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Consideration of Reaction Forces of Holonomic Constraints as
Generalized Coordinates in Approximate Determination of Lower
Frequencies of Elastic Systems

C. Cattani, M. Scalia, M.P. Yushkov, S.A. Zegzhda

A new method for determination of lower frequencies of mechanical systems consisting of elastic bodies connected
to each other is offered. The conditions of connection of bodies are written as holonomic constraints, the reactions
of which are considered as generalized coordinates. Therefore the number of degrees of freedom proves to be equal
to the number of constraints.

1 On the Possibility of Introducing Generalized Reaction Forces as Lagrangean Coordinates

The paper presents a development of the method suggested in the work (Yushkov and Zegzhda, 1998). The
equation of frequencies obtained in this work makes it possible, if necessary, to determine any number of the
system’s natural frequencies for a reasonably great number N of dynamically considered vibration modes of the
system elements. However as a rule it is necessary to know only several first frequencies and modes. When
calculating them one can use the following approximate approach to this problem.

It has been proposed in the work (Yushkov and Zegzhda, 1998) to consider the conditions of elastic bodies con-
nection to each other as holonomic constraints. In this case the generalized reaction forces Λi, i = 1, n, turn out
to be the forces of interaction between the elastic bodies.

The potential energy of the system consisting of elastic bodies connected to each other can be represented as a
positively defined quadratic form of the generalized constraint reactions introduced

Π =
1
2

n∑

i,j=1

cijΛiΛj , (1)

when considering all the natural vibration modes of the system’s elements quasi-statically. The example of calcu-
lating the factors cij of this form is given in the work (Yushkov and Zegzhda, 1998). In quasistatics the deformed

state of all system elements is uniquely determined by setting the quantities Λi, i = 1, n. The elastic system given
comes to this state as a result of the fact that its points have obtained displacements, which can be found as linear
functions of the reactions Λi, i = 1, n. Hence the position of all points of the system at the time t is uniquely
determined by setting the quantities Λi, i = 1, n. Therefore they can be considered as the generalized Lagrange
coordinates; and the kinetic energy of the system can be represented in the form

T =
1
2

n∑

i,j=1

aijΛ̇iΛ̇j . (2)

Here aij , i, j = 1, n, are some constants, the calculation procedure for which will be shown below through a
number of examples.

Lagrange’s equations of the second kind corresponding to expressions (1) and (2) are as follows
n∑

j=1

(aijΛ̈j + cijΛj) = 0 , i = 1, n .
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By assuming as in the work (Yushkov and Zegzhda, 1998)

Λi = Λ̃i cos(p t + α) , i = 1, n ,

we come to the following equation of frequencies

det[cij − p2aij ] = 0 . (3)

When calculating the factors aij and cij of this determinant, one needs not to know the natural frequencies and
natural modes of vibration of the system’s elements. It is essential that these factors can be determined rather
simply for the bars of variable section too.

Let us start analyzing this approach with solving the problem of approximately determining the first natural fre-
quency and the mode of bending oscillations of the cantilever of variable cross-section.

2 Bending Vibration of the Cantilever of Variable Cross-Section

Let us assume that at the end x = l the bar is rigidly clamped and that the area of cross-section and the moment of
inertia of this section are defined correspondingly as follows

S(x) = A(ξ)S(l) , J(x) = B(ξ)J(l) , ξ =
x

l
, 0 6 ξ 6 1 . (4)

Here A(ξ) and B(ξ) are some prescribed functions. Note that they may be step functions too.

Let us introduce into the consideration the deflection of the neutral layer of the cantilever y(x, t) . As the bar is
rigidly clamped at the end x = l, then

y(l, t) = 0 ,
∂y

∂x

∣∣∣∣
x=l

= 0 . (5)

We shall consider these two conditions as holonomic constraints imposed on the motion of a free bar. The constraint
reaction forces are the bending moment M = Λ1 and the lateral force Q = Λ2, applied to the end x = l of the free
bar (see Figure 1).

Figure 1. Constraint reaction forces applied to the cantilever.

The motion of the free bar under the action of these forces can be represented as, first, translational motion (motion
of the center of mass C), secondly, rotation about the center of mass and, third, bending. This bending deformation
in quasistatics can be found in the following manner.

The acceleration of the center of mass Wc and the angular acceleration ϕ̈ at the time t are as follows

Wc =
Λ2(t)

ρ
∫ l

0
S(x)dx

, ϕ̈ =
Λ1(t) + (l − xc)Λ2(t)

ρ
∫ l

0
S(x)(xc − x)2dx

. (6)

Here ρ is the density, and xc is the coordinate of the center of mass.

The intensity of inertial forces caused by translational and rotational motion of the bar appears as

q(x, t) = −ρ(Wc + ϕ̈(x− xc))S(x) . (7)
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The bending moment in section x, corresponding to the load q(x, t), is equal to

M(x, t) =
∫ x

0

q(x1, t)(x− x1)dx1 . (8)

The deflection caused by the action of the bending moment M(x, t) satisfies the equation

EJ(x)
∂2y

∂x2
= M(x, t) .

This equation in dimensionless variables

ȳ =
y

l
, ξ =

x

l
, L(ξ, t) =

M(x, t)l
EJ(l)

(9)

takes the form

B(ξ)
∂2ȳ

∂ξ2
= L(ξ, t) . (10)

Formulas (4), (6)–(9) imply that the dimensionless moment L(ξ, t) is equal to

L(ξ, t) = Λ̄1(t)f1(ξ) + Λ̄2(t)f2(ξ) . (11)

Here

Λ̄1(t) =
Λ1(t)l
EJ(l)

, Λ̄2(t) =
Λ2(t)l2

EJ(l)
,

f1(ξ) =
∫ ξ

0

A(η)(c− η)
a

(ξ − η) dη ,

f2(ξ) =
∫ ξ

0

(
(c− η)A(η)(1− c)

a
− A(η)

b

)
(ξ − η) dη , (12)

a =
∫ 1

0

A(ξ)(c− ξ)2 dξ , b =
∫ 1

0

A(ξ) dξ , c =
1
b

∫ 1

0

ξA(ξ) dξ .

Integrating (10) and taking into account the constraint equation (5) produce

ȳ(ξ, t) =
2∑

k=1

Λ̄k(t)hk(ξ) , hk =
∫ 1

ξ

fk(η)(η − ξ)
B(η)

dη . (13)

The potential energy of the bar

Π =
1
2

∫ l

0

M2(x, t)
EJ(x)

dx

can be represented by using formulas (4), (9), (11) as

Π =
EJ(l)

2l

2∑

i,j=1

c̄ijΛ̄iΛ̄j , (14)

where

c̄ij =
∫ 1

0

fi(ξ)fj(ξ)
B(ξ)

dξ .

The kinetic energy of the system

T =
ρ

2

∫ l

0

S(x)
(

∂y

∂t

)2

dx ,

as follows from formulas (4), (9), (13), is

T =
1
2
ρS(l) l3

2∑

i,j=1

āij
˙̄Λi

˙̄Λj , āij =
∫ 1

0

A(ξ)hi(ξ)hj(ξ) dξ . (15)
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Equation (3) and expressions (14), (15) imply that the dimensionless frequencies p∗ related to the required fre-
quencies p as

p = p∗
1
l2

√
EJ(l)
ρS(l)

(16)

are the roots of the equation
det [c̄ij − p2

∗āij ] = 0 , i, j = 1, 2 . (17)

For vibrations with the frequencies pk, k = 1, 2, in accordance with expression (13) we obtain

ȳk(ξ, t) = (˜̄Λk1h1(ξ) + ˜̄Λk2h2(ξ)) cos(pkt + α) , k = 1, 2 .

The quantities ˜̄Λk1,
˜̄Λk2, k = 1, 2, satisfy the equation

(c̄21 − p2
∗kā21)˜̄Λk1 + (c̄22 − p2

∗kā22)˜̄Λk2 = 0 , k = 1, 2 .

This yields that the fist two vibration modes of cantilever can be approximately represented as

Yk(ξ) =
Xk(ξ)

Xk(0.5)
, Xk(ξ) = h1(ξ)− c̄12 − p2

∗kā12

c̄22 − p2
∗kā22

h2(ξ) , k = 1, 2 .

The exact solutions for the cantilever of wedge and cone shapes have been obtained by Kirchhoff in 1879. These
solutions are given in many books, in particular, in the reference book (Kamke, 1959) (Chapter IV, paragraphs
4.22, 4.24).

For the wedge, where
A(ξ) = ξ , B(ξ) = ξ3 ,

the natural frequencies p∗ are the roots of the equation

J1(κ)I0(κ) = I1(κ)J0(κ) , κ = 2
√

p∗ .

Here J0(κ) and J1(κ) are the Bessel functions of the first kind, and I0(κ) and I1(κ) are the modified Bessel
functions of the first kind. The natural modes corresponding to the natural frequencies p∗ are

Y (ξ) =
X(ξ)

X(0.5)
, X(ξ) =

J0(κ)I1(κ
√

ξ)− I0(κ)J1(κ
√

ξ)√
ξ

.

In the case of a cone, where
A(ξ) = ξ2 , B(ξ) = ξ4 ,

the equation of frequencies and functions X(ξ) take the form

κ(J0(κ)I1(κ) + I0(κ)J1(κ)) = 4J1(κ)I1(κ) ,

X(ξ) =
I1(κ)[J1(κ

√
ξ)− κ

√
ξ

2 J0(κ
√

ξ)]
ξ
√

ξ
+

J1(κ)[I1(κ
√

ξ)− κ
√

ξ
2 I0(κ

√
ξ)]

ξ
√

ξ
.

By using the approximate approach suggested we obtain
— for the wedge

p∗1 = 5.3187 , p∗2 = 17.3006 ,

h1(ξ) = 1− 5ξ

2
+ 2ξ2 − ξ3

2
, h2(ξ) =

1
6
− ξ

2
+

ξ2

2
− ξ3

6
,

— for the cone
p∗1 = 8.73521 , p∗2 = 25.1813 ,

h1(ξ) =
7
6
− 3ξ +

5ξ2

2
− 2ξ3

3
, h2(ξ) =

1
6
− ξ

2
+

ξ2

2
− ξ3

6
.
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The exact values of the first two frequencies are as follows
— for the wedge: p∗1 = 5.3151 , p∗2 = 15.2072 ,
— for the cone: p∗1 = 8.71926 , p∗2 = 21.1457 .

The second frequency error for the wedge as well as for the cone is great enough. Therefore this approximation
method can be used only for the determination of the first frequency and the first vibration mode for the cantilever
of variable cross-section.

Figure 2. First natural modes.

The first natural modes for the wedge and the cone are shown in Figure 2. The solid curves correspond to the
approximate solution, and the dashed curves over them correspond to the exact solution. For visualization of
differences between the curves depicted, the deflection at ξ = 1/2 is taken as a unit of measurement for each of
them. The cone is a more flexible bar than the wedge and thus the first natural mode of the cone for ξ < 1/2 is
located higher than the corresponding curve for the wedge.

For the cone the mass per unit of length decreases while approaching to the end by a quadratic law, and for the
wedge the linear law is applied. For the bar of constant cross-section the mass per unit of length is constant. Pay
attention to the following fact. The first frequency error for the cone is equal to 0.2% , for the wedge it is equal to
0.07% . For the bar of constant cross-section we have
— approximately: p∗1 = 3.516035 , p∗2 = 22.7125 ,
— exactly: p∗1 = 3.516015 , p∗2 = 22.0345 .

Thus, the first frequency error makes up only 5.7 · 10−4% . Upon comparison of the given above errors for the
cone, the wedge and the bar of constant cross-section, we can expect that for the bar of constant cross-section with
the mass localized at the end the approximate solution will become practically the exact one. In fact, in this case
we obtain

A(ξ) = 1 + γδ(ξ) , B(ξ) = 1 , γ =
m2

m1
.

Here δ(ξ) is the Dirac delta-function, m2 is the load mass, m1 is the bar mass.

For γ = 1 we have
— approximately: p∗1 = 1.5572990 , p∗2 = 16.6203 ,
— exactly: p∗1 = 1.5572976 , p∗2 = 16.2501 .

We see that the first frequency error decreased six times relative to the case when γ = 0.

For the cantilever with the disk at its end we obtain the solution quite accurately if we consider the presence of
the disk at the end as the third and the forth holonomic constraints. This system with four degrees of freedom will
makes it possible to determine to a rather high accuracy not only the first frequency but the second and the third
ones. So let’s analyze the following problem.
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3 Determination of the Lower Natural Frequencies of Bending Vibrations of the Cantilever of Variable
Cross-Section with a Disk at its End

In the rotor dynamics, the urgent problem is accurate determination of first two critical speeds of the cantilever
shaft with a disk at its end. We remind that the values of these critical speeds are proportional to natural frequencies
of the cantilever with a disk. Actually, as for instance in the case of marine screw (water propeller) or airscrew,
there is not a disk at the shaft end but a body of rather complicated shape. There are methods allowing us to
determine the moment of inertia of this body relative to the axis that is perpendicular to the shaft axis. Let us
assume that this moment is set in the form

I = m2R
2,

where m2 = γρlS(l) is mass of the body, and R = rl is its radius of inertia. Note that with given functions A(ξ)
and B(ξ) the required natural frequencies p∗ will depend on two parameters γ and r.

In the case of the bar of constant cross-section the exact values of the frequencies p∗ are found from the equation

det
[

V (x) + γxU(x) S(x) + γxV (x)
S(x)− γr2x3T (x) T (x)− γr2x3U(x)

]
= 0 , x =

√
p∗ . (18)

Here
S(x) =

1
2
(coshx + cos x) , T (x) =

1
2
(sinh x + sin x) ,

U(x) =
1
2
(coshx− cosx) , V (x) =

1
2
(sinhx− sin x)

are the Krylov functions.

In an approximate determination of the frequencies p∗ we shall consider the conditions of rigid fixing (5) as two
holonomic constraints as before. We shall denote now their reaction forces: the bending moment M(t) and lateral
force Q(t), by Λ1(t) and Λ2(t) as before.

The condition that the deflection y(0, t) is equal to the displacement of mass m2, and the angle of rotation of the
bar’s end

ϕ =
∂y

∂x

∣∣∣∣
x=0

is equal to the angle of the body rotation will be considered as two holonomic constraints imposed on motion of
the free bar. The reaction forces of these constraints are the lateral force Λ3(t) and bending moment Λ4(t). They
are applied to the bar at the section x = 0. Positive directions of reactions applied to the bar are shown in Figure 3.

Figure 3. Constraint reaction forces applied to the bar.

Formulas (6) in this case will take the form

Wc =
Λ2(t) + Λ3(t)

ρ
∫ l

0
S(x)dx

, ϕ̈ =
Λ1(t)− Λ4(t) + (l − xc)Λ2(t)− xcΛ3(t)

ρ
∫ l

0
S(x)(xc − x)2dx

.

The intensity of inertial forces q(x, t) will be calculated by formula (7) as before; formula (8) will take the form

M(x, t) = Λ4(t) + xΛ3(t) +
∫ x

0

q(x1, t)(x− x1) dx1 .
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When going to dimensionless variables we obtain

L(ξ, t) =
4∑

k=1

Λ̄k(t)fk(ξ) .

Here

Λ̄1(t) =
Λ1(t)l
EJ(l)

, Λ̄2(t) =
Λ2(t)l2

EJ(l)
,

Λ̄3(t) =
Λ3(t)l2

EJ(l)
, Λ̄4(t) =

Λ4(t)l
EJ(l)

.

The functions f1(ξ) and f2(ξ) are set by formulas (12), and the functions f3(ξ) and f4(ξ) are as follows

f3(ξ) = ξ +
∫ ξ

0

(
(η − c)cA(η)

a
− A(η)

b

)
(ξ − η) dη ,

f4(ξ) = 1 +
∫ ξ

0

A(η)(η − c)
a

(ξ − η) dη .

Formulas (13), (14), (17) remain valid, but their indices i, j and k run now from 1 to 4.

When calculating the kinetic energy it is necessary to take into account the kinetic energy of the disk, therefore the
factors āij of determinant (17) in this case are

āij =
∫ 1

0

A(ξ)hi(ξ)hj(ξ) dξ + γhi(0)hj(0) + γr2ϕi(0)ϕj(0) , i, j = 1, 4 . (19)

Here

ϕi(ξ) =
dhi(ξ)

dξ
, i = 1, 4 .

In the case of the bar of constant cross-section equation (18) allows us to calculate the natural frequencies exactly
and so estimate an error of this approximate method.

The radius of inertia for the thin disk R is equal to R1/2, where R1 is the radius of the disk and therefore R1 = 2lr.

If the shaft of radius r1 and the disk of thickness h are made of the same material then for r1 = l/20 and h = R1/20
we obtain

γ = 160 r3 . (20)

Assuming that γ and r are related to each other with this expression and r varies within the range from 0 to 1/2, let
us follow the change in error for the first, second and third frequencies. Upon calculations we obtain the following
values for the error in percentage terms (%)

r = 0.000 1.5 · 10−4 5.6 · 10−1 2.67

r = 0.125 3.7 · 10−5 9/5 · 10−2 0.85

r = 0.250 1.4 · 10−6 3.7 · 10−4 0.40

r = 0.500 − 9.0 · 10−6 3.9 · 10−5 0.35

The first column corresponds to the first frequency, the second column corresponds to the second frequency and
the third one corresponds to the third frequency. We see that the higher frequency, the greater error.

For r > 0.125 the error for the first frequency is close to the limits of accuracy which is provided by the software
package ”Mathematica 5.2”. In this regard one can say that this method permits to determine the first frequency ex-
actly. Therefore it may be used in both the rotor dynamics and for testing the programs for analysis of complicated
mechanical systems.
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In rotor engineering it is important to have the analytical dependence of the first natural frequency on the system’s
parameters. This method based on the consideration of four holonomic constraints does not allow us to do that
as it leads to the solution of the algebraic equation of fourth order. But if we limit ourselves to consideration of
only two constraints at the end where the disk is located, then the required first frequency will be determined in
analytical form as a root of biquadratic equation.

Let us prove, that this simple solution also makes it possible to find the first frequency accurately enough. When
getting this solution it is reasonable to measure the coordinate of the bar cross-section not from the free end but
from the rigidly clamped one. Formulas (4) and (17) remain valid, but now S(l) and J(l) will correspond not to
the rigidly clamped end, but to the place of disk fixation.

The bending moment Λ1(t) and lateral force Λ2(t), applied to the end x = l, are constraint reactions and consid-
ered in this problem as the generalized coordinates. Their positive directions, as well as the positive direction of
the moment M(x, t) applied to the cross-section x, are shown in Figure 4.

Figure 4. The bending moment and constraint reaction forces.

The dimensionless bending moment L(ξ, t) introduced by formula (9) is equal in this case to

L(ξ, t) = Λ̄1(t)f1(ξ) + Λ̄2(t)f2(ξ) ,

f1(ξ) = 1 , f2(t) = 1− ξ , Λ̄1(t) =
Λ1l

EJ(l)
, Λ̄2(t) =

Λ2l
2

EJ(l)
.

(21)

Expression (11), as can be seen, survives and therefore the potential energy will be written in the form (14).

Integrating equation (10) and taking into account that

ȳ(0, t) =
∂ȳ

∂ξ

∣∣∣∣
ξ=0

= 0 ,

imply expression (13), where now

hk(ξ) =
∫ ξ

0

fk(η)(η − ξ)
B(η)

dη , k = 1, 2 . (22)

As the deflection is represented in the same form (13), the kinetic energy will be written in the same form (15) too.
The factors āij in this case should be calculated by formulas (19), but now hi(0) should be replaced with hi(1),
and ϕi(0) should be replaced with ϕi(1).

When calculating for the bar of constant cross-section the error of the first and second frequencies in percentage
terms (%) for the same relation (20) between γ and r, we obtain

r = 0.000 0.47 58
r = 0.125 8.4 · 10−2 15.6
r = 0.250 2.6 · 10−3 0.21
r = 0.500 1.1 · 10−5 1.1 · 10−3

For r > 0.25 we can say that for the first frequency we obtain the exact value. Notice, however that for r = 0.25
the disk diameter is equal to the shaft length, and for r = 0.5 it is two times greater. For such relation between
these quantities for the assumed values r1 = l/20 and h = R1/20 this disk can not be regarded as a perfectly rigid
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body. It is necessary to take into account the influence of its compliance on the natural frequencies of the system.
It is feasible but it will require additional calculations, the basic framework of which will be shown through the
example of the cantilever with a flexible bar at its end. This example will require no new mathematical apparatus.
It is reduced to the same calculations as above.

4 Determination of the First Three Frequencies of the Cantilever with a Flexible Bar at its End

Let us analyze the problem, when the bar that is executing longitudinal oscillations in the mechanical system
considered in the work (Yushkov and Zegzhda, 1998) is absent (see Figure 5). Within the frames of such problem
we have three constraints and three reaction forces, correspondingly. The bending moment Λ1(t) and the lateral
force Λ2(t) are applied to the cantilever as is shown in Figure 4. The third reaction force is the lateral force Λ3(t)
applied to the bar which is perpendicular to the cantilever.

Figure 5. The system of two bars.

Both the kinetic and the potential energy of the cantilever are determined by the formulas given above. Therefore
it is necessary to take into account only the second bar. When released from the constraints it becomes free and
similar to the bar shown in Figure 1, but now the bending moment M(t) = Λ1(t) and lateral force Q(t) = Λ3(t)
are applied not to the end of the bar but to the cross-section x∗ = zl. Therefore the equations will be written in the
form

y(x∗, t) = 0 ,
∂y

∂x

∣∣∣∣
x=x∗

= 0 . (23)

We shall not provide the parameters of the second bar with indices when considering the question how the deflec-
tion curve will change depending on the place of application of the reactions. We shall do that upon obtaining the
expressions for the potential energy of its deflection and for the deflection curve.

Formulas (6) in this case will appear as

Wc =
Λ3(t)

ρ
∫ l

0
S(x) dx

, ϕ̈ =
Λ1(t) + (x∗ − xc)Λ3(t)

ρ
∫ l

0
S(x)(xc − x)2dx

,

and formula (7) remains valid.

The bending moment M(x, t) applied to the left of the cross-section x = x∗ is set by expression (8), and the
bending moment applied to the right of cross-section takes the form

M(x, t) =
∫ l

x

q(x1, t)(x1 − x) dx1 , x∗ < x < l .

Hence the bar is divided into two sections and the deflections of its left and right parts have to be calculated
independently. Denoting the bending moment M(x, t) for 0 < x < x∗ by M1(x, t), and for x∗ < x < l by
M2(x, t), and going to dimensionless variables (9), we obtain

Ln(ξ, t) = Λ̄(2)
1 (t)f1n(ξ) + Λ̄(2)

3 (t)f3n(ξ) , n = 1, 2 .
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Here

Λ̄(2)
1 (t) =

Λ1(t)l
EJ(t)

, Λ̄(2)
3 (t) =

Λ̄3(t)l2

EJ(t)
,

f11(ξ) =
∫ ξ

0

(c− η)A(η)
a

(ξ − η) dη , 0 6 ξ 6 z ,

f31(ξ) =
∫ ξ

0

(
(c− η)(z − c)A(η)

a
− A(η)

b

)
(ξ − η) dη , 0 6 ξ 6 z ,

f12(ξ) =
∫ 1

ξ

A(η)(η − c)
a

(ξ − η) dη , z 6 ξ 6 1 ,

f32(ξ) =
∫ 1

ξ

(
(η − c)(z − c)A(η)

a
+

A(η)
b

)
(ξ − η) dη , z 6 ξ 6 1 .

(24)

We remind that the values a, b, c, included in these expressions are calculated by formulas (12). The index ”2” of
the quantities Λ̄(2)

1 (t) and Λ̄(2)
3 (t) means that transition to the dimensionless variables corresponds to the parameters

l, E and J(l) of the second bar (see Figure 5). The functions A(ξ), B(ξ) and the values a, b, c, should be also
provided with index ”2” hereinafter, but for the sake of simplicity they are omitted.

Integrating equation (10) for L(ξ, t) = L1(ξ, t), and then for L(ξ, t) = L2(ξ, t), and taking into account the
constraint equations (23) imply

ȳ(ξ, t) = Λ̄(2)
1 (t)h11(ξ) + Λ̄(2)

3 (t)h31(ξ) , 0 6 ξ 6 z ,

ȳ(ξ, t) = Λ̄(2)
1 (t)h12(ξ) + Λ̄(2)

3 (t)h32(ξ) , z 6 ξ 6 1 ,
(25)

where

fk1(ξ) =
∫ z

ξ

fk1(η)(η − ξ)
B(η)

dη , 0 6 ξ 6 z ,

fk2(ξ) =
∫ ξ

z

fk2(η)(ξ − η)
B(η)

dη , z 6 ξ 6 1 , k = 1, 3 .

By using the unit function

U(x) =
{

1 , x > 0 ,
0 , x < 0 ,

we represent expressions (25) as

ȳ(ξ, t) = Λ̄(2)
1 (t)h1(ξ) + Λ̄(2)

3 (t)h3(ξ) , 0 6 ξ 6 1 . (26)

Here
hk(ξ) = hk1(ξ)U(z − ξ) + hk2(ξ)U(ξ − z) . (27)

The potential energy of deformation of the second bar has to be calculated independently for its right and left
sections. Calculating and summing these energies produce

Π =
EJ(l)

2l
(c̄(2)

11 (Λ̄(2)
1 (t))2 + 2c̄

(2)
13 Λ̄(2)

1 (t)Λ̄(2)
3 (t) + c̄

(2)
33 (Λ̄(2)

3 (t))2) , (28)

where

c̄
(2)
kk =

∫ z

0

f2
k1(ξ)
B(ξ)

dξ +
∫ 1

z

f2
k2(ξ)
B(ξ)

dξ , k = 1, 3 ,

c̄
(2)
13 =

∫ z

0

f11(ξ)f31(ξ)
B(ξ)

dξ +
∫ 1

z

f12(ξ)f32(ξ)
B(ξ)

dξ .

Adding the potential energy in bending of the first bar to potential energy (28), we represent their sum in the form

Π =
E1J1(l1)

2l1

3∑

i,j=1

c̄ijΛ̄
(1)
i Λ̄(1)

j . (29)
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Here index ”1” means that this quantity corresponds to the first bar. The dimensionless variables Λ̄(1)
i , i = 1, 3,

are introduced by the formulas:

Λ̄(1)
1 =

Λ1l1
E1J1(l1)

, Λ̄(1)
k =

Λkl21
E1J1(l1)

, k = 2, 3 .

Notice that here J1(l1) corresponds not to the place of rigid fixing of bar, as it was in the beginning of the paper,
but to the point where the first bar is connected to the second one (see Figure 5).

In formulas (24) and (28) all quantities refer to the second bar. Introduction of the parameters

α =
E1J1(l1)l32
E2J2(l2)l31

, β =
l2
l1

allows us to represent the potential energy (28) of the second bar as

Π2 = α
E1J1(l)

2l1
(c̄(2)

11 (Λ̄(1)
1 (t))2β−2 + 2c̄

(2)
13 Λ̄(1)

1 (t)Λ̄(1)
3 (t)β−1 + c̄

(2)
33 (Λ̄(1)

3 (t))2) .

This implies that the factors c̄ij in expression (29) are as follows

c̄11 = c̄
(1)
11 + αβ−2c̄

(2)
11 , c̄12 = c̄

(1)
12 ,

c̄13 = αβ−1c̄
(2)
13 , c̄22 = c̄

(1)
22 , c̄23 = 0 , c̄33 = αc̄

(2)
33 .

Here in accordance with formulas (14), (21)

c̄
(1)
11 =

∫ 1

0

dξ

B1(ξ)
, c̄

(1)
12 =

∫ 1

0

(1− ξ) dξ

B1(ξ)
, c̄

(1)
22 =

∫ 1

0

(1− ξ)2dξ

B1(ξ)
.

The kinetic energy of the first bar will be represented by using expressions (15), (21), (22) in the form

T1 =
1
2
ρ1S1(l1) l31

2∑

i,j=1

ā
(1)
ij

˙̄Λ(1)
i

˙̄Λ(1)
j ,

ā
(1)
ij =

∫ 1

0

A1(ξ)h
(1)
i (ξ)h(1)

j (ξ) dξ ,

h
(1)
1 (ξ) =

∫ ξ

0

(ξ − η) dη

B1(η)
, h

(1)
2 (ξ) =

∫ ξ

0

(1− η)(ξ − η) dη

B1(η)
.

Let us calculate the kinetic energy of the second bar now. The assumption that the amplitude of the oscillations
of the bars under consideration is small allows us to calculate the kinetic energy of the translational motion of the
second bar along the axis independently from the kinetic energy of its motion in the direction that is perpendicular
to its axis.

The kinetic energy of the translational motion of the second bar is

T21 =
m2l

2
1

2
(h(1)

1 (1) ˙̄Λ(1)
1 + h

(1)
2 (1) ˙̄Λ(1)

2 )2 ,

m2 = ρ2S2(l2) l2

∫ 1

0

A2(ξ) dξ .

Displacements of the cross-sections of the second bar in the direction perpendicular to the bar axis are caused,
firstly, by rotation of the bar about the cross-section x∗ = zl2, and, secondly, by the deflection defined by expres-
sion (26). Therefore we have

y2(ξ, t) = l2(ψ(t)(z − ξ) + Λ̄(2)
1 (t)h(2)

1 (ξ) + Λ̄(2)
3 (t)h(2)

3 (ξ)) .
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Here

ψ(t) = ϕ1(1)Λ̄(1)
1 (t) + ϕ2(1)Λ̄(1)

2 (t) , ϕk(1) =
dh

(1)
k

dξ

∣∣∣∣
ξ=1

, k = 1, 2 .

Index ”2” of the functions h
(2)
1 (ξ) and h

(2)
3 (ξ) means that these functions defined by expressions (27) are calculated

for the parameters of the second bar.

Taking into account that
Λ̄(2)

1 = αβ−2Λ̄(1)
1 , Λ̄(2)

3 = αβ−1Λ̄(1)
3 ,

the kinetic energy

T22 =
1
2
ρ2

∫ l2

0

S2(x)
(

∂y2

∂t

)2

dx

will be represented as

T22 =
1
2
ρ2S2(l2)l32

∫ 1

0

A2(ξ)((ϕ1(1) ˙̄Λ(1)
1 + ϕ2(1) ˙̄Λ(1)

2 )(z − ξ)+

+αβ−2 ˙̄Λ(1)
1 h

(2)
1 (ξ) + αβ−1 ˙̄Λ(1)

3 h
(2)
3 (ξ))2dξ .

Introducing into consideration the third parameter

γ =
ρ2S2(l2)l2
ρ1S1(l1)l1

,

the total kinetic energy of the second bar appears as

T2 =
γ

2
ρ1S1(l1) l31

3∑

i,j=1

ā
(2)
ij

˙̄Λ(1)
i

˙̄Λ(1)
j .

Analytic expressions for the factors a
(2)
ij , dependent on the functions A2(ξ) and parameters α and β, are rather

intricate and thus not given here. Note that they are easily found with the software package ”Mathematica 5.2”.

The kinetic energy of both bars is

T =
1
2
ρ1S1(l1) l31

3∑

i,j=1

āij
˙̄Λ(1)

i
˙̄Λ(1)

j , āij = ā
(1)
ij + ā

(2)
ij .

We find the required natural frequencies p∗ by solving equation (17). Note that in formula (16) of the transition to
dimensional frequencies all quantities correspond to the first bar at the point of its connection to the second bar.

5 Comparison with the Bars of Constant Cross-Section

The problem of bars of constant cross-section has been solved exactly by the methods of mathematical physics.
As this takes place the equation of the frequencies is obtained by equating the determinant of sixth order to zero.
Its elements are the Krylov functions, the arguments of which depend on the parameters α, γ and z. This intricate
transcendental equation, the computational solution of which was a matter of some difficulty even for modern com-
puters, has been used for testing the method suggested in (Zegzhda and Yushkov, 1999). Note that the calculation
of first three frequencies by using this suggested method does not create any difficulties.

As stated above, the problem under investigation is a particular case of the problem discussed in (Yushkov and
Zegzhda, 1998). When the bar executing logitudinal vibration is absent, the frequency determinant is a determinant
of third order. Comparing the roots of the transcendental equation with the roots of the frequency equation,
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which was obtained by the technique suggested in (Yushkov and Zegzhda, 1998), shows that the first frequency is
determined with four valid significant digits in the second approximation, the second frequency is determined with
the same accuracy in the fourth approximation, and the third one is obtained with the same accuracy in the sixth
approximation.

If the first and the second bar is made of the same material and have the same cross-sections, then at z = 1/2
the solution depends on a single parameter β = l2/l1, for in this case γ = β and α = β3. The calculations
show that for the first frequency the error decreases as β rises, and for β = 1/8, 1/4, 1/2, 2 it is equal to
0.22, 0.12, 0.056, 0.0022 percent (%) correspondingly. Note that in this example in case β 6 0.25, it is rea-
sonable to consider the second bar as a concentrated mass located at the end of the cantilever beam and to use the
method presented in the beginning of the paper.

Let us discuss briefly the errors of the method under consideration for the second and third frequencies. Let us
examine this problem through the example of the bars, differing only in length.

For α = β = γ = 1 and z = 1/2 the exact and approximate values of first three dimensionless frequencies p∗ are

1.44851 , 6.20782 , 14.0641 ,

1.44876 , 6.24235 , 14.1204 .

The errors in percentage terms (%) are equal correspondingly to

0.017 , 0.56 , 0.40 .

If the second bar is symmetrically positioned in relation to the first one, there exists a vibration mode such that the
first bar does not oscillate, and both halves of the second bar oscillate as a cantilever of length l = βl1/2. The first
frequency of the cantilever oscillation in the dimensionless variables is

p∗ = 3.516
4
β2

. (30)

This frequency in the series of frequencies of the system consisting of two bars has the number n. This number
increases as β decreases. For example, for β = 1/4 it will be the ninth frequency, and the third root of equation
(17) will correspond to it. Let us find this root in the explicit form.

When the second bar does not oscillate, then the bending moment Λ1 and the lateral force Λ2 applied to the end of
the first bar vanish. Therefore in this vibration mode only the lateral force Λ3 applied to the middle of the second
bar is not equal to zero. Under the action of this force the second bar moves translationally and bends so that the
application point of the force Λ3 is immovable. In quasistatics the intensity of inertial forces is constant in this
case, therefore either the second or the third root of equation (17) at z = 1/2 is equal to

p∗ =
√

c

a

4
β2

, c =
∫ 1

0

f2(ξ) dξ , f(ξ) =
∫ ξ

0

(ξ − η) dη ,

a =
∫ 1

0

h2(ξ) dξ , h(ξ) =
∫ 1

ξ

f(η) (ξ − η) dη .

When calculating we obtain

p∗ = 3.530
4
β2

. (31)

This frequency exceeds its exact value obtained by formula (30) by 0.40% .

For β = 1/2 the frequency approximately defined by expression (31) corresponds to the exact value of the fourth
frequency, for β = 1 and β = 2 it corresponds to the third frequency, and for β = 4 it corresponds to the second
frequency.

Hence this approximate method makes it possible to determine the first frequency for any values of the system
parameters with a rather high degree of accuracy, and for some values of the parameters it allows us to define the
second and the third frequencies as well.
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