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Contact of Multi-Level Roughness with Flat Rigid or Perfectly
Plastic Body

A.S. Kravchuk

The analysis carried out has shown that the most convenient way of creating the theory of deformation of multi-
level roughness is to apply the composite materials methods. The application of a self-consistent method is
preferable since it allows defining the effective (average) elastic parameters for all levels. The self-consistent
method which has been applied in this investigation consists of the definition of composition of height
distributions for all levels. Further, with the help of the composition distribution the elastic coefficients
corresponding to the radii of peaks for each level separately have been determined. Finally, the coefficients have
been averaged. The pressure applied has been defined as the sum of products of pressures for each level by
weight coefficients. The values of the weight coefficient have been defined from self-consistent conditions. This
approach allows obtaining the equation of deformation of multi-level roughness which has the same structure as
the deformation of the one-level roughness in Demkin-Kragelski theory. The radii of peaks for each level and the
reduced elastic modulus are supposed to have scattering. This is a generalisation of Demkin-Kragelski theory.
The analytical equations for defining the relative displacement with the help of the average pressure have been
obtained.

1 Introduction

The creation of a model of multilevel roughness deformation is one of the most actively developing areas of
modern physics (Greenwood J.A. et al., 2001; Persson B.N.J., 2001). Many investigators attract attention to the
solution of problems of multilevel models deformation with the help of the finite element method or the creation
of alternative theories and equations (Persson B.N.J., 2001).

But insufficient attention has been attracted to the application of the Demkin-Kragelsky theory for the solution of
this problem. The theory is based on a more simple hypothesis of the Abbott curve approximation and allows
defining the relative level of displacement for one level of roughness in analytical form (Demkin N.B., 1970).
There are many experimental investigations confirming this theory.

The worked out analysis has shown that the most convenient way of creating the theory of multi-level roughness
deformation is to apply composite material methods. The application of a self-congruent method is preferable
since it allows for defining the effective (average) elastic parameters for all levels. The self-congruent method
which was applied in this investigation, consists of the definition of the composition distribution of height for all
levels. Further, with the help of the composition distribution we have defined the pressure which corresponds to
the radii of peaks for each level. The absolute displacement has been assumed to be the same for each level
separately. Finally we have defined the applied pressure as the sum of products of pressures for each level by
weight coefficients for the same absolute displacement. The values of the weight coefficient were determined
from self-congruent conditions (Shermergor T.D., 1977).

This approach allows for obtaining the equation of deformation of the multi-level roughness which has the same
structure with deformation of one-level roughness in the Demkin-Kragelski theory. It has been supposed that the
radii of peaks for each level and the reduced elastic moduli have scattering. This is a generalisation of the
Demkin-Kragelski theory.
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2 General Suppositions

There are n separate levels of roughness. The Abbott curve is defined separately for each level of roughness
with number & (1<k <n). A curve with number k£ (1<k <n) is defined in frame of references connected with
the height of maximum peak /., ; on the level with number & (Figure 1):

Nk (€x) =by (51{))“ (D
where ¢, is the relative height of the cross section defined by equation

&x =Vie/Hunax i (2)
vy is an absolute level of cross-section, 1), (&,) is arelative contact area (Figure 1).

It is assumed that we know the maximum height A .— for the superposition of 7 levels of roughness. The

peaks on different levels are modeled by spherical segments.
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Figure 1. Diagram of a relative profile (Abbott curve)

3 Definition of Real Average Contact Pressure for a Spherical Peak of Roughness
Let us define the peak height H; by the equation (Figure 2, 3)
Hi=H i (1-2,), (052, <gp ). 3)

In this case we can define the pressure which is applied in the area of the peak contact with the smooth rigid
plate. We know the Hertz formulas for a spherical segment with radius R;, and height H; (Demkin N.B., 1970;

Johnson K.L., 1985; Ponomarev S.D. et. al., 1958) (Figure 2, 3)

>y 4 « [0 (8 V4 ) 4 « | H k'(l_zk)'(gk_zk)
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where

E; is the reduced modulus of elasticity of the peak, v ; is the Poisson coefficient, £ is the modulus of

elasticity.
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4  Definition of Pressure Applied to the Base of a Peak

A peak of roughness is in equilibrium. It means that the value of an integral of pressure which is applied to the
contact area is equal to the value of an integral of pressure which is applied to the base of a peak. But the peak
base is larger than the contact area. Let us define the pressure applied to the peak base by equation (Demkin
N.B., 1970)

y(gk_Zk)'ﬁreal,i,j(gk’zk)’ (5)

where (e, -z, ) is a shape function which defines the ratio of real contact area S,,,, ;(&;.2; ) and the area of

base Sy, ;(z;) for a single peak with height H; (3) (Figure 2, 3)

6
Sbase,i(zk) ( )

Y€ —2z) =

5 Definition of a Shape Function y (¢, —z,) for Spherical Segments

It is necessary to determine the ratio (shape function) of the real contact area and the area of the peak base. It
allows for defining the pressure on the peak base with the help of the pressure applied to the real contact area.
Obviously, the real contact area is not congruent to the section area in the case of a spherical segment (Figure 2,
3). The definition of a shape function is defined by the geometry of a segment and Hertz solutions for spherical
bodies (Demkin N.B., 1970; Kragelski I.V., 1968; Ponomarev S.D. et.al., 1958).

Let &, be arelative displacement of the level roughness with number £ . It is necessary to define y(¢, —z; ) for
all peaks which have a contact, i.e. for peaks with heights H; (3) (Figure 2). We can define the area of a peak
base Sy, ;(z;) onrelative level ¢, (Figure 2) by equation

2
H.

Sbase,i(zk)=7f'Ri,k2 1—(1—_lj z27T'Ri,k'Hi=27T'Ri,k'I"[mem,k'(l—zk) (7N
ik

The Hertz formulas are valid for any elastic peak with the radius R, ; (Demkin N.B., 1970; Johnson, 1985). The

real area of contact is defined by a contact radius @, ;(¢;,2;) (Demkin N.B., 1970)

Areal, i (€5>Zk) = | Ri g -0 (4521 (®)

where 9, (g;,z;) is an elastic displacement of a single smooth peak with height H
1970)

-(1-z;) (Demkin N.B.,

max, k
0r (k52 ) = Hopa i - (1= 2) - (&4 — 2) )
Therefore taking into account (8), (9) we get
Syeat,i (€ 2k) =70 Ry “H ok A=z (e, —24) (10)

From (6), (7), (10) it follows that
Sreal,i(gkfzk) — (gk _Zk)
Sbase,i(zk) 2

an

Y€ —2z) =
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Figure 3. Real area of contact of the peak

6 Effect of Scatterings of Radii and the Reduced Moduli of Elasticity on the Average Pressure

Let us suppose that the rate of radii R;, of curvature is " adius (Za): adivs — 1 for the level with number £ .
i

The rate of elasticity coefficients E; of peaks is a)jl‘m’b (ijlame =1). The peak radius and the elasticity
J

coefficient are supposed to be independent variates.

Thus statistically the average pressure on a peak base <y(g k= Zk) Dreal i, j (g - )> is determined by the equation

(k=1n)
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<7/(8k —2;): ﬁreaz,i,j(gkazk )> =78 —24)- <l_7rea1,i,j (gkazk )>

(12)

di lastic —

=y(&r —2;)- E o z (05 o “Preat.i,jk (€k>Zk)
i J

7 Distribution of Spherical Segments

Let n, be a number of peaks which have the height more than level z; and n o, be a full number of peaks on

ngk

the level of roughness with number k. Thus function @(z,)= defines the relative number of peaks which

n
Pk

have contact with a rigid surface. This function depends on the shape of peaks. Taking into account (1) we can

obtain that ¢(z;) for spherical segments is determined by the equation (Demkin N.B., 1970; Kragelski 1.V.,

1968)
M.k 1
qok(zk)zbk'%kzs_zbk'Xk'(zk)m (13)
k
8 Particular Case of Deformation of One-level Roughness. Generalization of Demkin-Kragelsky Theory

Let ¢, be arelative displacement of a smooth flat rigid surface in the case of its interaction with the roughness of

level with number & . The increment of average pressure dp, in the area of bases for the temporary relative level
z, (0<z, <g,) is defined by the average pressure applied on a peak base (12) and the increment of relative

number of peaks d¢(z;) which have a relative height more than z, (Figure 3). From (12), (13) we get (Demkin
N.B., 1970; Kragelski I.V., 1968)

dpi =y(e —zp)- <l_7rea1,i,j (Skazk)> do(zy)

Thus the general average pressure on the area of peak bases for each level & is calculated by the equation

&k
P = jy(gk’Zk)'<ﬁreal,i,j(6kﬁzk)>(p (z4) dzy,
0

(14)
&k
= Iy(sk,zk). za)imdms .[za);lastlc Freatis G2 )] R
0 i T
b X (X 1) &k
. . _ 72
:%K]’k -Erough . J-(gk _Zk)' (l—Zk).(gk _Zk) '(Zk)x" de
0
where
Erough = ij_lastlc E;‘ (15)

J

4 w(’adilts
K =5 s Z \/ﬂ (16)

In the general case of power y, the integral in the right side of equation (14) cannot be solved analytically by

means of elementary functions. However, equation (1) is valid for the initial part of a relative profile of
roughness. Therefore we can use the approach of minimizing the average square error for the integral

2 +1/2

approximation in (14) by a simple analytical function K, ; ~(8 k) on segment ¢ € [0;0.2]
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Kz,k =

(=3

S ey

The approximation segment (& € [0;0.2]) is defined by the hypothesis that the stress of a peak base has no effect
on the contact pressure (Ponomarev S.D. et al., 1958).

The coefficient K,, does not depend on ¢, . It is defined by the parameters of a relative profile. We get

(e V2 (17)

rough

— by
Pr = k2 kKl,k'Kz,k'E

Thus we can define relative displacements by the average pressure on the base length

& = (CO,k '1_71{)2/(2%”1) (18)
where
2

Cox =
b x KKy E

rough

Obviously, equations (17) and (18) generalise the Demkin-Kragelski theory to the case of natural scattering of
reduced elastic moduli (15) and curvature radii of peaks. Equations (16) — (18) show that the Demkin-Kragelski
theory is valid in the case of small scattering of the reduced elastic moduli (15) and the curvature radii of the
peaks.

9 Two-level Roughness. Composition of Two Height Distribution

Let us consider a two-level roughness. It is assumed that v is the height of a section which refers to the peak with
general maximal height H,, | ,. In accordance with the well known approach (Demkin N.B., 1970; Kragelski

I.V., 1948; Kragelski I.V., 1968), we assume that (Figure 4)
V=v+V,, (19)

where v, is a height of a section of the first level roughness, v, is a height of a section of the second level
roughness. In addition v, € [0, v] and v<H k=1.2 (Demkin N.B., 1970; Kragelski 1.V., 1948; Kragelski

LV., 1968).

max,k
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Figure 4. Diagram of sections of two level roughness

Let us consider a set of heights {H i }L_)] of level of roughness with number k. The system of inequalities is

assumed to be valid

Hy;2H 1~ W1»

(20)
H2,j 2 Hmax,2 -V

Hence the inequality is valid for a general height H,,+H, ; of two surface deviations of different levels
(Demkin N.B., 1970; Kragelski 1.V., 1948; Kragelski I.V., 1968) (19), (20)

H],i +H2,j Z([—[max,] +I—Imax,2)_v2 Hmax,]..2 -V

It means that the compound surface deviation with height H,, + H, ; participates in setting up a real contact
area. (Demkin N.B., 1970; Kragelski I.V., 1948; Kragelski I.V., 1968).

Let us consider the first level of roughness (k£ =1). It is known (Demkin N.B., 1970; Kragelski I.V., 1948;
Kragelski .V., 1968) that the probability of a case when the height H;; with number i is higher than . ; —v

is defined by the equation: P(H;;>H

number j of the second level of roughness: P(H ;, 2 H,y,,, —V,) =1, . The increment of a relative area of

max.] — V1) =1, . The same equation can be obtained for the height with

deviations with heights corresponding to dv, is defined by dn,, . Taking into account equation &, =v, / H .,

(k= 1,_2) and (1) we obtain the equation for defining the relative area of composition section of two distributions
of heights (Demkin N.B., 1970; Kragelski I.V., 1948; Kragelski I.V., 1968)

_ il Vv, 2] 1 r V= U 21)
Ms,1.2 —I I dngo| ———| dny, = Im,z M1 | 7 N (
0 [ 0 Hmax,2 Hmax,l Hmax,l 0 Hmax,2 Hmax,]

The following equation is valid

v=Hp 1278 (22)

Hence we can obtain the following equation from (21) and (22) (Demkin N.B., 1970; Kragelski I.V., 1968):

K3,1“2 (H )X!*lz

Nep2 = (Hmax,])ll '(Hmax,Z )ch

max,l..2

biby(e )1 (23)

where
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1

Kii0= %1[(1_7)Xz '(T)Zr]d’:
0

It is to be emphasized that equation (21) and the familiar result of investigation of interaction of two surfaces
with different one-level roughnesses (Demkin N.B., 1970; Kragelski I.V., 1948; Kragelski I.V., 1968) are of the
same structure.

10 Application of the Self-consistent Method for Defining the Average Elasticity of Two-level Roughness

The self-consistent method is widely applied in the theory of composite materials (Shermergor T.D., 1977). The
average parameters of inhomogeneous bodies are calculated with the help of this method. In the case of
contacting of two-level roughness and a rigid surface, we have two deformable compounds with different
characteristics of Abbott curves and radii of peak curvatures.

We have the joint distribution of heights of the two-level roughness (23). The general displacement of the two-
level roughness is defined by equation (22). Taking into account (23) we have to solve two separate problems
under the supposition that one level of roughness is not deformable. After that we can define the average elastic
parameter for the two-level roughness with the help of a self-consistent condition. This condition assures that the
pressure is constant for both levels.

Let the peaks of the second level be rigid. Hence the displacement v is reached by deforming the first level
roughness i.e. v, =v (2)

H
E = Lx’lg] s (24)
Hmax,l 2
Taking into account (23), (24) we obtain
H X2
Ns1.2= [Hmax’l J Ksy5-bb, -(31)7‘1*%2 (25)
max,2

Let us define the pressure which is necessary for deforming the system of one deformable and one rigid

(24). Taking into account (13), (25) the distribution

roughness up to the relative displacement &, =

max, |

function of spherical segments for the joint distribution of heights can be defined by the equation

X2
HmaX
(P1(21)=(H ’1] K3y 2b-by- O+ 22) (2 )7 - . (26)

max,2

Further we define pressure p;, which is necessary for deforming the system with the second rigid level of

roughness up to the absolute displacement v, =v (section § of the paper)

— b, -b,- ()51+)52 s
P1‘2_(Hmax,l)x,+1/z ( maxz)" Ky Ky rough'K3,1..2'(V)X 22412 o7

The second type of problem is connected with the inverse hypothesis about absolute rigidity of the first level and
elasticity of the second level. In the same manner we define pressure p, which is necessary for deforming the

new system up to the absolute displacement v, = v

= _ bi-by (0 + 22) 12 +1/2
U 7N T T T Ki2 Koz By Ko ()22 (28)
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However, both levels are deformed simultaneously. Therefore we assume that in this case the pressure p which

is necessary for deforming the two-level roughness up to absolute displacement v is defined by the equation

F=(1-a) B +a P, =——(e)u+2"12 (29)

where
(Hmax,l )Xl /2 . (Hmax,Z )XZ /2 %
(1 —0‘)' Ky Ky, '(Hmax,Z)l/z +ta K, K, '(Hmax,l)l/z

2

X
b] 'b2 ' (X] + XZ)'Eruugh 'K3,]..2 : (Hmax,]..Z )X1+X2+]/2

CO,]..2 =

The coefficient o averages the coefficients in (27) and (28). This coefficient redistributes the deformation
proportionally between roughness levels in accordance with the elastic properties of levels and it is defined by
the self-consistent condition, i.e. the pressure is constant for each level

(I-a)p—a p,=0 . (30)

Directly from (27), (28), (30) we obtain
1/2
a = (Hmax,2)/ 'K],] 'K2,1
- 2 2 :
(Hmax,Z )l/ KKy + (Hmax,l )l/ Ky K;,

Taking into account (29), a function for defining the relative displacement ¢ of two-level roughness by the value
of the pressure p is defined by the equation

&= (CO,I..Z 'ﬁ)l/(Xl+X2+]/2) . (3D

It has to be noted that the structures of (18) and (31) are similar.

11 Multi-level Roughness. Composition of » Height Distribution

Let us consider a roughness which consists of n levels. Let us assume the following approach stated in section 9
that displacement v can be defined as

V=v 4+, +oty,, 32)

where v, is the height of a section of roughness level with number k. In addition, v, e[O,v] and

v< Hmax,k=

peaks from different levels

k=1.n.1It is assumed that the system of inequalities is valid for some set of heights {H k’i}zzl of

Hyi > Hugx —vi» k=1on (33)

Hence

n n
sz,i 2 szax,k —vz Hmax,l..n -V
k=1 k=1

It means that the height ZH ki of the compound surface deviation participates in setting up a real contact area
k=1
of the composition of the height distribution (Demkin N.B., 1970; Kragelski 1.V., 1948; Kragelski I.V., 1968).

The probability of a case when the height H, ; with number i is higher than H —v, is defined by the

max, k

equation P(H; ;> H ., —Vv;)=n,, . The increment of the relative area of deviations with heights
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corresponding to dv, is defined by dn, ;. Taking into account the equation &, =v, /H,,,, , and (1) we obtain

the equation for defining the relative area of section of composition of n height distributions (Demkin N.B.,
1970; Kragelski I.V., 1948; Kragelski .V., 1968)

v([v=v [(v=yv-vy, vev——v,
Vn V3 V2 V1
ns,l“n :J- J‘ J- . J‘ dns,n ~-d77:,3 dns,2 77:,1
ol o [ 0 0 Hmax,n Hmax,3 Hmax,Z Hmax,l

= nk; : K3,1“n : (Hmax,l“n )#]”n : (8 )H]“” (34)

where

1 1=t (1-1y-1, l-1y—.~T,
Ks,lun:'[ I[ I - Id(fn)l“d(%)m]d(’:z)lz ns,l(TI)Zl'

0y 0 0 0

12 Penetration of Rigid Multi-level Roughness into a Perfectly Plastic Body with a Flat Contact Surface

It is assumed that the roughness is not deformed when penetrating into a perfectly plastic body. We can solve the
problem using (34) and assuming that the average pressure for each penetrated peak is constant and equal to
3-0,, where o is ayield stress of a plastic body (or thick coating). Hence (34)

[ 1%
i =3 Oy .n]”n =3 O n = : K3,1.4n : (Hmax,L.n )“l“n ' (6)“]"” (35)

[T (i)

k=1
The results of the numerical analysis show that the relative area of contact and the relative penetration of a rough

rigid surface into a plastic body with a flat surface significantly depend on the parameters of the Abbott curve of
each level (1) (Figure 5).

114



2,00E-01

S|

1,00E-01

N\

0,00E+00 —— |
0,01 0,02 0,03

Figure 5. The relative penetration of multi-level rigid roughness into a perfectly plastic body. The number of
levels n is equal to 3. The pressures are calculated with the help of (35)

(6, =7-10°N/m* H oy 5 =310"m, H,,., =1.1:10°m H,,.; =1-10°m, H .., =1.5-10"m,
H s =0.7-10°m):
b, b, bs b, bs be
For curve 1 3 2.5 1.7 2 2.1 1.1
For curve 2 2 1.7 1.5 1.5 1.7 1.1

13 Deformation of Multi-level Roughness. Application of Self-consistent Method for Defining the
Average Elasticity

It is supposed that the general displacement v for the joint deformation of the n -level roughness is found by the
equation: v = Hmax,l...2 -E .

Taking into account (34) we have to solve a set of separate problems under the supposition that only one level of
roughness with number & is deformable and all other levels are rigid. After that we can define the average elastic
parameter for n-level roughness with the help of self-consistent condition (Shermergor T.D., 1977). This
condition assures that the pressure is constant for all levels. Taking into account this supposition the general
displacement v of the multilevel roughness is equal to the displacement v, of a level with numberk, i.e.

k :
& =—m"%E ¢, . Hence we can obtain

max,l...n
n
[ 1o
k=1

Nsin = - K3,1“n : (Hmax,k )M"” : (gk )'u]”n ’k =l.n (36)

[T

k=1

Taking into account (13), (36) the distribution of spherical segments for the level with number £ is defined by
the equation

n

by
P () =————

[T (s

k=1

Ky (Hoad V' 1@ )™ ke =1on (37)
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Further, we obtain the pressure p, which is used for deforming a system with one deformable level with number

k . In this case we have a displacement v=H ., , ‘€
n
Erough ku
— Kl,k 'Kz,k k=1 ( L tl/2 o, +1/2 .
Pr = (H )1/2 ' n 'K3,1..n “Hine Hmax,l..n)P" (6) : s k=1.n (38)
K .
max. 2. H (Hmax,k )XA

k=1

Let all levels of roughness be deformable. In accordance with the above approach (section 10 of the paper) it is
assumed that the pressure which is applied to the multi-level roughness can be defined by the equation

n
5=Zak-ﬁk= 1 (e )i (39)

where

4
n
o2 i . zak Ky Ko
0,]..1’! E " n (H )1/2 .
roug atl/2 k=1 max,k
K3,l..n '(Hmax,]..n )ul “Hync: | I bk
k=1

The coefficients a; (k=1..n) average the elastic properties of all levels of roughness. These coefficients are
determined by the system of equations

Doy =1 (40)
k=1
A Pr = Oy P =0, k=1.n—1 41

Taking into account (41) we obtain

1/2
_ Kl,k 'KZ,k (Hmax,n) =
o = 5 a,, k=l.n-1.
(Hmax,k) : KL" 'KZJI

Hence (40)

/2 n-1
_ (Hmax,n )l . Kl,k ) szk
n 1/2
Kl,n 'KZ,n k=1 (Hmax,k)

Taking into account (39) we get
&€= (CO,]..n ‘1_7)]/(”1""“/2) (42)

The relative displacement of a multi-level rough surface for interaction with rigid flat surface significantly
depends on parameters of the Abbott curve of each level of roughness (1) (Figure 6).
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Figure 6. The dependence of the nominal contact pressure on the relative displacement (elastic roughness) (42)
(Hpaer3 =310°0m, H oy =1.1:10%m H,ppoy =1-10%m, H oy =1.5-10°m, H,py =0.7-10°m; the

array of rates and the radii of curvature: ({(a)-mdius;Ri)}L = {(0.3;3-10"4m), (0.2;2-10_4771), (0.];]-10"4m),

1

(0.2;4-10"4m), (0.1;7-10_4m), (0.1;6-10_4m)}; the array of rates and the reduced moduli of elasticity
(o g7 ) ~for1.810"N/m?), (0.15:1.9-10" N /m?), (0.05:2.0-10" N /m?), (0.3:1.5-10" N/ m?),

J j=

(0.05:1.6-10" N /m?), (0.2:1.7-10" N /m?), (0.05:1.4- 10" N /m®

b, b, bs by bs bs
For curve 1 3 2.5 1.7 2 2.1 1.1
For curve 2 2 1.7 1.5 1.5 1.7 1.1

14 Interaction of a Multi-level Elastic Roughness and a Perfectly Plastic Thick Coating

It is assumed that the coating is sufficiently thick. In this case the influence of the undercoat deformation is small.
Let us consider an elastic roughness which consists of 7 sublevels. Let the level with the smallest step of
deviations has number # . It is assumed that the peak of this level does not penetrate into the coating when the
inequality p,.,; ;(€,,2,)<3-0 is valid for the average pressure p,,,; ;(€,,2,) of the peak (here o is the
yield stress of coating). It means that the multi-level roughness does not penetrate into the coating either

(Kravchuk A.S. et al., 2005). Taking into account scattering of reduced elastic moduli and radii of peaks (4), one
can define the criterion of guaranteed non-penetration of a peak into the coating by means of following inequality

ma,xiﬁreal,i,j (Sn :0)}S 3- O, (43)
L]

Let us estimate the relative deformation & of the highest peak of the level with number » taking into

account (4), (43)

n,elastic

* } 5n (gn,elastic 70)
—max :

J - =3.0
3 mimR; ,
P

s

Hence we can obtain

ml.m {Ri,n } 9 o
n,elastic — o *
Hoon |4 max {E ; }

&
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When the relative displacement ¢, exceeds ¢ then (Kravchuk A.S. ef al., 2005) we can define a relative

n,elastic >
number of peaks y(g,) of level n which have plastic penetration into the coating in the whole number of peaks
which contact with the coating (36)

]S l.n (gn gn elastic) Sn gn elastic
}/(8 ) = > > =|1- >
&

Myl
( ) ' ( ) ] ’ (gn 2 gn,elastic )
En _gn,elastic ns,]..n En

n

The numerical experiments show that y(g,) significantly depends on the average characteristics of the multi-
level roughness and characteristics of sublevel with number # .

The minimal pressure p,,,. for deformation ¢ can be estimated by means of (38) and under the

n,elastic

assumption that the other levels of roughness are rigid

n
Erough : I I bk
= — k=1 L.n ( )#1..u+1/2
Pelastic = Kl,n : K2,n : P ' K3,1..n “Hine (Hmax,izy “\&n,elastic . (44)

2. H (Hmax,k )Xk

k=1

If the multi-level elastic roughness has no plastic penetration into the coating, the general elastic relative
displacement & (in the case of elasticity of all levels) is defined by (42) and (44)

elastic

Y ,+1/2)

Erough ’ H bk

_ k=1 1. .
elastic — CO,I..n : Kl,n : KZ,n : n ' K3,1..n “Hin (Hmax,n)p ! gn,elastic

2 H (Hmax,k )X/"

k=1

&

Hence after reducing we obtain

o\ +172)

& Kl,n 'KZ,n :

elastic — €y Lelastic

(Hmax,n )P'“" i ap KKy,

hH2 ( )1/2
(Hmax,l .n y k=1 Hmax,k

The general relative displacement of elastic multi-level roughness in its contact interaction with a plastic coating
can be defined by equations (35) (42) (Kravchuk A.S. et al., 2005)

(CO,]..n _p)l/(ul__nJrl/Z)’ PE [0: Pelastic )’
1

E =
ol 1/2) )(“L.n +1/2) } M

1 Pl 1D _(

3.6 -b elastic ’ JZAS [pelasticf +oo),
Os Ulin

Eelastic T |:

where

g
bl..n = ,,# K3,1..n . (Hmax,l..n )Hl"n
(H )X/c

max, k
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The application of & and the solutions of nonlocal problems (Kravchuk A.S., 2005; Kravchuk A.S. ef al.,

2004) allow for theoretically defining a yield stress o, of a coating when roughness does not scrabble it. The

elastic

macro parameters of contacted bodies, the characteristics of a surface, and the value of a force are the
predetermined data in this solution.
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16 Conclusions

The most convenient way of creating the theory of deformation of multi-level roughness is to apply the methods
of mechanics of composite materials. The application of a self-consistent method is preferable since it allows for
defining the effective (average) elastic parameters for all levels. By means of this approach we can obtain the
equation of deformation of multi-level roughness which has the same structure as the equation of deformation of
one-level roughness in the Demkin-Kragelski theory. It has been supposed that the radii of peaks for each level
and reduced elastic modulus have scattering. This is the generalisation of Demkin-Kragelski theory. The
analytical equations for defining the relative displacement with the help of the average pressure have been
obtained. The solution of the problem is based on the approximation of the initial part of the Abbott curve for any
level of roughness by means of power functions.

The analytical equation for defining the relative displacement of multi-level roughness by means of an average

pressure has been obtained. It significantly depends on parameters of the Abbott curve of each level of
roughness.
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