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Determination of Asymptotic Waves in Maxwell Media by Double-Scale
Method

L. Restuccia, A. Georgescu

In this paper, in a thermodynamical model of a rheological medium (Maxwell) with one internal variable, derived
in the framework of classical irreversible thermodynamics, the asymptotic smooth waves, studied in (1) in a more
classical way, are introduced from the point of view of double scale method (see (2)). We give a physical interpre-
tation of the new (fast) variable, related to the surface across which the derivatives of the solution vary steeply. An
one-dimensional application is carried out too.

1 Introduction

The nonlinear hyperbolic partial differential equations (PDEs) describe the motion of a large number of media.
Their solutions U(xα) are referred to as waves. Some of them present various types of discontinuities, some others
are smooth. We deal with those smooth waves U(xα) called asymptotic waves. Both these types of solutions are
called nonlinear waves because they satisfy nonlinear hyperbolic PDEs. A lot of applications to various equations
from elasticity, fluid mechanics and thermodynamics and other branches of physics were carried out ((3)-(10)).
The mathematical aspects involved into the study of asymptotic waves belong to singular perturbation theory,
namely the double-scale method ((11)-(21)). The multiple-scale method, and, in particular, the double-scale ap-
proach, is appropriate to phenomena which possess qualitatively distinct aspects at various scales. For instance,
at some well-determined times or space coordinates, the characteristics of the motion vary steeply, while at larger
scale the characteristics are slow and describe another type of motion. In addition, the scales are defined by some
small parameters.
In the context of rheological media, a series of studies on linear waves were carried out in (1), (22), (23) (Ciancio-
Restuccia 1985, 1987). In this paper, in a thermodynamical model of a rheological medium (Maxwell) with one
internal variable, the asymptotic smooth waves are introduced from the point of view of double scale method (see
(24), Georgescu 1995). To this aim a fast variable is introduced and the definition of the hyperbolicity is recalled,
in view of a relationships between this variable and the internal layer occurring in the domain of motion. In Sec-
tion 2, the inelastic deformations are described in the framework of classical irreversible thermodynamics and the
features following the introduction of internal variables is emphasized. Corresponding governing equations are
studied in Section 3 by applying the double-scale method and the involved steps as proposed in (3)-(10). In fact,
the results were obtained in (1) in a more classical way. The various steps implied in determining the solution of
the model of the first asymptotic approximation are described in Sections 4, 5, 6. The paper concludes with an
one-dimensional example revealing the influence of the internal variable on the relaxation. These and many other
results in the paper are new.

2 Asymptotic Waves as Solutions of Nonlinear PDEs Deduced by Double-Scale Method

We deal with those smooth waves U(xα), called the asymptotic waves, which evolve as progressive waves, i.e.
there exists a family of hypersurfaces S defined by the equation ϕ(xα) = 0 moving in the Euclidean space En+1

(consisting of points of coordinates xα, α = 0,1,2,...,n, or, equivalently of the time t = x0 and the space coordinates
xi, i=1,2,...,n)

ϕ(t, xi) = ξ̄ = const, (2.1)

such that U or their derivatives vary steeply across S, while along S their variation is slow (2). This means that
around S there exist (asymptotic) internal layers, such that the order of magnitude (i.e. the scale) of some deriva-
tives of the solution inside these layers and far away from them differ very much. Therefore, it is natural to
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introduce a new independent variable ξ, related to the hypersurfaces (2) S,

ξ = ωξ̄ = ωϕ(t, xi), (2.2)

where ξ is asymptotically fixed , i.e. ξ = Ord(1) as ω−1 → 0, and ω À 1 is a very large parameter, to assume
that the solution depends on the old as well as the new variable, i.e. U = U(xα, ξ), and to consider that xα and ξ
are independent.
Taking into account that U is sufficiently smooth, hence it has sufficiently many bounded derivatives, it follows
that, except for the terms containing ω, all other terms are asymptotically fixed and the computation can proceed
formally. In this way, if xα = xα(s) are the parametric equations of a curve C in En+1, we have

dU
ds

= ω
∂U
∂ξ

∂ϕ

∂s
+

∂U
∂xα

dxα

ds
,

(throughout this paper the dummy index convention is understood). This relation shows that, indeed, along C, U
does not vary too much if C belongs to the hypersurface S (in this case dϕ

ds = 0) but has a large variation if C is not
situated on S . For these reasons, ξ is referred to as the fast variable. Once introduced the fast variable ξ, in order
to apply the double-scale method we must define the equations to which it applies. Thus, let En+1 be an Euclidean
space, let P ∈ En+1 be a current point, let U = U(P ) be the unknown vector function U = (U1, U2, ..., UN ),
solution of the first-order semilinear PDE

Hα(U(P ), P )
∂U
∂yα

= h(U(P ), P ), (α = 0, 1, 2, ..., n) (2.3)

where h = (h1, h2, ..., hN )T is a column vector, yα are the Cartesian coordinates of P and Hα are n+1 square
matrices of the N × N type. Denote by HαA

B , (A,B = 1, 2, ..., N) a real function defined on En+1 which is a
current entry of Hα. We say that (2.3) is a nonlinear hyperbolic equation if the n+1 matrices Hα endow En+1 with
a hyperbolic structure at the current point P ∈ En+1, i.e. if the following two conditions are satisfied (see (9)): 1)
there exists a direction v ≡ vα(P ), such that detA0 6= 0, where A0 = Hαvα; 2) if v, ei, (i = 1, 2, ..., n, ei ≡
eiα, vαvα = 1, vαeiα = 0, eα

i ejα = δij) is an orthonormal base of En+1 at P for every direction n ≡ nj of the
n-dimensional subspace of En+1 generated by the base ei (orthogonal to v), then the matrix

An = A0−1Hαeiαni (2.4)

possesses N linearly-independent left and right eigenvectors lA and rA, respectively, corresponding to the real
eigenvalue λA of multiplicity mA, i.e.

(An(U)− λ(A)I)dA = 0, lA(An(U)− λ(A)I) = 0. (2.5)

Since An depends on U and n (n being arbitrary in En), this means that the eigenvalues and eigenvectors also
depend on U and n. This is why we write e.g. λ(A)(U,n). The index n of An remainds the vector n and not
the dimension of the Euclidean space En. The superscript ”A” in λ(A) is not related to the matrix A but to the
multiplicity mA.
The above definition of nonlinear hyperbolicity generalizes the definition from the case of linear or affine hyper-
bolic PDEs, where Hα and h do not depend on U. It preserves the fact that the Cauchy problem for (2.3) is
well-posed. Indeed, condition 1) ensures the invertibility of A0 and, therefore, the possibility to write (2.3) in the
form

Ut + AiUxi = B(U, xα), . (2.6)

where
x0 = t ≡ yαvα, xi = yαeiα, Ai(U, xα) = A0−1Hαeiα, B(U, xα) = A0−1h. (2.7)

The form (2.6) is obtained by multiplying (2.3) by A0−1 (which exists, by virtue of condition 1)).
In applications, one encounters equations of the form (2.3). Therefore, in order to be sure that the machinery of
hyperbolic PDEs’s theory works, it is necessary to show that all geometric and analytic quantities occurring in the
definition of the nonlinear hyperbolic PDEs can be defined for each concrete situation.
In Section 3 we present a particular form of equation (2.3). It occurs in thermodynamics of rheological media,
namely the Maxwell media. In this case, x0 = t, A0 , i.e. the matrix coefficient of ∂U

∂t , is A0 = I (the unit
matrix), N = 10, n = 3, x1, x2, x3 are the space variables, v = e0 and has the coordinates e0α, ei have the
coordinates eiα, eαβ = δαβ , δαβ = 0 for α 6= β, δαβ = 1 for α = β ; α, β = 0, 1, 2, 3; i = 1, 2, 3. In this
way, {e0, e1, e2, e3} is a basis in the Euclidean space E4, and, in the Euclidean space E3, it corresponds to the
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canonical basis. Hence, for our concrete situations, (2.6) is a nonlinear hyperbolic equation.
The matrix An follows defined by An = A0−1H1n1 + A0−1H2n2 + A0−1H3n3, or, taking into account (2.7)
equivalently by An = A1n1 + A2n2 + A3n3. Moreover, in (1) it was found that, the eigenvalues are real,
indeed, while the eigenvectors are linearly independent. Further n is chosen to be just the unit vector normal to
that hypersurface S (improperly called wavefront)

ϕ(t, x1, x2, x3) = 0, (2.8)

which was supposed to be characterized by the fact that the solution U of (2.6) varies steeply across it. Then (2.8)

implies that along S we have dϕ
dt = 0, implying ∂ϕ

∂t +v · gradϕ = 0, or equivalently,
∂ϕ
∂t

|gradϕ| +v · gradϕ
|gradϕ| = 0.

Obviously, gradϕ
|gradϕ| = n, such that the previous equality reads

∂ϕ
∂t

|gradϕ| + v · n = 0. Introducing the notations

λ = −
∂ϕ
∂t

|gradϕ| , Λi(U,n) =
∂Ψ
∂ϕi

, where ϕi =
∂ϕ

∂xi

and
Ψ(xα,

∂ϕ

∂xα
) ≡ ∂ϕ

∂t
+ λ|gradϕ|, (2.9)

we have
λ(U,n) = v · n, such that λ = viΛi, (2.10)

where λ is called the velocity normal to the progressive wave and Λ, of coordinates Λi, the radial velocity.

These quantities play an important role in applying the double-scale method.

Since the closed-form solutions of nonlinear PDEs are rare, usually the solution is looked for in the form of an
asymptotic expansion with respect to an asymptotic sequence of powers of some small parameter. This expansion
is called the asymptotic solution of the PDE. In particular, in nonlinear hyperbolic equations ω is related to the
thickness of internal layers, across which the solution varies steeply. Correspondingly, a new independent (fast)
variable ξ is defined that models just this fast variation across the internal layers situated near some surfaces S
and the slow variation along S . The asymptotic method involving ξ is known as the double-scale method (2). The
solution in the form of an asymptotic series it yields is referred to as the asymptotic wave. In this way through
the fast variable ξ, the mathematical treatment of asymptotic waves relates facts in singular perturbation theory (to
which the double-scale method belongs) to hyperbolic PDEs theory. Apart from this peculiarity, the application
of the double-scale method is standard: the solution U(xα, ξ) is written as an asymptotic power series of the
small parameter, the coefficients Ui being functions of xα and ξ. Introducing the series in the equations, after the
matching of the series in the right-and left-hand sides, the equations for Ui, with i ≥ 1 are obtained. They are
called equations of order i and Ui are the asymptotic approximations of order i. A special meaning must be done
for U0. It is taken as the initial, unperturbed state, where no small parameter occurs, and, so, no S exists.
In the following sections we deal with an application of double scale method to the study of asymptotic waves in
a particular rheological medium which undergoes elastic and anelastic deformations.

3 Inelastic Deformations

In some previous papers (25)-(31), a theory for mechanical phenomena, which is based on the thermodynamics of
irreversible processes, was developed. In particular in (27), it was assumed that several microscopic phenomena
occur, which give rise to inelastic deformations, such that the tensor of the total strain εαβ , reads εαβ = εel

αβ +εin
αβ ,

where the tensors εel
αβ and εin

αβ describe the elastic and inelastic strains, respectively. Contrary to the elastic strains,
the inelastic deformations are due to the effects of the lattice defects (e.g. slip, dislocations) and to the influence
of microscopic stress fields, surrounding imperfections in the medium and giving rise to memory effects on the
mechanical and thermodynamic behavior of the medium. Experiments show that there exist several types of such
independent and simultaneous contributions to the inelastic strain, so that, assuming that they are of n different
types, then

εin
αβ =

n∑

k=1

ε
(k)
αβ . (3.1)

Remark that n is arbitrary as postulated by Kluitenberg (27).
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The contributions ε
(k)
αβ can be introduced as tensorial internal variables in the expression of the specific entropy

of the system s = s(e, ε(el)
αβ , ε

(1)
αβ , ..., ε

(n)
αβ ), where e is the specific internal energy. In this theory εαβ is assumed

to be small, i. e. εik = 1
2

(
∂

∂xk ui + ∂
∂xi uk

)
, where ui is the i-th component of the displacement field u and xi is

the i-th component of the position vector x in Eulerian coordinates in a Cartesian reference frame. The first law of
thermodynamics reads

ρ
de

dt
= −divJ(q) +

3∑

α,β=1

ταβ
dεαβ

dt
, (3.2)

where ρ is the mass density of the body, J(q) is the heat flux and ταβ is the Cauchy mechanical stress tensor. The
tensors ταβ , εαβ , ε

(el)
αβ , ε

(k)
αβ (k = 1, 2, ..., n) are assumed to be symmetric. According to the usual procedure

of non equilibrium thermodynamics, by virtue of the entropy principle, in (27) the phenomenological equations
for anisotropic and isotropic media were obtained. In particular, in the case of isotropic media, assuming that
the equations of state may be linearized and the phenomenological coefficients may be regarded as constants, an
explicit form for the stress strain relation was derived, which has the form of a linear relation among the deviators
of the mechanical stress tensor ταβ , the first n derivatives with respect to time of this tensor, the tensor of total
strain εαβ and the first n + 1 derivatives with respect to the time of the tensor of total strain, where n is the number
of phenomena that give rise to inelastic deformations. The well-known Burgers equation is a special case of this
relation for n = 2, i.e. when only two internal variables of mechanical origin are taken into consideration. The
rheological relations for ordinary viscous fluids, for thermoelastic media and for Maxwell, Kelvin (Voigt), Jeffreys,
Poyting-Thomson, Prandtl-Reuss, Bingham, Saint Venant and Hooke media are special cases of these more general
mentioned above relations too (27)-(31).

4 Equations Governing the Motion in Maxwell Media

Assume that only one microscopic phenomenon gives rise to inelastic strain, Then, in the isotropic case, the
stress strain relations describing the behaviour of anelastic media of order one (n = 1, i.e. when only one tensorial
internal variable of mechanical origin is taken into consideration) without memory (Maxwell media), can be written
in the following form (see (1)).

R
(τ)
(d)0

P̃ik +
d

dt
P̃ik + R

(ε)
(d)1

d

dt
ε̃ik = 0, R

(τ)
(v)0

P ′ +
d

dt
P ′ + R

(ε)
(v)1

d

dt
ε = 0, (4.1)

where P̃ik and P are the deviator and the scalar part of the mechanical pressure tensor Pik and ε̃ik and ε are the
deviator and the scalar part of the strain tensor εik, respectively. We define Pik in terms of the symmetric Cauchy
stress tensor Pik = −τik (i, k = 1, 2, 3), and

P̃ik = Pik − 1
3
Pssδik, P =

1
3
Pss, Pss = trP,

Pik = P̃ik + Pδik, P̃ss = 0, P ′ = P − P0 = −(τ − τ0),

where τ0 and P0 are the scalar parts of τik and Pik, respectively, in a state of thermodynamic equilibrium. The
coefficients in (4.1) satisfy the relations

R
(τ)
(d)0

= a(1,1)η(1,1)
s ≥ 0, R

(ε)
(d)1

= a(1,1) ≥ 0,

R
(τ)
(v)0

= b(1,1)η(1,1)
v ≥ 0, R

(ε)
(v)1

= b(1,1) ≥ 0, (4.2)

where a(1,1) and b(1,1) are scalar constants which occur in the equation of state, while the coefficients η
(1,1)
s and

η
(1,1)
v are called the phenomenological coefficients and represent fluidities.

In (1) the propagation of asymptotic waves was studied using a general method devoted to oscillatory approximate
solutions for first order quasilinear hyperbolic systems. In particular, the evolution equation for the first perturba-
tion term was derived and the equation of the wavefront was determined. In this paper some results are revised
from the point of view of the double-scale method, some others are new. An application to the one-dimensional
case is carried out.
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The balance equations for the mass density and momentum in the case of Maxwell media read

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0, (i = 1, 2, 3) (4.3)

ρ

(
∂

∂t
vi + vk

∂

∂xk
vi

)
+

∂

∂xk
P̃ik +

∂

∂xi
P = 0. (4.4)

Here vi = dui

dt is the i-th component of the velocity field. Then, equations (4.1) become

a(1,1)η
(1,1)
(s) P̃ik +

∂

∂t
P̃ik + vp

∂

∂xp
P̃ik +

1
2
a(1,1)

(
∂

∂xk
vi +

∂

∂xi
vk

)
− 1

3
a(1,1) ∂

∂xp
vpδik = 0, (4.5)

b(1,1)η
(1,1)
(v) P ′ +

∂

∂t
P ′ + vp

∂

∂xp
P ′ +

1
3
b(1,1) ∂

∂xp
vp = 0, (4.6)

where the relation dεik

dt = 1
2

(
∂vi

∂xk
+ ∂vk

∂xi

)
is used.

Eqs. (4.3)-(4.6) form a system of ten quasi-linear first order PDEs for mass density, three components of the
velocity field, five independent components of P̃ik and the scalar part of the mechanical pressure tensor. Let

U =
(

ρ, v1, v2, v3, P̃11, P̃12, P̃13, P̃22, P̃23, P ′
)T

,

B =
(

0, 0, 0, 0, P̃ ∗11, P̃ ∗12, P̃ ∗13, P̃ ∗22, P̃ ∗23, P ′∗
)T

, (4.7)

Uα =
∂U
∂xα

, P̃ ∗ik = −a(1,1)η
(1,1)
(s) P̃ik, P ′∗ = −b(1,1)η

(1,1)
(v) P ′,

where α = 0, 1, 2, 3 and i, k = 1, 2, 3. Then, the system (4.3)-(4.6) becomes a particular form of (2.6), namely

Aα(U)
∂U
∂xα

= B(U), (α = 0, 1, 2, 3) (4.8)

where n=3, x0 = t, A0(U) = I is the identity matrix, while the 10 × 10 square matrices A1(U), A2(U) and
A3(U) are

A1 =




v1 ρ 0 0 0 0 0 0 0 0
0 v1 0 0 1

ρ 0 0 0 0 1
ρ

0 0 v1 0 0 1
ρ 0 0 0 0

0 0 0 v1 0 0 1
ρ 0 0 0

0 2
3a 0 0 v1 0 0 0 0 0

0 0 1
2a 0 0 v1 0 0 0 0

0 0 0 1
2a 0 0 v1 0 0 0

0 − 1
3a 0 0 0 0 0 v1 0 0

0 0 0 0 0 0 0 0 v1 0
0 1

3b 0 0 0 0 0 0 0 v1




,

A2 =




v2 0 ρ 0 0 0 0 0 0 0
0 v2 0 0 0 1

ρ 0 0 0 0
0 0 v2 0 0 0 0 1

ρ 0 1
ρ

0 0 0 v2 0 0 0 0 1
ρ 0

0 0 − 1
3a 0 v2 0 0 0 0 0

0 1
2a 0 0 0 v2 0 0 0 0

0 0 0 0 0 0 v2 0 0 0
0 0 2

3a 0 0 0 0 v2 0 0
0 0 0 1

2a 0 0 0 0 v2 0
0 0 1

3b 0 0 0 0 0 0 v2




,
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A3 =




v3 0 0 ρ 0 0 0 0 0 0
0 v3 0 0 0 0 1

ρ 0 0 0
0 0 v3 0 0 0 0 0 1

ρ 0
0 0 0 v3 − 1

ρ 0 0 − 1
ρ 0 1

ρ

0 0 0 − 1
3a v3 0 0 0 0 0

0 0 0 0 0 v3 0 0 0 0
0 1

2a 0 0 0 0 v3 0 0 0
0 0 0 − 1

3a 0 0 0 v3 0 0
0 0 1

2a 0 0 0 0 0 v3 0
0 0 0 1

3b 0 0 0 0 0 v3




.

Consequently the motion in Maxwell media is governed by the Cauchy problem for the system (2.3), where U and
B are defined by (4.7).

Before performing the series expansion of the solution let us determine the matrix An and its eigenvalues and
eigenvectors.

5 The Eigenvalues and Eigenvectors of the Matrix An

The expression (2.4) for An(U) becomes

An(U) = Aini =



vn ρn1 ρn2 ρn3 0 0 0 0 0 0
0 vn 0 0 n1

ρ
n2
ρ

n3
ρ 0 0 n1

ρ

0 0 vn 0 0 n1
ρ 0 n2

ρ
n3
ρ

n2
ρ

0 0 0 vn −n3
ρ 0 n1

ρ −n3
ρ

n2
ρ

n3
ρ

0 2
3 a(1,1)n1 −a(1,1)

3 n2 −a(1,1)

3 n3 vn 0 0 0 0 0
0 a(1,1)

2 n2
a(1,1)

2 n1 0 0 vn 0 0 0 0
0 a(1,1)

2 n3 0 a(1,1)

2 n1 0 0 vn 0 0 0
0 −a(1,1)

3 n1
2
3 a(1,1)n2 −a(1,1)

3 n3 0 0 0 vn 0 0
0 0 a(1,1)

2 n3
a(1,1)

2 n2 0 0 0 0 vn 0
0 b(1,1)

3 n1
b(1,1)

3 n2
b(1,1)

3 n3 0 0 0 0 0 vn




.

In (30) the eigenvalues of An(U) were found to be

λ1 = v · n = vn, λ
(±)
2 = vn ±

√
a(1,1)

2ρ
, λ

(±)
3 = vn ±

√
2a(1,1) + b(1,1)

3ρ
, (5.1)

where the multiplicity of λ1 is equal to 4, and the multiplicity of each among λ
(+)
2 and λ

(−)
2 is equal to 2. Obviously

λ
(±)
3 are simple eigenvalues. Moreover, the discontinuity waves which are propagated with velocities satisfying

(5.1)1 and (5.1)2 obey the Lax-Boillat exceptionality condition, while the discontinuty waves whose velocities of
propagation λ

(±)
3 do not possess this property after some time generate shock waves ((30)).

Now, in this paper we see that the left eigenvectors l and the right eigenvectors r corresponding to λ
(±)
2 or λ

(±)
3

have the form

l ≡
(

0,
6(vn − λ)2ρ− 3a

n1n3(a + 2b)
− n2

2 + n2
3

n1n3
,
n2

n3
, 1,

{−6(vn − λ)2ρ + 3a}
ρn3(a + 2b)(vn − λ)

+
n2

2 + 2n2
3

ρ(vn − λ)n3
,

n2{−6(vn − λ)2ρ + 3a}
ρn1n3(a + 2b)(vn − λ)

+
n2(n2

2 + n2
3 − n2

1)
ρn1n3(vn − λ)

,

n3{−6(vn − λ)2ρ + 3a}
ρn1n3(a + 2b)(vn − λ)

+
(n2

2 + n2
3 − n2

1)
ρn1(vn − λ)

,
n2

3 − n2
2

ρn3(vn − λ)
,
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− 2n2

ρ(vn − λ)
,− n1{6(vn − λ)2ρ− 3a}

ρn1n3(a + 2b)(vn − λ)

)
, (5.2)

r ≡
(

3ρ{−2ρ(vn − λ)2 + a}
n1(a + 2b)(vn − λ)

, 1,
{6ρ(vn − λ)2 − 3a}

n1n2(a + 2b)
− (n2

1 + n2
3)

n1n2
,
n3

n1
,

− an1

vn − λ
+
{2aρ(vn − λ)2 − a2}
n1(a + 2b)(vn − λ)

,
a(a + 2b)(n2

3 + n2
1 − n2

2)− 6aρ(vn − λ)2 + 3a2

2n2(a + 2b)(vn − λ)
,

− an3

vn − λ
,
2a{−2ρ(vn − λ)2 + a}

n1(a + 2b)(vn − λ)
+

a(n2
3 + n2

1)
n1(vn − λ)

,

3an3{−2ρ(vn − λ)2 + a}
2n1n2(a + 2b)(vn − λ)

+
an3(n2

3 − n2
2 + n2

1)
2n1n2(vn − λ)

,
b{−2ρ(vn − λ)2 + a}
n1(a + 2b)(vn − λ)

)
(5.3)

such that they satisfy the relation

l · r =
2

n3n1
. (5.4)

This condition ensures the hyperbolity of the system (2.6) in its particular form (4.8) corresponding to our case of
interest. Here, a and b stand for a(1,1) and b(1,1).
We are interested only in the progressive fast longitudinal wave traveling to the right with velocity λ

(+)
3 . Denoting

γ =
√

2a(1,1)+b(1,1)

3ρ we have

λ
(+)
3 = vn + γ and the corresponding eigenvectors (5.2) and (5.3) read

l(+)
3 =

1
γ

(
0, γ

n
n3

,
(n2

1 − n2
3)

ρn3
, 2

n1n2

ρn3
, 2

n1

ρ
,
n2

2 − n2
3

ρn3
, 2

n2

ρ
,

1
ρn3

)
, (5.5)

r(+)
3 =

1
γ

(
ρ

n1
, γ

n
n1

,
a

3
(3n2

1 − 1)
n1

, an2, an3,
a

3
(3n2

2 − 1)
n1

, a
n2n3

n1
,

b

3n1

)
. (5.6)

6 Equations of First and Second Asymptotic Approximation

Let us now apply the double-scale method to (2.3) written in its particular form (4.8). To this aim all the quantities,
depending on xα, are considered as depending on xα and ξ. Consequently, the derivative ∂

∂xα must be replaced by
∂

∂xα + ∂
∂ξ

∂ξ
∂xα , i. e. by ∂

∂xα + 1
ω

∂
∂ξ

∂ϕ
∂xα . Then, let us choose U = U(xα, ξ) in the form of an asymptotic series

with respect to the asymptotic sequence 1, ω−1, ω−2, ..., as ω−1 → 0, namely

U(xα, ξ) ∼ U0(xα, ξ) + ω−1U1(xα, ξ) + ω−2U2(xα, ξ) + ... (6.1)

and introduce (6.1) in (4.8) to obtain the following equations of first and second asymptotic approximation of (4.8)

Aα
0

∂ϕ

∂xα

∂U1

∂ξ
= 0, (6.2)

Aα
0

∂ϕ

∂xα

∂U2

∂ξ
= −

[
Aα

0

∂U1

∂xα
+∇Aα

0 U1

(
∂U1

∂ξ

∂ϕ

∂xα

)
− (∇B0)U1

]
, (6.3)

where U0 =
(

ρ0, 0, 0, 0, 0, 0, 0, 0, 0, P 0
)

is the unperturbed constant solution, Aα
0 = Aα(U0) and B0 =

B(U0). Equation (6.2) also reads

(A0n − λI)
∂U1

∂ξ
= 0, where A0n = An(U0), (6.4)

and shows that ∂U1

∂ξ can be taken as equal to the right-eigenvector r of A0n, corresponding to some eigenvalue λ.

By integration, it follows that U1(xα, ξ) has the form

U1(xα, ξ) = u(xα, ξ) r(U0,n) + v1(xα). (6.5)
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It can be proved that v1 can be taken zero (see (7)). Consequently, in order to determine U1 we must determine u.

Remark that u is a function which can be determined from the equation of the second approximation (6.3). More
precisely, let us write (6.3) in the form

Aα
0

∂ϕ

∂xα

∂U2

∂ξ
= −s1, or, equivalently, (A0n − λI)

∂U2

∂ξ
= −s1,

and multiply this last equation by the left eigenvector l0 (corresponding to Uo) to obtain

0 = −l0 · s1. (6.6)

Since s1 depends on U1, therefore on u, it follows that equation (6.6) yields u. However, defined as the right-hand
side of (6.3), s1 depends on ϕ, i. e. it depends on the equation of the wavefront S , which, so far is not determined.
This is why, first we must determine a first approximation for S . This was minutely done in (1) by using the Boillat
method (7). Among the 10 eigenvalues λ, we choose λ

(+)
3 , which is simple, corresponds to the fastest progressive

longitudinal wave traveling to the right. Eq. (6.4) shows that ∂U1

∂ξ is a right eigenvector of A0n corresponding to

the eigenvalue λ
(+)
3 . For various other physical and related mathematical aspects of asymptotic waves the reader

is kindly referred to (31)-(35).

7 First Approximation of Wavefront and of U

Let the superscript ”o ” stand for values taken for U0 and denote φi = ∂ϕ
∂xi . Then for the PDE Ψ0 = 0 (where Ψ

is defined by (2.9)), it follows the characteristic equations dxi

dσ = ∂Ψ0

∂φi , dφi

dσ = −∂Ψ0

∂xi , i = 1, 2, 3, where σ = x0 = t

is the time along the rays. Then taking into account the expression of U0 from (4.7) and λ from (2.9), it follows
that φi and so, n, are constant along the characteristic rays. Next, from the equality (2.9) and taking into account
that

Λi(U,n) =
∂Ψ
∂φi

= λni +
∂λ

∂ni
−

(
n · ∂λ

∂n

)
ni = λni + vi − (nkvk)ni,

hence, Λ(U,n) = v − (vn − λ)n.
Then x = x|t=0 − Λ0t, and, since the Jacobian J = θ2 of the transformation x → x|t=0 is nonvanishing, it
follows that, in the first approximation, ϕ(t, xi) = ϕ0(xi − Λ0

i t), where ϕ0 is the value of ϕ at t = 0.
The equation (6.6) reads

∂u

∂σ
+ (∇Ψ · r)0 u

∂u

∂ξ
+

1
θ

∂

∂σ
u = ν0u, (7.1)

where
ν =

l · ∇B · r
l · r . (7.2)

Using the general expressions (5.2) and (5.3) for l and r we obtain for all these eigenvectors ν is given by

ν = −

(
2(a(1,1))2η(1,1)

s + (b(1,1))2η(1,1)
v

)
n1

2(2a(1,1) + b(1,1))
, (7.3)

and, furthermore, it is independent on the unperturbed state U0.
For λ = λ

(+)
3 it follows that Λ0 = γ0n0 and in (7.1) straightforward computations give

(
∇Ψ · r(+)

3

)0

= |gradϕ|0
(
∇λ

(+)
3 · r(+)

3

)0

= |gradϕ|0 1
2n1

,

where ∇λ
(+)
3 =

∂λ
(+)
3

∂U
≡

(
− 1

2ρ
γ, n1, n2, n3, 0, 0, 0, 0, 0, 0

)
.

Let w = ν0σ, u = v
θ ew and denote k =

∫ σ

0
0.5|gradϕ|0 ew

θ dσ.

By using this transformation of variables eq. (7.1) can be reduced to an equation of the type ∂v
∂k + v ∂v

∂ξ = 0.
Therefore, for the initial condition u|t=0 = F (x0

i , ξ
0), where ξ0 = ωϕ0(x0

i ) it follows v = F (x0
i , ξ − vk). This

ends the determination of u and, so, of U1 in the caxe of λ = λ
(+)
3 .
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8 One-Dimensional Case

Consider the system of equations (4.3)-(4.6). Assume that v2 = v3 = 0, x2 = x3 = 0 and that the involved
physical quantities depend only on x1, denoted by x. Denote v1(x, t) by v. Denote by Dik and P the components
of the deviator and the scalar part of the mechanical pressure tensor Pik, respectively. Finally, let a and b stand for
a(1,1)and b(1,1) and let η1 and η2 stand for η

(1,1)
s and η

(1,1)
v , respectively. Then the system (4.3)-(4.6) becomes

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (8.1)

∂v

∂t
+ v

∂v

∂x
+

1
ρ

∂D11

∂x
+

1
ρ

∂P

∂x
= 0, (8.2)

∂D21

∂x
= 0, (8.3)

∂D31

∂x
= 0, (8.4)

∂D11

∂t
+ v

∂D11

∂x
+

2
3
a

∂v

∂x
+ aη1D11 = 0, (8.5)

∂D12

∂t
+ v

∂D12

∂x
+ aη1D12 = 0, (8.6)

∂D13

∂t
+ v

∂D13

∂x
+ aη1D13 = 0, (8.7)

∂D22

∂t
+ v

∂D22

∂x
− 1

3
a

∂v

∂x
+ aη1D22 = 0, (8.8)

∂D23

∂t
+ v

∂D23

∂x
+ aη1D23 = 0, (8.9)

∂P

∂t
+ v

∂P

∂x
+

1
3
b
∂v

∂x
+ bη2P = 0, (8.10)

where Dik = Dki.

Thus, equs. (8.3) and (8.4) show that

D21 = f(t), D31 = f1(t),

where f and f1 are functions of t. Therefore, we have

D12 = e−aη1t + D0
12, D13 = e−aη1t + D0

13.

Remark that, due to the presence of a tensorial internal variable, there is a response time of the medium possessing
mechanical relaxation properties. Then, the remained system reads

Ut + AUx = B,

where
U = (ρ, v, D11, D22, D23, P )T , B = (0, 0,−aη1D11,−aη1D22,−aη1D23,−bη2P ),
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A =




v ρ 0 0 0 0
0 v 1

ρ 0 0 1
ρ

0 2
3a v 0 0 0

0 − 1
3a 0 v 0 0

0 0 0 0 v 0
0 b

3 0 0 0 v




which has the eigenvalues:

• λ1 = v (of multiplicity equal to 4);

• the simple eigenvalues λ
(±)
3 = v ± γ. The right eigenvectors corresponding to λ

(±)
3 can be taken as

r(±)
3 = (ρ,−(v − λ

(±)
3 ),

2
3
a,−a

3
, 0, (v − λ

(±)
3 )2ρ− 2

3
a)T . (8.11)

The left eigenvectors are taken as

l(±)
3 =

(
0,−

(
v − λ

(±)
3

)
,

1
ρ
, 0, 0,

1
ρ

)
. (8.12)

This last result formally follows from (5.2) but multiplied by n3 which is null. Therefore, direct computations
were necessary to be done to derive eqs.(8.11) and (8.12). But, formally it is possible to obtain eq. (8.11) from
(5.3) multiplied by vn − λ

(±)
3 .

Expressions (8.11) and (8.12) are true for every λ.
Let us consider only the longitudinal wave traveling in the right direction and the case where the propagation is in
a constant state U0, i. e.

λ
(+)
3 = v + γ0 and U0 = (ρ0, 0, 0, 0, 0, P0),

where ρ0 and P0 are constants and γ0 = γ(U0). The characteristic rays are

x = σ, x = x0 + λ
(+)
3 (U0)σ, (8.13)

whence the wave front is
ϕ(t, x) = x(t)− λ

(+)
3 σ + x0, (8.14)

implying ϕx = 1. Eqs. (8.13) and (8.14) are true for all λ.

In order to compute the terms in (7.1) we start with

∇Ψ · r(+)
3 = ϕx(∇λ

(+)
3 · r(+)

3 ).

Taking into account the expression of λ
(+)
3 for U0, we have

∇λ
(+)
3 =

(
∂λ

(+)
3

∂ρ
,
∂λ

(+)
3

∂v
,
∂λ

(+)
3

∂D11
,
∂λ

(+)
3

∂D22
,
∂λ

(+)
3

∂D23
,
∂λ

(+)
3

∂P

)
(8.15)

(∇λ
(+)
3 )0 =

(
− γ0

2ρ0
, 1, 0, 0, 0, 0

)
, (8.16)

where γ0 =
√

2a+b
3ρ0

.
Hence, (

∇λ
(+)
3 · r(+)

3

)0

=
1
2
γ0

and, so,

(∇Ψ · r(+)
3 )0 =

1
2
γ0.
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Further, a direct easy computation gives

(
l
(+)
3 · ∇B · r(+)

3

)0

= − 1
3ρ0

[2(a)2η1 + (b)2η2]

and (
l(+)
3 · r(+)

3

)0

= 2γ0,

implying

ν0 = − [2(a)2η1 + (b)2η2]
2(2a + b)

,

which in accordance with the result (7.3).

This example, in spite of its simplicity, shows just profond features of the influence of a tensorial internal variable
on the behaviour of the medium motion.
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