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Kinematics and Balance Relations for Bidimensional Continua

Bob Svendsen

This work is concerned with the formulation of the kinematics and balance relations for a so-called bidimensional
continuum, which can be used in modeling thin layers and interface regions such as phase boundaries. Such a
continuum represents a thin, shell-like 3-dimensional region in which the upper and lower surfaces move relative
to each other as well as relative to the dividing, non-material interface between them. As such, it is more general
than standard interfaces or shells. The standard balance relations of three-dimensional continua are adapted to
this dynamic bidimensional geometry using the differential geometric notion of a flow. On this basis, the adapted
balance relations are averaged over the dynamic thickness of the bidimensional continuum to obtain reduced
2-dimensional, surface forms of these on the dividing interface. In addition to the usual influence of the surface ge-
ometry on their form, the resulting adapted and averaged surface balance relations contain flux terms accounting
for the effect of relative motion, i.e., diffusion, on the balances. In the limit that the thickness of the bidimensional
continuum goes to zero, the generalized surface balance relations reduce to the classical jump balance relations
across an interface.

1 Introduction

The modeling of phase transitions, shock-wave propagation, and other such “abrupt” phenomena as 2-dimensional,
moving, non-material continua has a long history (e.g., Scriven, 1960; Slattery, 1967; Moeckel, 1974; Betounes,
1986; Gurtin, Struthers, 1990). An alternative approach, which treats the transition region as a “thin” three-
dimensional region has been advocated and developed by Deemer, Slattery (1978); Dumais (1980); Alts, Hut-
ter (1988); Kosinski (1991); dell’Isola, Kosinski (1993). An advantage of this former approach over the latter
is that one obtains directly relationships between the standard 3-dimensional thermodynamic fields and their 2-
dimensional counterparts on the interface by imposing the kinematic structure of the thin, 3-dimensional transition
region on the usual three-dimensional balance relations, and then averaging over the dynamic thickness of the
thin region. The resulting thickness-averaged 3-dimensional fields can be identified with surface fields which are
introduced formally in the first approach mentioned above. dell’Isolla & Kosiński (1993) have taken a step toward
a complete formulation of this type on the basis of classical (e.g., Riemannian) differential geometry. In the realm
of solid mechanics, Bövik (1994) used the simple idea of a Taylor expansion of the relevant physical fields in thin
regions together with surface differential operators on a curved surface to obtain the representation of a thin inter-
phase by an interface. The idea of a Taylor expansion was also used by Hashin (1991) in deriving the spring-type
interface model for soft elastic interphases. All of the above studies have assumed that the interphase is isotropic.
Benveniste (2006) generalizes the Bövik model to an arbitrarily curved three-dimensional thin anisotropic layer
between two anisotropic media. A comprehensive thermodynamical study of interfaces exists in Gurtin et al.
(1998).

As it turns out, these previous approaches based on classical methods tacitly neglect effects of the dynamic geome-
try in the bidimensional context. In particular, these include the fact that both the normal Pξ(Dnξ)Nξ and surface
Iξ(∇nξ)Pξ projections of the gradient Dnξ of the unit normal nξ to the dividing surface ξ (see (44)) influence the
bidimensional flow geometry and resulting balance relations. This is shown in the current work through the ap-
plication of modern differential geometric concepts such as flow, adapted differential form, Lie derivative, volume
form, relatedness of vector fields generating flows, and so on, as is shown in the current formulation. In doing this,
we are following most closely in spirit the work of Betounes (1986). On the other hand, as shown in §5, the fact
that the upper, middle and lower surfaces of the bidimensional continuum can move independently of each other
leads new and much more complex balance relations than have been derived in the context of moving surfaces
such as in Betounes (1986); Bövik (1994); Gurtin et al. (1998). Upon introducing the relevant further kinematic
restrictions, these reduce to the standard relations.
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After introducing certain mathematical concepts and definitions needed for the formulation (§2), we review briefly
certain key aspects of the kinematics of moving, non-material surfaces in E (§3). Next, we introduce the kinematics
of a bidimensional continuum (§4), whose motion is referenced to that of the interface separating its upper and
lower regions, which move relative to one another, just like two phases of a material which is undergoing a phase
transition. On the basis of such kinematics, we are in a position to adapt the standard three dimensional balance
relations to such a dynamic geometry (§5); since we work with the true 3-dimensional balance relations from
the start, and introduce no new physics into the formulation, we insure that the resulting adapted and averaged
2-dimensional balance relations on the interface are physically the same balance relations as those with which we
started. Finally, we discuss briefly the form of mass balance on the interface that arises in such a formulation.

2 Mathematical Preliminaries

The bidimensional continuum under consideration in this work is an oriented continuum in the sense of plates
and shells. To represent the corresponding geometry of this continuum, we generalize the differential geometric
approach of Betounes (1986) to the current bidimensional context in what follows. To this end, let E represent
3-dimensional Euclidean point space, V its oriented linear translation space, V ∗ := Lin(V,R) the dual space of V ,
and R real number space. Here and in what follows, Lin(W,Z) stands for the set of all linear mappings between
the linear spaces W and Z. In particular, V and V ∗ are such spaces. For example, the standard metric tensor G on
E, defined by (Ga)b := a ·b for all a, b ∈ V , takes values in Lin(V, V ∗). Further, we require the standard volume
form ω of E, defined by ω(a, b, c) := a · b× c for all a, b, c ∈ V . This quantity takes values in the linear space
Skw3(V 3,R) of all completely skew-symmetric multilinear mappings of V 3 := V × V × V into R. Next, let ı
represent the interior product operator (e.g., Abraham et al., 1988, Definition 6.4.7), i.e., ıaω(b, c) := ω(a, b, c).
Via this operator, ω maps any unit vector n ∈ V to a Euclidean two-form α := ınω perpendicular to n. This
is meant in the sense that, since α is completely skew-symmetric, ınα = ınınω = 0 follows. Consequently, α
annihilates any element of V parallel to n by linearity. Let V ‖ ⊂ V represent the corresponding two-dimensional
subspace of V consisting of all a ∈ V for which ıaω 6= 0 holds. Such vectors are considered parallel to α.
Further, if ν ∈ V ∗ is any unit one-form parallel to n, i.e., ınν = 1, it induces the representation

ω = ν ∧α (1)

of ω in terms of the exterior product operator ∧ (e.g., Abraham et al., 1988, Definition 6.1.3). Indeed, we then
have ınω = (ınν)α − ν ∧ (ınα) = α since ınα = 0. Note also that V ‖ = ker ν . The subspace supplementary
to V ‖ in V is that V ⊥ = ima N of all elements of V parallel to n, where

N := n⊗ ν ∈ Lin(V, V ) . (2)

For example, we can have
ν := Gn (3)

of ν induced by G. Then
ınν = (Gn)n = n · n = 1 (4)

holds.

One then has the orthogonal sum V = V ⊥ ⊕ V ‖ and split of V .

Consider next the inclusion mapping I ∈ Lin(V ‖, V ) of V ‖ into V , and I∗ ∈ Lin(V ∗, V ‖∗) its dual mapping.
Since the image of I is the kernel of ν in V , i.e., ima I = ker ν, note that

I∗ν = 0 (5)

holds. For any left inverse P ∈ Lin(V, V ‖) of I , i.e., PI is equal to the identity I
V ‖ on Lin(V ‖, V ‖), we have

V ⊥ = ker P (6)

as well as the decomposition
IV = IP + N (7)

of the identity IV on Lin(V, V ). In particular, P is compatible with G and the metric

G‖ := I∗GI (8)
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induced by I on V ‖ when we choose
P := IT , (9)

where
IT := G−1

‖ I∗G (10)

is the transpose of I with respect to G and G‖. In this case,

P n = ITn = G−1
‖ I∗ν = 0 (11)

follows from (5). Lastly, note that either α, or I and P , induce the two-dimensional trace

tr‖(A) :=
α(IAu, Iv) + α(Iu, IAv)

α(Iu, Iv)
= tr(IAP ) (12)

and determinant

det‖(A) :=
α(IAu, IAv)

α(Iu, Iv)
= det(IAP ) (13)

operations, respectively, for all A ∈ Lin(V ‖, V ‖) and u, v ∈ V ‖.

Let n and m represent the normal and binormal unit vectors to some curve in E at some point along this curve. In
this case,

t := n×m (14)

is the unit tangent vector to this curve at the point in question, and

τ := Gt = ımınω = ımα ∈ V ∗ (15)

the covector associated with t, i.e.,
ıtτ = t · t = 1 , (16)

analogous to (4), such that (n,m, t) form an orthogonal, positively-oriented system. Defining the covector

µ := Gm = ınıtω = −ıtα (17)

associated with m, such that
ımµ = m ·m = 1 (18)

holds, the relations (15) and (16) imply
α = µ ∧ τ , (19)

and so
ω = ν ∧ µ ∧ τ (20)

via (1); note that

ıtν = 0 , ıtµ = 0 , ınµ = 0 , ınτ = 0 , ımτ = 0 , ımν = 0 , (21)

via (14), (15) and (17). Lastly, we have
IP = m⊗ µ + t⊗ τ (22)

for IP in terms of m and t.

Lastly, note that any V -tensor induces a constant tensor field on any subset of E, and we denote any such tensor
and its corresponding constant tensor field by the same symbol in what follows for simplicity. In particular, this
will be the case for G and ω.
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3 Surface Geometry and Kinematics

Let S represent a regular 2-manifold with boundary bS modeled on E, I ⊂ R a time interval. A smooth motion or
“flow” of S with respect to E can be represented by a mapping

ξ : I × S −→ E | (t, s) 7−→ p = ξ(t, s) (23)

of I × S into E such that ξt := ξ(t, ·) : S → E is an embedding for all t ∈ I , and ξs := ξ(·, s) : I → E is C2

for all s ∈ S. By definition, then, ξt maps S to a Euclidean 2-submanifold ξt[S] ⊂ E with boundary bξt[S] ⊂ E
at each t ∈ I . The region Rξ :=

⋃
t∈I ξt[S] ⊂ E swept out by S in E via ξ is, on the other hand, 3-dimensional.

Basic kinematic quantities associated with ξ include the “material” velocity

δξ : I × S −→ V | (t, s) 7−→ (δtξs) =: (δξ)(t, s) (24)

and “deformation gradient”

Dξ : I × S −→ Lin(TS, V ) | (t, s) 7−→ (Dsξt) =: (Dξ)(t, s) , (25)

where δ represents the total time derivative operator, δtξs the total time derivative of ξs ∈ C2(I, E) at t ∈ I ,
(Dsξt) ∈ Lin(TsS, V ) the differential of ξt : S → E at s ∈ S, and Lin(TS, V ) :=

⋃
s∈S Lin(TsS, V ). As usual,

(24) can also be expressed in the form of the “flow” relation

δξ = wξ ¦ ξ (26)

of the spatial velocity field wξ of S in E, where (wξ ¦ ξ)(t, s) := wξ(t, ξ(t, s)), such that wξ represents the
velocity of the “flow” or motion ξ of S in E.

Among the structures on S induced by, or associated with, ξ , we have an external orientation, represented by a unit
normal vector field

nξ ◦ ξ : I × S −→ V | p 7−→ nξ(ξ(t, s)) =: (nξ ◦ ξ)(t, s) , (27)

which is by definition perpendicular to ξ , i.e.,
ξ∗νξ := 0 , (28)

representing the external orientation of S. Here,

ξ∗νξ = (Dξ)∗(νξ ◦ ξ) : I × S −→ T
∗
S (29)

represents the pull-back of the one-form

νξ := Gnξ : Rξ −→ V ∗ | p 7−→ Gnξ(p) =: νξ(p) (30)

associated with nξ. In other words, since νξ on ξ is perpendicular to ths flow, its pull-back has no “component”
“parallel” to ξ. The condition (28) implies

0 = δ(ξ∗νξ) = ξ∗(Lwξ
νξ) = ξ∗(£wξ

νξ) =⇒ £wξ
νξ = 0 =⇒ (Dνξ)wξ = −(Dwξ)

∗νξ (31)

via (26) and the fact that ∂νξ = 0 from (27). Here, L = ∂ + £ is the dynamic, and £ is the autonomous, Lie
derivative operator. Further, ∂ represents the partial time-derivative operator. Since G is constant, this last result
is equivalent to

(Dnξ)wξ = −(Dwξ)
Tnξ = −d(nξ ·wξ) + (Dnξ)

Twξ = −(dıwξ
νξ) + (Dnξ)

Twξ , (32)

with (Dwξ)
T = G−1(Dwξ)

∗G, the same for (Dnξ)
T, and d represents the exterior derivative operator.

The definition (28) of the external orientation of S implies that the subspace

V ‖
p := (Dsξt)[TsS] ⊂ V (33)

of V at p = ξ(t, s) ∈ Rξ represents all elements of V perpendicular to nξ(p), i.e.,

(Dsξt)[TsS] = ker νξ(p) . (34)

We then have the direct sum
V = V ⊥

p ⊕ V ‖
p (35)
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of V at each p ∈ Rξ, where
V ⊥

p := ima Nξ(p) (36)

represents the set of all elements of V at p ∈ Rξ parallel to nξ(p), with

Nξ := nξ ⊗ νξ : Rξ −→ Lin(V, V ) | p 7−→ nξ(p)⊗ νξ(p) =: Nξ(p) (37)

(see (2)). In what follows, let
Iξ : Rξ −→ Lin(V ‖

ξ , V ) | p 7−→ Iξ(p) (38)

represents the field on ξ induced by the inclusions Iξ(p) ∈ Lin(V ‖
p , V ), and

Pξ : Rξ −→ Lin(V, V ‖
ξ ) | p 7−→ Pξ(p) (39)

represents that field on ξ induced by the metric-compatible projections Pξ(p) ∈ Lin(V, V ‖
p ), i.e., (9), with V ‖

ξ :=⋃
p∈Rξ

V ‖
p . Then

I∗ξ νξ = 0 (40)

and
Pξ nξ = 0 (41)

hold by extension of (5) and (11), respectively, to ξ via (28).

Since nξ is a unit vector field, we have

1 = nξ · nξ = (Gnξ)nξ = νξnξ (42)

via (30), and so
0 = νξ(Dnξ) = (Dnξ)

∗νξ , (43)

i.e., νξ is in the kernel of (Dnξ)
∗. On the basis of (43), we obtain the decomposition

(Dnξ) = Iξ[(∇nξ)Pξ + Pξ(Dnξ)Nξ] (44)

of (Dnξ) via (7), where
(∇nξ) := Pξ(Dnξ)Iξ : Rξ −→ Sym(V ‖

ξ , V ‖
ξ ) (45)

is the “surface” gradient of nξ, equal to the negative of the usual curvature tensor of ξ . Unlike Nξ(Dnξ),
which vanishes on the basis of (28), note that (Dnξ)Nξ is in general non-zero. In addition, it is traceless, i.e.,
tr((Dnξ)Nξ) = tr(Nξ(Dnξ)) = 0. Note also that

(Dnξ)
T = [Iξ(∇nξ) + Nξ(Dnξ)

TIξ]Pξ (46)

from (44), where NT
ξ = Nξ, and (9). From this last result, we also have

skw(Dnξ) = skw(IξPξ(Dnξ)Nξ) . (47)

Lastly, the decomposition (7) induces that

(Dn) = [(Dnξ) ◦ ξ ](Dξ) = [(Dnξ) ◦ ξ ]IξPξ(Dξ) = Iξ[(∇nξ) ◦ ξ ]Pξ(Dξ) (48)

of (Dn) from the chain rule, the fact that Nξ(Dξ) vanishes via (28), (5), as well as (44).

By point-wise extension of (1) to ξ , νξ induces a representation

ω = νξ ∧αξ (49)

of ω, where
αξ := ınξ

ω . (50)

Since νξ is by (28) in addition the normal one-form field to ξ in E, one says that the representation (49) of ω
induced by νξ is that adapted to ξ ; in this case, the two-form field αξ represents in essence the so-called content
form of ξ (e.g., Betounes, 1986). In addition, if mξ represents the unit vector field normal to bξ and parallel to ξ ,
such that

tξ := nξ ×mξ (51)
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represents the unit tangent vector to bξ , then tξ ∈ ker Nξ, or tξ = IξPξ tξ, hold. These unit vector fields induce
the form

αξ = µξ ∧ τξ (52)

of αξ adapted to bξ , and so that
ω = νξ ∧ µξ ∧ τξ (53)

of ω adapted to ξ and bξ . Note also that (22) extends to

IξPξ = mξ ⊗ µξ + tξ ⊗ τξ (54)

for IξPξ in terms of mξ and tξ.

Now, using Cartan’s operator relation
£ = d ◦ ı + ı ◦ d , (55)

as well as the result ınξ
αξ = ınξ

ınξ
ω = 0, we have

£ψξnξ
αξ = dıψξnξ

αξ + ıψξnξ
dαξ = ıψξnξ

dınξ
ω = ψξ (divωnξ)αξ (56)

for all time-dependent, linear-space-valued functions ψξ defined on ξ , where

dαξ = dınξ
ω = £nξ

ω = (divωnξ)ω (57)

follows from dω = 0, (55), and the definition

(divωu)ω := £uω = dıuω (58)

of the divergence of any smooth V -valued vector field u with respect to ω on E. Since

(divωnξ) = tr(Dnξ) = tr(Iξ(∇nξ)Pξ) + tr(IξPξ(Dnξ)Nξ) = tr‖(∇nξ) (59)

follows from the fact that ω is constant, (44), as well as the fact that IξPξ(Dnξ)N is traceless, i.e.,

tr(IξPξ(Dnξ)Nξ) = tr(NξIξPξ(Dnξ)) = 0 , (60)

we then obtain
£uξ

αξ = £uξ
ınξ

ω

= dıuξ
αξ + ıuξ

dαξ

= [divαuξ + (ıuξ
νξ) tr‖(∇nξ)] αξ − tr‖(∇nξ)νξ ∧ ıuξ

αξ

(61)

from (56) and (59), where
(divαuξ)αξ := dıuξ

αξ (62)

defines the divergence of a vector field uξ on ξ with respect to αξ. Since ıNξuξ
αξ = 0, and so ıuξ

αξ = ıIξ(Pξuξ)αξ,
holds, note that only the tangential part uξ actually contributes to divαuξ, i.e.,

divαuξ = divα(IξPξuξ) (63)

holds in general.

On the basis of (62), we also have the form
∫

bξ

ıuξ
αξ =

∫

ξ

(divαuξ)αξ (64)

of Stokes’ theorem on ξ , where the notation

∫

ξ

fαξ : I −→ R | t 7−→
∫

ξt[P ]

ftαξ =:




∫

ξ

fαξ

}
(t) (65)
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for any time-dependent function f defined on ξ , and any P ⊂ S, has been introduced. Using (64), we also obtain
the transport relation

δ

∫

ξ

ψξ αξ =
∫

ξ

Lwξ
(ψξ αξ)

=
∫

ξ

(∂ψξ)αξ + dıψξwξ
αξ + ıwξ

d(ψξ αξ)

=
∫

ξ

[(∂ψξ) + (ıwξ
νξ) tr‖(∇nξ)ψξ + divα(ψξwξ)] αξ

(66)

(e.g., see Abraham et al., 1988, §7.1) for any differentiable, time-dependent, linear space valued function ψξ on ξ
via the result ıwξ

d(ψξαξ)|ξ = ψξ ıwξ
(dαξ)|ξ , and (61)–(63). This last form of a time derivative associated with ξ

avoids the ambiguity associated with the related concept of “displacement derivative” (e.g., Bowen, Wang, 1975;
Kosinski, 1991; dell’Isola, Kosinski, 1993).

4 Bidimensional Geometry and Kinematics

A bidimensional continuum represents one in which one of the three dimensions is thin in comparison to the other
two, e.g., a shell. The motion of such a continuum relative to S can be represented by a pair of time-dependent,
scalar-valued fields

h±ξ ¦ ξ : I × S −→ R | (t, s) 7−→ h±(t, ξ(t, s)) =: (h±ξ ¦ ξ)(t, s) (67)

on S, which induce the flows

ζ± : I × S −→ E | (t, s) 7−→ ξ(t, s) + h±ξ (t, ξ(t, s)) nξ(ξ(t, s)) =: ζ±(t, s) (68)

of the bidimensional continuum on the + and − sides of ξ , i.e.,

ζ± = λ± ¦ ξ , (69)

with
λ± := Iξ⊂E + h±ξ nξ , (70)

where Iξ⊂E is the inclusion mapping of ξ into E.

Since the entire remaining development is the same for the + and − sides of the bidimensional flow, we drop
the ± sub- and superscripts on all relations involving ζ± for notational simplicity in what follows. Noting that ζ
represents, like ξ , a motion of S in E, we can apply the discussion and results of the previous section for ξ to ζ by
analogy. In particular, in terms of the flow relations (26) and

δζ = wζ ¦ ζ (71)

the total time derivative of (69) takes the form

wζ = wλ + λ∗wξ , (72)

with
∂λ = wλ ¦λ = (∂hξ)nξ (73)

and
λ∗wξ = (Dλ)(wξ ¦λ−1) , (74)

where
(Dλ) = IV + nξ ⊗ (dhξ) + hξ(Dnξ) = Hξ + hξ(Dnξ) (75)

is obtained from (70), with
Hξ := IV + nξ ⊗ (dhξ) . (76)

Further, with nζ the unit normal to ζ ,
ζ∗νζ := 0 (77)

holds by definition, analogous to (28). Like νξ, νζ induces a representation

ω = νζ ∧αζ (78)

93



of ω (c.f. (49)), where
αζ := ınζ

ω (79)

(c.f. (50)). And with mζ the unit vector field normal to bζ and parallel to ζ ,

tζ := nζ ×mζ (80)

represents the unit tangent vector to bζ . These vectors induce the representation

αζ = µζ ∧ τζ (81)

of αζ adapted to bζ , and so that
ω = νζ ∧ µζ ∧ τζ (82)

of ω adapted to ζ and bζ .

The formulation of bidimensional balance relations in the next section relies on certain relations between the
dynamic geometries of ζ and ξ , which are connected by the relative motion λ as given in (69). For example, (69)
and (77) imply that

ξ∗(λ∗νζ) = 0 , (83)

and so in turn that

λ∗νζ = (Dλ)∗(νζ ◦λ) = (νζ ◦λ) + hξ(Dnξ)
∗(νζ ◦λ) + ınξ

(νζ ◦λ) (dhξ) (84)

is proportional to νξ, i.e.,
λ∗νζ = ınξ

(λ∗νζ) νξ , (85)

with
ınξ

(λ∗νζ) = ıHξnξ
(νζ ◦λ) + hξ ıIξPξ(Dnξ)nξ

(νζ ◦λ) (86)

from (44) and (84). On the other hand, we have

λ∗µζ = ınξ
(λ∗µζ)νξ + ımξ

(λ∗µζ)µξ + ıtξ
(λ∗µζ) τξ (87)

and
λ∗τζ = ınξ

(λ∗τζ)νξ + ımξ
(λ∗τζ)µξ + ıtξ

(λ∗τζ) τξ (88)

in general, where the coefficients

ınξ
(λ∗µζ) = ıHξnξ

(µζ
◦λ) + hξ ıIξPξ(Dnξ)nξ

(µζ
◦λ)

ımξ
(λ∗µζ) = ıHξmξ

(µζ
◦λ) + hξ ıIξ(∇nξ)Pξmξ

(µζ
◦λ)

ıtξ
(λ∗µζ) = ıHξtξ

(µζ
◦λ) + hξ ıIξ(∇nξ)Pξtξ

(µζ
◦λ)

ınξ
(λ∗τζ) = ıHξnξ

(τζ ◦λ) + hξ ıIξPξ(Dnξ)nξ
(τζ ◦λ)

ımξ
(λ∗τζ) = ıHξmξ

(τζ ◦λ) + hξ ıIξ(∇nξ)Pξmξ
(τζ ◦λ)

ıtξ
(λ∗τζ) = ıHξtξ

(τζ ◦λ) + hξ ıIξ(∇nξ)Pξtξ
(τζ ◦λ)

(89)

follow from (44) and (84).

¿From (78) and (85), we obtain

λ∗ω = det(Dλ) ω = λ∗νζ ∧ λ∗αζ = ınξ
(λ∗νζ) νξ ∧ λ∗αζ , (90)

and so the expression
det(Dλ) = ınξ

ıtξ
ımξ

(λ∗ω) = ınξ
(λ∗νζ) ıtξ

ımξ
(λ∗αζ) (91)

for det(Dλ) from (90) with ınξ
ıtξ

ımξ
ω = 1. An alternative expression for det(Dλ) can be obtained as follows.

Let a, b ∈ V be two arbitrary, linearly-independent elements of V . Then

ıbıa(λ∗ω) = ı(Dλ)bı(Dλ)aω

= ıIξPξ(Dλ)bıIξPξ(Dλ)aω + ıNξ(Dλ)bıIξPξ(Dλ)aω + ıIξPξ(Dλ)bıNξ(Dλ)aω

= cν(a, b)νξ + cµ(a, b)µξ + cτ (a, b) τξ

(92)
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follows from the fact that ınξ
ınξ

ω = 0, where

cν(a, b) := ıIξPξ(Dλ)bıIξPξ(Dλ)aαξ

= ıIξPξbıIξPξaαξ

+ hξ

{
tr‖(∇nξ) (ıIξPξbıIξPξaαξ) + ıIξPξbıIξPξ(Dnξ)Nξaαξ + ıIξPξ(Dnξ)NξbıIξPξaαξ

}

+ h2
ξ

{
det‖(∇nξ) (ıIξPξbıIξPξaαξ) + ıIξ(∇nξ)PξbıIξPξ(Dnξ)Nξaαξ

+ ıIξPξ(Dnξ)NξbıIξ(∇nξ)Pξaαξ + ıIξPξ(Dnξ)NξbıIξPξ(Dnξ)Nξaαξ

}
,

(93)

is obtained from (12), (13) and (75), and

cµ(a, b) := ıHξaνξ

{
(ıIξPξbτξ) + hξ [ıIξ(∇nξ)Pξbτξ + ıIξPξ(Dnξ)Nξbτξ]

}

− ıHξbνξ

{
(ıIξPξaτξ) + hξ [ıIξ(∇nξ)Pξaτξ + ıIξPξ(Dnξ)Nξaτξ]

}
,

cτ (a, b) := ıHξaνξ

{
(ıIξPξbµξ) + hξ [ıIξ(∇nξ)Pξbµξ + ıIξPξ(Dnξ)Nξbµξ]

}

− ıHξbνξ

{
(ıIξPξaµξ) + hξ [ıIξ(∇nξ)Pξaµξ + ıIξPξ(Dnξ)Nξaµξ]

}
,

(94)

from (75) and (76). In particular, setting a = mξ and b = tξ, (92) yields

det(Dλ) = ınξ
ıtξ

ımξ
(λ∗ω)

= ınξ
(λ∗νζ)[ımξ

(λ∗µζ) ıtξ
(λ∗τζ)− ımξ

(λ∗τζ) ıtξ
(λ∗µζ)]

= cν(mξ, tξ)

= ξ

(95)

for det(Dλ) from (91), (93) and ınξ
ıtξ

ımξ
ω = 1, where

ξ := det‖(Kξ) = 1 + hξ tr‖(∇nξ) + h2
ξ det‖(∇nξ) (96)

and
Kξ := Pξ(Dλ)Iξ = I

V
‖

ξ

+ hξ(∇nξ) : Rξ −→ Sym(V ‖
ξ , V ‖

ξ ) (97)

have been introduced.

¿From the definition of the adjunct form of a linear mapping, we also have the result

ıbıa(λ∗ω) = det(Dλ) (Dλ)−∗(ıbıaω) (98)

which we can use to determine the pull-back λ∗zζ = (Dλ)−1(zζ ¦λ) of some time-dependent vector field z
defined on ζ as follows. First, note that

ımξ
ınξ

(λ∗ω) = ξ (Dλ)−∗τξ
ınξ

ıtξ
(λ∗ω) = ξ (Dλ)−∗µξ

ıtξ
ımξ

(λ∗ω) = ξ (Dλ)−∗νξ

(99)

(compare the last two with dell’Isola and Kosinski, 1994, 2.16 and 2.29, respectively) follow from (53), (95) and
(98). Expressing λ∗zζ then in the form

λ∗zζ = (ıλ∗zζ
νξ)nξ + (ıλ∗zζ

µξ)mξ + (ıλ∗zζ
τξ) tξ (100)

relative to ξ , we have

ıλ∗zζ
νξ = −1

ξ ı(zζ
¦λ)ımξ

ınξ
(λ∗ω)

= −1
ξ [cν(nξ,mξ) ı(zζ

¦λ)νξ + cµ(nξ, mξ) ı(zζ
¦λ)µξ + cτ (nξ,mξ) ı(zζ

¦λ)τξ]

ıλ∗zζ
µξ = −1

ξ ı(zζ
¦λ)ınξ

ıtξ
(λ∗ω)

= −1
ξ [cν(tξ, nξ) ı(zζ

¦λ)νξ + cµ(tξ, nξ) ı(zζ
¦λ)µξ + cτ (tξ,nξ) ı(zζ

¦λ)τξ]

ıλ∗zζ
τξ = −1

ξ ı(zζ
¦λ)ıtξ

ımξ
(λ∗ω)

= ı(zζ
¦λ)νξ + −1

ξ [cµ(mξ, tξ) ı(zζ
¦λ)µξ + cτ (mξ, tξ) ı(zζ

¦λ)τξ]

(101)
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from (92), (95) and (99), where

cν(nξ, mξ) = −hξ ıIξPξ(Dnξ)nξ
τξ + h2

ξ ıIξ(∇nξ)Pξmξ
ıIξPξ(Dnξ)nξ

αξ ,

cµ(nξ, mξ) = hξ

{
ıHξnξ

νξ ıIξ(∇nξ)Pξmξ
τξ − ıHξmξ

νξ ıIξPξ(Dnξ)nξ
τξ

}
,

cτ (nξ, mξ) = ıHξnξ
νξ + hξ

{
ıHξnξ

νξ ıIξ(∇nξ)Pξmξ
µξ − ıHξmξ

νξ ıIξPξ(Dnξ)nξ
µξ

}
,

(102)

as well as

cν(tξ, nξ) = −hξ ıIξPξ(Dnξ)nξ
µξ + h2

ξ ıIξPξ(Dnξ)nξ
ıIξ(∇nξ)Pξtξ

αξ ,

cµ(tξ, nξ) = −ıHξnξ
νξ + hξ

{
ıHξtξ

νξ ıIξPξ(Dnξ)nξ
τξ − ıHξnξ

νξ ıIξ(∇nξ)Pξtξ
τξ

}
,

cτ (tξ, nξ) = hξ

{
ıHξtξ

νξ ıIξPξ(Dnξ)nξ
µξ − ıHξnξ

νξ ıIξ(∇nξ)Pξtξ
µξ

}
,

(103)

and

cν(mξ, tξ) = ξ ,

cµ(mξ, tξ) = ıHξmξ
νξ + hξ

{
ıHξmξ

νξ ıIξ(∇nξ)Pξtξ
τξ − ıHξtξ

νξ ıIξ(∇nξ)Pξmξ
τξ

}
,

cτ (mξ, tξ) = −ıHξtξ
νξ + hξ

{
ıHξmξ

νξ ıIξ(∇nξ)Pξtξ
µξ − ıHξtξ

νξ ıIξ(∇nξ)Pξmξ
µξ

}
,

(104)

are obtained from (93) and (94).

5 Bidimensional Balance Relations

Let χ : I × B → E represent the motion, and v the corresponding spatial velocity, of a material body B in E,
such that δχ = v ¦χ holds, where δ represents a variation in time, i.e., the total time derivative operator. The
general balance relation for some additive thermodynamic quantity with spatial density ψ , production rate density
π , flux density φ (into χ), and supply rate density σ is given by

δ

∫

χ
ψω =

∫

χ
πω +

∫

bχ
ıφω +

∫

χ
σω , (105)

where we have introduced the notation
∫

χ
ψω : I −→ Z | t 7−→

∫

χ
t[P ]

ψt ω =:

(∫

χ
ψω

)
(t) (106)

for the integral on the motion or flow χ of any subbody P ⊂ B, analogous to (65). Note that ψ , π and σ are
time-dependent fields on χ taking values in some normed linear space Z, while φ is such a field taking values in
Lin(V ∗, Z). With the help of the transport relation1

δ

∫

χ
ψω =

∫

χ
Lv (ψω) , (107)

as well as Stokes’ theorem ∫

bχ
ıφω =

∫

χ
d ıφω =

∫

χ
£φω , (108)

(105) can be expressed in the alternative form
∫

χ
Lv (ψω) =

∫

χ
[πω + £φω + σω] . (109)

Via continuity of the integrands, then, (109) takes the local form

Lv (ψω) = πω + £φω + σω , (110)

1The appearance of the dynamic Lie derivative of ψ in (107) is based on the fixed linear space structure of Z , with respect to which it is
equal to the material time derivative of ψ.
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with which we work in what follows. To show that (110) corresponds to the usual general local spatial balance,
note that2

Lv (ψω) = (∂ψ)ω + £v (ψω) = [(∂ψ) + divω(ψv)] ω (111)

via (58) and the relation £u(ψω) = £ψuω, which follows from the identity £u(ψγ) = £ψuγ + ıu [(dψ) ∧ γ],
valid for any differentiable r-form γ (r ≤ 3 here), differentiable vector field u, and volume form ω. From (58),
we also have

£φω = dıφω = (divωφ)ω . (112)

Substituting (111)2 and (112) into (110), we obtain

ψ̇ + ψ (div v) = π + div φ + σ , (113)

i.e., the usual form of the general local balance, with ψ̇ = ∂ψ + (Dψ)v , and div = divω the usual divergence
operator in E.

The usual form (110) of the local spatial balance relative to the material motion χ with time-dependent velocity
field v can be expressed relative to an arbitrary (not necessarily material) motion with time-dependent velocity
field u as follows. First, note that the linearity of the dynamic Lie derivative operator

Lv := ∂ + £v (114)

yields the relation
Lu = Lv + £u−v (115)

between such operators with respect to v and u. Combining (110) and (115), we obtain the alternative form

Lu(ψω) = Lv (ψω) + £u−v (ψω)

= πω + £ϕω + σω
(116)

of the general local balance (110) relative to the motion associated with u, where

ϕ := ψ(u − v) + φ , (117)

follows from £u(ψω) = £ψuω = dıψuω via (55), and dω = 0. It is worth emphasizing that (110) and (116)
are simply two different mathematical forms of the same physical balance relation. In the latter case, however, the
“extra” flux ψ(u−v) appearing in (117) can be used to represent the process of diffusion, where u represents the
velocity of the diffusion “front,” as we will see in what follows.

The general balance relation relative to the bidimensional flow to be developed next is based on the corresponding
flow geometry

ζ := ζ+ ∪ ξ ∪ ζ− ,

bζ = boζ+ ∪ bξ ∪ boζ− ,

boζ± = bcζ± ∪ bsζ± ,

bsζ± = blζ± ∪ brζ± ,

(118)

relative to S, where boζ± represents the “outer” boundary, bζ± the complete boundary, and bsζ± the two sides, of
ζ±, while bcζ+ represents the “top” of ζ+, and bcζ− the “bottom” of ζ−. On the basis of (116) and (118), then, the
general balance relation relative to the bidimensional flow takes the form

δ

∫

ζ

ψζ ω =
∫

ζ

πζ ω +
∫

bζ

ıϕ
ζ
ω +

∫

ζ

σζ ω . (119)

¿From the structure (118)1 of the bidimensional flow ζ , we have
∫

ζ

ψζ ω =
∫

ζ+

ψζ ω +
∫

ζ−

ψζ ω , (120)

2As in (107), the fixed linear space structure of Z is used here.

97



and likewise for πζ and σζ via the fact that ξ has volume measure zero. Now, with the help of Fubini’s theorem,
(120) can be rewritten in the form

∫

ζ

ψζ ω =
∫

ξ

∫ h+
ξ

h−ξ

λ∗(ψζ ω)

=
∫

ξ

∫ h+
ξ

h−ξ

(λ∗ψζ) (λ∗ω)

=
∫

ξ

∫ h+
ξ

h−ξ

ξ (λ∗ψζ)νξ ∧αξ

=
∫

ξ

ψS αξ

(121)

via (52), (90) and (95), where

ψS :=
∫ h+

ξ

h−ξ

ξ (λ∗ψζ) νξ (122)

represents the “normal average” of ψζ relative to ξ . Note that the integrand in (122) is given by ±ξ (λ∗±ψζ) in the
± regions of ζ , respectively. Similar expressions hold for πζ and σζ . The appearance of the pull back in (121)
accounts for the relative motion between ζ and ξ .

Consider next the result ∫

bζ

ıϕ
ζ
ω =

∫

bcζ

ıϕ
ζ
ω +

∫

bsζ

ıϕ
ζ
ω , (123)

which follows from (118)2,3 and the fact that bξ has area measure zero, where
∫

bcζ

ıϕ
ζ
ω =

∫

bcζ+

ıϕ
ζ
ω +

∫

bcζ−

ıϕ
ζ
ω (124)

and ∫

bsζ

ıϕ
ζ
ω =

∫

bsζ+

ıϕ+
ζ

ω +
∫

bsζ−

ıϕ−
ζ

ω , (125)

with
ϕ

ζ := ψζ(wζ − vζ) + φζ (126)

the general flux ϕ
ζ relative to ζ , in analogy with (117). With the result

∫

bcζ±

ıϕ
ζ
ω =

∫

bcζ±

(ıϕ
ζ
νζ) αζ

=
∫

ξ

λ∗±[(ıϕ
ζ
νζ)αζ ]

=
∫

ξ

±ξ (ıλ∗±ϕ
ζ
νξ) αξ

(127)

via νζ |bcζ±
= 0, (90) and (95), where

λ∗±ϕ
ζ := (λ∗±ψζ)[wξ + λ∗±(wλ − vζ)] + λ∗±φζ (128)

follows from (72) and (126), we have
∫

bcζ

ıϕ
ζ
ω =

∫

ξ

[+
ξ (ıλ∗+ϕ

ζ
νξ) + −ξ (ıλ∗−ϕ

ζ
νξ)] αξ (129)

for the flux integral along the “top” and “bottom” of the bidimensional flow. Similarly,
∫

bsζ

ıϕ
ζ
ω =

∫

bsζ

(ıϕ
ζ
µζ) τζ ∧ νζ

=
∫

bξ

∫ h+
ξ

h−ξ

λ∗[(ıϕ
ζ
µζ) τζ ∧ νζ ]

=
∫

bξ

∫ h+
ξ

h−ξ

[ınξ
(λ∗νζ) ıtξ

(λ∗τζ) ıλ∗ϕζ
(λ∗µζ)] τξ ∧ νξ ,

(130)
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using µζ |bsζ = 0, µξ|bξ = 0, Fubini’s theorem, (85) and (87). Using the representation

ıλ∗ϕζ
(λ∗µζ) = ınξ

(λ∗µζ) ıλ∗ϕζ
νξ + ımξ

(λ∗µζ) ıλ∗ϕζ
µξ + ıtξ

(λ∗µζ) ıλ∗ϕζ
τξ (131)

of ıλ∗ϕζ
(λ∗µζ) on ξ , the relation (95), and the fact that 2-forms vanish on bξ , (130) simplifies to

∫

bsζ

ıϕ
ζ
ω =

∫

bξ

ıϕ
S
αξ

=
∫

ξ

(divα
ϕ

S)αξ ,
(132)

via (64), where

ϕ
S :=

∫ h+
ξ

h−ξ

(ξ + kξ) (λ∗ϕζ)νξ (133)

is the “normal average” of λ∗ϕζ on ξ , and the weighting

kξ := ınξ
(λ∗νζ) ımξ

(λ∗τζ) ıtξ
(λ∗µζ)

= ıHξnξ
(νζ

◦λ) ıHξmξ
(τζ ◦λ) ıHξtξ

(µζ
◦λ)

+ hξ ıIξPξ(Dnξ)nξ
(νζ

◦λ)[ıHξmξ
(τζ ◦λ) + ıHξtξ

(µζ
◦λ)]

+ hξ ıIξ(∇nξ)Pξmξ
(τζ ◦λ)[ıHξtξ

(µζ
◦λ) + ıHξnξ

(νζ
◦λ)]

+ hξ ıIξ(∇nξ)Pξtξ
(µζ

◦λ)[ıHξnξ
(νζ

◦λ) + ıHξmξ
(τζ ◦λ)]

+ h2
ξ ıHξnξ

(νζ
◦λ) ıIξ(∇nξ)Pξmξ

(τζ ◦λ) ıIξ(∇nξ)Pξtξ
(µζ

◦λ)

+ h2
ξ ıHξmξ

(τζ ◦λ) ıIξ(∇nξ)Pξtξ
(µζ

◦λ) ıIξPξ(Dnξ)nξ
(νζ

◦λ)

+ h2
ξ ıHξtξ

(µζ
◦λ) ıIξPξ(Dnξ)nξ

(νζ
◦λ) ıIξ(∇nξ)Pξmξ

(τζ ◦λ)

+ h3
ξ ıIξPξ(Dnξ)nξ

(νζ
◦λ) ıIξ(∇nξ)Pξmξ

(τζ ◦λ) ıIξ(∇nξ)Pξtξ
(µζ

◦λ)

(134)

represents the effect of the dynamic side geometry of the bidimensional flow on the averaged flux density via (86)
and (89). Substituting the expression (128) for λ∗ϕζ into (133), ϕ

S takes the form

ϕ
S = γS + ψS(wξ − vS) + φS (135)

via (122), where

γS :=

{∫ h+
ξ

h−ξ

kξ (λ∗ψζ)νξ

}
wξ +

∫ h+
ξ

h−ξ

(ξ + kξ)λ∗(ψζwλ) νξ (136)

is a surface flux of the averaged thermodynamic quantity in question due to the bidimensional motion, while the
fluxes φS and ψSvS are defined analogous to ϕ

S in (133).

Lastly, the form (121) yields the transport relation

δ

∫

ζ

ψζω =
∫

ξ

[(∂ψS) + (ıwξ
νξ) tr‖(∇nξ) ψS + divα(ψSwξ)] αξ (137)

via (66). Substituting (123) with (129) and (132) into (119), then, we obtain the local form

(∂ψS) + (ıwξ
νξ) tr‖(∇nξ) ψS + divα(ψSvS) = πS + divα(φS + γS) + [[ξ(ıλ∗ϕζ

νξ)]] + σS (138)

of the general integral balance relation (119) adapted to the flow of the bidimensional continuum, where

[[ξ(ıλ∗ϕζ
νξ)]] := +

ξ (ıλ∗+ϕ
ζ
νξ) + −ξ (ıλ∗−ϕ

ζ
νξ) = +

ξ (λ∗+ϕ
ζ)⊥ − −ξ (λ∗−ϕ

ζ)⊥ (139)

is the usual “jump” bracket, and
ϕ

S − ψSwξ = γS + φS − ψSvS (140)

holds via (135). On the basis of (63), only the surface divergences of the tangential parts of ψSvS, φS and γS

contribute to (138), e.g.,
IξPξ φS = (ıφS

τξ) tξ + (ıφS
µξ)mξ . (141)
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In addition, we have

[[ξ(ıλ∗ϕζ
νξ)]]− (ıwξ

νξ) tr‖(∇nξ)ψS =
{

[[ξ(λ
∗ψζ)]]− tr‖(∇nξ) ψS

}
(ıwξ

νξ)

+ [[ξ (λ∗ψζ) (ıλ∗(wλ−vζ)νξ)]]

+ [[ξ(ıλ∗φζ
νξ)]]

(142)

from (128).

As an example of (138), consider the simplest case, i.e., mass balance. In this case, we have ψζ = %ζ , πζ = 0,
φζ = 0 and σζ = 0. Substituting these choices into (138) yields its reduced form

(∂%S) + (ıwξ
νξ) tr‖(∇nξ) %S + divα(%SvS) = divαγS + [[ξ(λ

∗%ζ)(ıwξ+λ∗(wλ−vζ)νξ)]] (143)

via (128), where the surface flux

γS :=

{∫ h+
ξ

h−ξ

kξ (λ∗%ζ)νξ

}
wξ +

∫ h+
ξ

h−ξ

(ξ + kξ)λ∗(%ζwλ) νξ (144)

is, even in the case of mass balance, in general non-zero, and represents a contribution to mass balance on the sur-
face due to mass diffusion in the system that arises because each distinct part of the boundary of the bidimensional
region identified above moves relative to the other parts as well as to ξ . Note that, if we let the thickness of the
bidimensional region go to zero, (143) reduces to

[[%ξ(ıwξ−vξ
νξ)]] = 0 , (145)

representing the classical mass jump balance relation across ξ . Clearly, the other balance relations can be reduced
to their classical jump relation counterparts in a similar fashion.
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