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Asymptotic Analysis of Strongly Anisotropic Solids  
 
I.V. Andrianov, G.A. Starushenko  
 
 
An asymptotic approach is proposed to describe the strongly anisotropic solids. We simplified the input 
boundary value problem using ratios of the elastic constants as small parameters. The obtained results can be 
used for the investigation of the composite materials. 
 
 
1 Introduction 
 
Problems involving material anisotropy are in general more difficult to solve than the isotropic ones. The 
problem of an anisotropic composite material can be examined on the assumption that the matrix is only slightly 
anisotropic (Lekhnitskii, 1963, 1968; Sachenkov and Daragan, 1972). On the other hand, as it has been shown by 
Kosmodamianskii for an anisotropic plane with two identical elliptic holes (Kosmodamianskii, 1966, 1976), 
strong anisotropy leads to the possibility of sufficient simplifications of the governing boundary value problems. 
Independently Manevitch, Pavlenko and Shamrovskii (1970, 1971) and Everstine and Pipkin (1971, 1973) (see 
also Spencer, 1974; Sanchez and Pipkin, 1978; Pipkin, 1979, 1984; Christensen, 1979), beginning with elasticity 
theory and treating the extensibility of the material in a preferred direction as a small parameter, used the singular 
perturbation method to obtain approximate boundary value problems. The governing plane problem is reduced to 
that of solving two Laplace equations and, if higher-order approximations are wanted, a number of Poisson’s 
equations. The comparison of approximate solutions with the exact anisotropic elastic solutions showed 
satisfactory agreement (Kosmodamianskii, 1976; Manevitch, Pavlenko and Shamrovskii, 1970, 1971; Everstine 
and Pipkin, 1971, 1973; Spencer, 1974; Pipkin, 1979, 1984; Sanchez and Pipkin, 1978; Christensen, 1979). In 
the paper by Everstine and Pipkin (1971) a cantilever beam with end load was analysed. Spencer (1974) studied 
the problem of a crack parallel to the fibres in shear, as well as a crack normal to the fibre direction opened by 
internal pressure. Bogan (1981, 1994) considered the stress distribution within the elliptic region, and the contact 
problem for the half-plane. Sanchez and Pipkin (1978) showed how to compute the elastic stress factor at a crack 
tip from the force in the singular fiber passing throw the tip. The efficiency of the asymptotic approach for 
solving of plane anisotropic contact problems was shown in the papers (Manevitch and Pavlenko, 1975, 1982; 
Manevitch, Pavlenko and Koblik, 1979; Manevitch, 2001; Pavlenko, 1981; Andrianov, Awrejcewicz and 
Manevitch, 2004). A generalization for the axially symmetric case with a cylindrically orthotropic matrix was 
proposed in the papers by Pavlenko (1980), Manevitch and Pavlenko (1991). The papers by Kagadii and 
Pavlenko (1989, 1992) are devoted to the fibre reinforced composites with a viscoelastic orthotropic matrix. 
 
In all above mentioned papers, approximated governing equations and boundary conditions are used. In our 
paper we propose to simplify only boundary conditions.  
 
 
2 The Elliott Ansatz 
 
Elliott (1948) (see also Lekhnitskii, 1963) proposed to search the solution of axially the symmetric static problem 
for transversally-isotropic media as a sum of two functions, which functions are solutions of the following 
equations: 
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E, E1 are the Young’s moduli in r and z directions, G, G1 are the shear coefficients, )(E.G 2150 ν−= , ν, ν1 are 
the Poisson’s coefficients. 
 
For displacements and stresses one has (Lekhnitskii, 1963) 
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3 Asymptotic Simplification  
 
As small parameter we will use the parameter ε. If ε << 1, the following asymptotic estimations are valid: 
  

s1 ∼ ε-1,  s2 ∼ ε,  k1 ∼ ε4,  k2 ∼ ε-2.     (6) 
                                                
So, in the first approximation one can suppose 
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Let us suppose the boundary value problem for a half-space with the following boundary conditions: 
 

( )rz ϕσ = ,  0=rzτ   for  0=z . (8) 
 
Then one can solve in the first approximation the following boundary value problems 
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For example let us solve the Boussinesq problem for a transversally-isotropic half-space. In this case one has 
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where: ( )rδ  is the Dirac delta-function.  
 
The exact solution of this problem can be written as follows (Lekhnitskii, 1963): 
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Now we will test the approximate solutions based on the simplified boundary value problems (9), (10) and (11), 
(12). First of all we solve the equation 
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where: A is the unknown constant, which will be obtained further. 
 
From (15), (16) one obtains 
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Then we solve the boundary value problem 
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From (18), (19) one obtains 
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If one finds the constant A from condition 
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then the expressions (21), (22) coincides with the exact solutions (13), (14). 
 
4 Conclusions 
 
The obtained results can be used for the investigation of composite fracture. The proposed solution can be 
applied  in  Civil Engineering to model the behavior of piles or piers embedded in soil media which exhibit a 
linear elastic response in the working-load range. Analytic solutions presented in this paper can  be useful in 
evaluating results calculated by boundary elements and finite element methods. 
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