.999 20.996

Table 9: cross-like TVE
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Figure 11: Influence of TVE size (star-like microstructure)
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no. um
x = αi · . . . um

y = αi · . . . geometrical Interpretation BCT SGT µM µP µS L = l L = 2 l L = 4 l L = 8 l

1 a x 0 classical stretch X – – – – 1.000 1.000 1.000 1.000
2 a y x classical shear X – – – – 1.000 1.000 1.000 1.000
1 b x 0 classical stretch – X X X X 1.00 1.000 1.000 1.000
2 b y x classical shear – X X X X 1.444 1.000 0.719 0.590

3 x2 0 inhomogeneous stretch – X X – X 0.312 1.000 6.026 28.316
reduced gradientex-dir. microstretch

4 y2 0 curvature (1) – X C C – 0.202 1.000 3.201 9.983
5 x y 0 curvature (2) – X X C X 0.011 1.000 5.106 21.371

reduced gradientey-dir. microstretch
6 y z x z twist – X C C – 0.019 1.000 3.454 11.781
7 y z −x z torsion – X X X – 0.189 1.000 4.077 15.190

reduced gradientez-dir. micropolar
8 x3 0 microstretch (1) – – X – X (0.100) (1.678) 27.114 446.067

3

2
(x y2 + x z2) 0 microstretch (2) – – X – X – 1.000 (30.726) (558.392)

9 y3 x3 microshear (1) – – X – – (0.078) (2.893) (44.273) (570.962)
x2 y x y2 microshear (2) – – X – – 0.011 1.000 30.079 658.735
3 y z2 3x z2 microshear (3) – – X – – (–) (3.370) (71.265) (1127.673)

10 y3 −x3 micropolar (1) – – X X – (0.025) 1.000 18.856 256.632
x2 y −x y2 micropolar (2) – – X X – 0.019 (3.263) (121.187) (2582.830)
3 y z2 −3x z2 micropolar (3) – – X X – (0.099) (4.944) (80.879) (1147.874)

11 x y3 1

4
x4 gradientex-dir. microshear (1) – – X – – (0.002) (2.434) (382.437) (28913.608)

1

3
x3 y

1

2
x2 y2 gradientex-dir. microshear (2) – – X – – 7.459e-4 1.000 98.256 7944.588

3x y z2 3

2
x2 z2 gradientex-dir. microshear (3) – – X – – (–) (8.342) (1526.638) (14184.297)

12 y3 z x3 z gradientez-dir. microshear (1) – – X – – (0.003) (3.126) (238.419) (13083.981)
x2 y z x y2 z gradientez-dir. microshear (2) – – X – – – 1.288 200.887 13744.223
y z3 x z3 gradientez-dir. microshear (3) – – X – – (–) (1.0) (89.225) (5806.042)

13 x y3 −
1

4
x4 gradientex-dir. micropolar (1) – – X X – {(0.002)} {1.123} {248.420} {21220.670}

1

3
x3 y −

1

2
x2 y2 gradientex-dir. micropolar (2) – – X X – {7.459e-4} {(1.374)} {(192.691)} {(17028.628)}

3x y z2 −
3

2
x2 z2 gradientex-dir. micropolar (3) – – X X – {(–)} {(5.801)} {(1130.658)} {(94613.614)}

14 y3 z −x3 z gradientez-dir. micropolar (1) – – X X – {(0.004)} {0.787} {74.025} {4593.780}
x2 y z −x y2 z gradientez-dir. micropolar (2) – – X X – {–} {(2.249)} {(444.169)} {(19025.146)}
y z3 −x z3 gradientez-dir. micropolar (3) – – X X – {(0.007)} {(1.609)} {(124.464)} {(7066.160)}

15 x y −
1

2
x2 reduced gradientex-dir. micropolar – C X X – 0.016 1.000 5.230 22.430

Table 10: star-like TVE
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the gradient intoex-direction of the microshear deformation (no. 11) is softerthan that one of the micropolar
deformation (no. 13) even for large sizes of the TVE. Thus, incontrast to the examples before, using the energy
criterion, the gradient of the microshear deformation (no.11) should be substituted by the according mode of
second order. However, while for the component intoez-direction it is exactly inverse, in analogy to the continuous
TVE the gradient of the micropolar deformation is represented by terms of second order, while the gradient of the
microshear deformation is reflected by terms of fourth order.

5 Conclusion

The numerical investigation of TVEs of different sizes gives information about the importance of the several defor-
mation modes under consideration. This information can help to choose the continuum theory on a macroscopic
level, which is able to reflect the recent effects.

Furthermore the considerations can be used to determine therequired minimum size of a TVE reflecting the
principal deformation behaviour. As shown in the examples,the smallest TVE under consideration does not reflect
the principal deformation behaviour due to differences in the load carrying behaviour changing the size of the TVE.

The present kinematically based approach prescribing Dirichlet boundary conditions leads to an overestimation
of the overall effective stiffness (Voigt bound). Thus, theapproach can be improved using periodic boundary
conditions.
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