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Beams on Foundation, Winkler Bedding or Halfspace –  
a Comparison 
 
 F.D. Fischer, E. Gamsjäger 
 
 
Beams on a foundation as rails on the ground can be analysed along Winkler's concept introducing a bedding 
coefficient k. In reality most beams are supported by a halfspace which simplest can be described by overall 
elastic properties. Exact relations between k and the elastic properties are presented for infinite beams as rails. 
 
 
1 Introduction and Problem Description 
 
Winkler (1871) presented nearly 140 years ago a book on "Der Eisenbahn-Oberbau" (which can be translated as 
"Constructing a Permanent Way of Railroad"). He suggested to analyse a rail as an infinite beam with the 
stiffness rE J  ( rE  Young's modulus, J moment of inertia of the cross-section of the beam) subjected to a single 
load P at x = 0 and supported by a foundation being a continuous bedding transferring a line load – kw with k 
being the bedding coefficient and w the displacement of the rail at a position x.  
 
Relations for the maximum moment max,bM  and the maximum displacement max,bw  can be taken from the open 
literature, e. g. from Hetenyi (1946) or Gummert and Reckling (1986) and read as 

 

max,b max ,b
0.353 ,  0.353 .

2 4
P P Pw M P

k k
α

α
= = = = l

l
         (1) 

 
The quantity ( )( )r

1/ 4/ 4k E Jα =  has the dimension (1 / length). The "fundamental length" defined as 

 ( ) ( )1/ 4
r / 2 / 2E J k α= =l  can be introduced and is widely used in the open literature. It is important to note 

that l  does not include the factor 4, which has been the origin of several errors. A further result is the length 
L /π α=  along which (in the interval / 2 / 2L x L− ≤ ≤ ) the total load P is equilibrated by the bedding support. 
This means that outside the interval L a self-equilibrating system of compressive and tension contact forces exist. 
Winkler's solution has some shortcomings for the actual wheel/rail/bedding configuration, namely: 
 

• In reality a rail, represented as an infinite beam, is supported by a half space, which means that a three-
dimensional configuration exists. 

• The real bedding cannot transmit tension forces. 
 
We concentrate on the first aspect only. Finally we will relate the quantity k to  and E ν  and check the 
applicability of Winkler's theory. We would like to mention that Biot (1937) dealt with this problem more than 
70 years ago. Later Hetenyi (1946) discussed Biot's results in his book. However, a generally applicable 
conclusion was not given in both works. One of the reasons was obviously the lack of computer facilities at this 
time. The main thrust of this work is to present a complete solution relating the bedding concept with the 
halfspace concept. This topic is of high practical relevance.  
 
2 Problem Solution 
 
Biot (1937) introduced a width 2b of the beam in the transversal horizontal direction (y-direction) and a quantity 
C. Depending on the stiffness of the cross-section of the beam the pressure distribution transferred by the beam 
in transversal direction to the halfspace varies from the case of a uniform pressure (C = 1) to a pressure 
distribution according to a uniform deflection (C = 1.13). Finally a "fundamental length" c was introduced as  
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Biot found by a Fourier-integral analysis the following relation for the maximum Moment max,bM  as 
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with /bz cβ = .  
 
The function ( )ψ β  stems from a relation between the resulting force [ ]/Q N m , transferred by the beam to the 
halfspace, and the average displacement w  in the interval b y b− ≤ ≤  at a distinct length coordinate x. Here the 
derivation of Biot is replaced by the relation 
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The function ( )f β  can be numerically calculated and interpolated as 
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This function shows a logarithmic singularity at 0β = . 
The function ( )ψ β  follows then as 
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One can imagine that handling of such integrals as (4) and in particular of the integral M ( / )I b c in (3) without a 
computer can be nearly an unsolvable task. 
 
If we look for a bedding coefficient k, which would lead to the same maximum moment as max,bM , (3), then we 

have to equalize ( )21 with (3) after inserting of (5), (6) and obtain 
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The corresponding relation for maxw can be taken again from Biot after omitting some mistakes as 
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The function ( / )wI b c  is a further integral which Biot and his team tried to evaluate by hand. 
One can now calculate the ratio max max ,b/w w  with max,bw  being the maximum displacement according to the 

Winkler concept, see ( )11 , with k expressed by E′  and depending on /b c  due to (7). After some analysis we 
find 
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3 Discussion and Conclusion 
 
Biot (1937) and later Hetenyi (1946) have come to the conclusion that k can be replaced by E to obtain the same 
value for the moment maxM  either by the Winkler concept with k as bedding coefficient or that for an elastic 
halfspace with E as Young's modulus. This operation makes necessary an evaluation of the integral ( )/MI b c  

and a following fitting of ( )/MI b c . Biot reported the relation ( )0.8311.043 /MI c b= ⋅ , which is, however, not a 
correct fitting! Specifically for small values of the ratio (b/c) Biot's fitting would run to infinity. We performed a 
fitting and found MI  = ( )0.089071.005 / .b c  Furthermore, the quantity b has to be replaced by c in equation (37) 
of  Biot (1937) . 
  
Winkler’s concept and the halfspace model is compared by means of the following figures. Figure 1 shows the 
relation /k E′  as function of b/c according to (7). /k E′  obtains the value 1 for b/c ~ 0.80. Since the integral 

( )/MI b c  tends to a constant value of 1.18208, the rather simple relation / ' ~ 0.79 /k E b c⋅  can be used for 
larger values of b/c. The ratio max max ,b/w w  obtains already for b/c << 1 the value of ~ 1.0 and increases rather 
slowly with increasing b/c to 2.0 for b/c = 10. The function max max,/ bw w  is depicted in Fig. 2. In other words, 
the halfspace reacts softer compared to the Winkler bedding for a given value of the maximum moment max,bM . 
 
Figure 2.: 
 
If one investigates a rail, e.g. the rail UIC 60, one finds for rE J = 6.38.106 Nm2. Typical values of ,E v  for the 
halfspace are reported from the literature in Fischer et al. (2005) and Fischer et al. (2008) as E ~ 130.106 N/m2, 

0.2v = . For a sleeper of the length b = 2.4 m and C ~ 1 one finds the "fundamental length" c, see (2), as 0.28 m 
and b/c ~ 8.5. For a much weaker ground with E ~ 13.106 N/m2 the ratio b/c obtains ~ 4.0. The ratio / 'k E  
ranges between 3.5 and 6.5 and does obtain the value of ~ 1.0, as one would assume from Biot's and Hetenyi's 
work.  
If one is interested in the spring constant of a wheel/rail configuration, see e.g. Fischer et al. (2005) and (2008), 
one finds that for a given maximum moment max,bM  in the rail the Winkler bedding concept yields a 1.5 to 1.8 
times higher spring constant than the halfspace concept. 
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Figure 1. The Winkler bedding constant k, calculated from the elastic constants of a halfspace for a given 
maximum moment of a bedded beam subjected to a single load. 
 
 

 
Figure 2. Ratio of the maximum deflection maxw (calculated from the halfspace concept) to max,bw  (calculated 
from Winkler’s concept) for a given maximum moment of a bedded beam subjected to a single load. 
 


