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Harmonic Wavelet Analysis of Nonlinear Waves

C. Cattani

A method based on a multiscale (wavelet) decomposition is proposed for the analysis of nonlinear waves in hyper-
elastic materials. The wave solution is approximated by a discrete series expansion with respect to the harmonic
wavelets, and it is compared with the solution obtained by the method of successive approximations.

1 Introduction

This paper deals with the analysis by harmonic wavelets (Cattani, 2005; Muniandy and Moroz, 1997; Newland,
1993) of the nonlinear waves arising in hyperalistic materials (see e.g. Achenbach, 1973; Cattani and Rushchitsky,
2007; Dai and Zhao, 1999; Destrade, 2005; Drumheller, 1998; Germain, 1972; Hudson, 1980; Maugin, 1988,2007;
Porubov and Maugin, 2006; Wasley, 1973; Whitam, 1974). The evolution of an hyperlastic material depends on
the potential which is a function of the three basic invariants of the chosen strain tensor (Green, Almansi, Hencky
or others). Thus the corresponding fundamental equations can be derived from the given potential (Mooney-Rivlin,
Rivlin-Saunders, John, Signorini, etc.) quadratic in the invariants. The cubic potential, proposed by Murnaghan,
(see e.g. Murnaghan, 1951; Cattani and Rushchitsky, 2007) describes the largest class of industrial materials.
From the Murnaghan potential follow some nonlinear equations suitable for studying the evolution of hyperelastic
materials. However, due to their complexity, these equations can be numerically solved only in a few (very special)
simple problems. The most common methods of solutions, based on physical considerations, are the Van der Pol
method and the method of slowly changing amplitudes (see e.g. Cattani and Rushchitsky, 2007; Ratner, 2003).
However, both assume strong constraints on the evolution which are compatible with the nonlinear hypotheses
only under restricted conditions.

In the following, a method based on the multiscale wavelet analysis is proposed for the solution of a nonlinear
equation and compared with the method of successive approximation.

Harmonic wavelets (Cattani, 2005; Muniandy and Moroz, 1997; Newland, 1993) are infinitely differentiable func-
tions, analitically defined, and band-limited in the Fourier domain, thus being an optimal tool for the analysis of
the evolution of localized pulse function. For an initial problem the evolutionary model is completely defined by
the (time) evolution of the coefficients of the series. By using the Petrov-Galerkin method the PDE is transformed
into an equivalent ordinary differential system for the wavelet coefficients. The projection of the operator into a
given scale is performed by using the connection coefficients (Cattani, 2005, 2006; Dahmen, 2001; Latto et. al.,
1992; Lin and Zhou, 2001; Restrepo and Leaf, 1995; Romine, 1997).

The projection, which can be considered like a numerical approximation into a given scale, is one of the most
used methods to describe evolutionary operators, and to find an approximate solution of PDE equations (see e.g.
Amaratunga et. al., 2000; Bacry et. al., 2004; Benhaid, 2007; Cattani 2003, 2003a; Chen et. al., 2002; Muniandy
and Moroz, 1997; Qian and Weiss, 1993).

Due to this multiscale approach the approximation by wavelets is the best one for at least two reasons: the min-
imum set of coefficients (compression) to represent the phenomenon and the direct physical interpretation of its
scale dependence. In each scale the wavelet coefficients and, in particular, the detail coefficients βn

k describe
“local” oscillations. Therefore wavelets seems to be the more expedient tool for studying these problems which
are localized (in time or in frequency) and/or have some discontinuities. Moreover, since the approximation by
wavelets is represented by a combination of uncorrelated functions they seems to be the most suitable tool for the
analysis of nonlinear problems.
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2 Nonlinear Waves in Hyperelastic Materials

In nonlinear hyperelastic isotropic materials (Cattani and Rushchitsky, 2007; Dorfmann and Ogden, 2006; Ger-
main, 1972; Hudson, 1980; Maugin, 1988,2007; Porubov and Maugin, 2006; Villaggio, 1977) the internal energy
is an analytic function of the strain tensor components, and the potential can be written as an analytical function of
the three basic invariants (e.g. Green).

For hyperelastic materials the equations of motion

tik,i + Xk = ρük , (i, k = 1, 2, 3) (1)

are coupled with the Kirchoff stresses tik representation in terms of strain

tik =
∂W

∂uik
(2)

with the Cauchy-Green strain tensor εik given by the displacement u(x, t) = {u1, u2, u3} in the Lagrangian
coordinates xk , k = 1, 2, 3, as

εik =
1
2

(ui,k + uk,i + uh,iuh,k) . (3)

In the linear elasticity theory, the stress tensor is given in the classical form of Hooke’s law

tik = λεhhδik + 2µεik

and the strain tensor is linearly dependent on the ui,k.

The nonlinear models instead depend on the choice of the potential W = W (uik) as a function of the invariants.
By assuming the dependence on the quadratic and cubic main invariants, we have the main nonlinear quadratic and
cubic models. One of the first quadratic models was proposed by Signorini in the 1940’s for incompressible and
compressible materials (such as rubberlike materials), by Mooney in the same years, and in the most general form
in (1951) for incompressible materials by Rivlin and Saunders.

2.1 Murnaghan Potential

The Murnaghan potential is a cubic potential firstly proposed by Murnaghan (Murnaghan, 1951; Cattani and
Rushchitsky, 2007) for the Green strain tensor εik as

W (εik) =
1
2
λ(εmm)2 + µ(εik)2 +

1
3
Aεikεimεkm + B(εik)2εmm +

1
3
C(εmm)3 , (4)

or through the first algebraic invariants Ik of the tensor εik

W (I1, I2, I3) =
1
2
λI2

1 + µI2 +
1
3
AI3 + BI1I2 +

1
3
CI3

1 .

Here λ, µ are the Lamé elastic constants (constants of the second order), A,B, C and are the Murnaghan elastic
constants (constants of the third order).

By using (3) in (4) we get after some simplifications (Cattani and Rushchitsky, 2007)

W =
1
2
λ (um,m)2 +

1
4
µ (ui,k + uk,i)

2

+
(

µ +
1
4
A

)
ui,kum,ium,k +

1
2

(λ + B) um,m (ui,k)2

+
1
12

Aui,kuk,mum,i +
1
2
Bui,kuk,ium,m +

1
3
C (um,m)3 ,

(5)
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so that Eq. (2) gives
tik = µ (ui,k + uk,i) + λuk,kδik

+
(

µ +
1
4
A

)
(ul,iul,k + ui,luk,l + 2ul,kui,l)

+
1
2
(B − λ)

[
(um,l)

2
δik + 2ui,kul,l

]
+

1
4
Auk,lul,i

+ B (ul,mum,lδik + 2uk,iul,l) + C (ul,l)
2
δik

By taking into account only the quadratic nonlinearities, the motion equations (in the hypothesis Xk = 0), accord-
ing to (1) and to the simplified form of Murnaghan potential (5), are





ρ u1,tt − (λ + 2µ) u1,11 = N1 u1,11u1,1 + N2 (u2,11u2,1 + u3,11u3,1) ,

ρu2,tt − µu2,11 = N2 (u2,11u1,1 + u1,11u2,1) ,

ρu3,tt − µu3,11 = N2 (u3,11u1,1 + u1,11u3,1) ,

(6)

with
N1 = 3 [(λ + 2µ) + 2 (A + 3B + C)] , N2 = λ + 2µ +

1
2
A + B .

2.2 Signorini Potential

The potential named after Signorini has been given by him in terms of the Almansi tensor as follows

W (ε̃ik) =

√
G

g

{
cI2(ε̃) +

1
2

(
λ + µ− c

2

)
(I1(ε̃))

2 +
(
µ +

c

2

)
(I − I1(ε̃))

}
−

(
µ +

c

2

)
.

By referring this potential to the Lagrangian coordinates, we can easily obtain (like in the Murnaghan case) the
fundamental equations (see e.g. Cattani and Rushchitsky, 2007 and references therein)





ρu1,tt − (λ + 2µ) u1,11 =
1
2

(−λ + 5c) u1,11u1,1 +
1
2
c (u2,11u2,1 + u3,11u3,1)

ρu2,tt − µu2,11 = 2
(
λ + µ +

c

2

)
(u2,11u1,1 + u1,11u2,1) + 4cu2,11u2,1

ρu3,tt − µu3,11 = 2
(
λ + µ +

c

2

)
(u3,11u1,1 + u1,11u3,1) + 4cu3,11u3,1

(7)

where c is the Signorini constant related to Murnaghan constants by

c =
1
5

[7λ + 12µ + 12 (A + 3B + C)] .

Let us show that the plane longitudinal wave equations for Murnaghan and Signorini potentials coincide (while
they do not for other plane transverse waves). In fact, if we consider a problem where at the entrance into the
medium x = 0 only a longitudinal wave is given, i.e. u2(0, t) = u3(0, t) = 0 then as a solution of (6)2,3, as well
as (7)2,3, we have

u2(x, t) = 0 , u3(x, t) = 0 .

So that systems (6),(7) reduces to the only nontrivial equation

ρ
∂2u

∂t2
− (λ + 2µ)

∂2u

∂x2
= N1

∂2u

∂x2

∂u

∂x
(Murnaghan)

ρ
∂2u

∂t2
− (λ + 2µ)

∂2u

∂x2
=

1
2
(−λ + 5c)

∂2u

∂x2

∂u

∂x
(Signorini) .
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After a division by λ + 2µ and defining the non dimensional time

√
λ + 2µ

ρ
t → t, we obtain the equation

ρ
∂2u

∂t2
− ∂2u

∂x2
= N1

∂2u

∂x2

∂u

∂x
(8)

with

N1 :=





N1

λ + 2µ
(Murnaghan)

−λ + 5c

2(λ + 2µ)
(Signorini) .

In the following we will analyze equation (8) in the harmonic wavelet basis and compare the results with those
obtained by the method of successive approximation.

3 Harmonic Wavelets

Wavelets are some special functions ψn
k (x) which depend on two parameters: n is the scale (refinement, compres-

sion, or dilation) parameter and k is the localization (translation) parameter. These functions fulfill the fundamental
axioms of multiresolution analysis so that by a suitable choice of the scale and translation parameter one is able to
easily and quickly approximate any function (even tabular) with decay to infinity.

The dilated and translated instances of the harmonic scaling and wavelet function are (Cattani, 2005; Muniandy
and Moroz 1997; Newland 1993)





ϕn
k (x) def= 2n/2 e2πi (2nx−k) − 1

2πi(2nx− k)

ψn
k (x) def= 2n/2 e4πi(2nx−k) − e2πi(2nx−k)

2πi(2nx− k)

(9)

with n, k ∈ Z.

The corresponding Fourier transforms ϕ̂(ω) = ϕ̂(x) def=
1
2π

∫ ∞

−∞
ϕ(x)e−iωxdx are:





ϕ̂n
k (ω) =

2−n/2

2π
e−iωk/2n

χ(2π + ω/2n)

ψ̂n
k (ω) =

2−n/2

2π
e−iωk/2n

χ(ω/2n)

(10)

being χ(ω) the characteristic function defined as

χ(ω) def=
{

1 , 2π ≤ ω ≤ 4π ,
0 , elsewhere .

(11)

From the definition of the inner (or scalar or dot) product of two functions f (x) , g (x), and taking into account
the Parseval equality

〈f, g〉 def=

∞∫

−∞
f (x) g (x)dx = 2π

∞∫

−∞
f̂ (ω) ĝ (ω)dω = 2π

〈
f̂ , ĝ

〉
, (12)

it can be easily shown (Cattani 2005; Newland 1993) that harmonic wavelets are orthonormal functions in the
sense that





〈ϕn
k (x) , ϕm

h (x)〉 = δnmδkh , 〈ϕn
k (x) , ϕm

h (x)〉 = δnmδkh , 〈ϕn
k (x) , ϕm

h (x)〉 = 0 ,

〈ψn
k (x) , ψm

h (x)〉 = δnmδhk ,
〈
ψn

k (x) , ψm
h (x)

〉
= δnmδkh ,

〈
ψn

k (x) , ψm
h (x)

〉
= 0 ,

〈
ϕn

k (x) , ψm
h (x)

〉
= 0 , 〈ϕn

k (x) , ψm
h (x)〉 = 0 ,

(13)
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where the bar stands for complex conjugation and δnm (δhk) is the Kronecker symbol.

Some simple technical calculations also show that the harmonic scaling function and the harmonic wavelets fulfill
the multiresolution conditions ∫ ∞

−∞
ϕ(x)dx = 1 ,

∫ ∞

−∞
ψn

k (x)dx = 0 .

4 Multiscale Representation of Functions

Let us consider the class of functions f(x) such that the integrals




αk = 〈f(x), ϕ0
k(x)〉 =

∫ ∞

−∞
f(x)ϕ0

k(x)dx

α∗k = 〈f(x), ϕ0
k(x)〉 =

∫ ∞

−∞
f(x)ϕ0

k(x)dx

βn
k = 〈f(x), ψn

k (x)〉 =
∫ ∞

−∞
f(x)ψn

k (x)dx

β∗n
k = 〈f(x), ψ

n

k (x)〉 =
∫ ∞

−∞
f(x)ψn

k (x)dx

(14)

exist and are finite for any value of the two parameters n, k.

For a complex function its reconstruction in terms of harmonic wavelets can be obtained by the formula (Newland,
1993)

f(x) =

[ ∞∑

k=−∞
αkϕ0

k(x) +
∞∑

n=0

∞∑

k=−∞
βn

k ψn
k (x)

]
+

[ ∞∑

k=−∞
α∗kϕ0

k(x) +
∞∑

n=0

∞∑

k=−∞
β∗n

kψn
k (x)

]
(15)

which involves the basis and (for a complex function) its conjugate basis.

The wavelet coefficients, according to (12), can be computed in the Fourier domain




αk = 2π〈f̂(x), ϕ̂0
k(x)〉 =

∫ ∞

−∞
f̂(ω)ϕ̂0

k(ω)dω =
∫ 2π

0

f̂(ω)eiωkdω

α∗k = 2π〈f̂(x), ϕ̂0
k(x)〉 = . . . =

∫ 2π

0

f̂(ω)e−iωkdω

βn
k = 2π〈f̂(x), ψ̂n

k (x)〉 = . . . = 2−n/2

∫ 2n+2π

2n+1π

f̂(ω)eiωk/2n

dω

β∗n
k = 〈f̂(x), ψ̂

n

k (x)〉 = . . . = 2−n/2

∫ 2n+2π

2n+1π

f̂(ω)e−iωk/2n

dω ,

(16)

being f̂(x) = f̂(−ω). The approximation up to the scale N ≤ ∞ and to a finite translation M ≤ ∞ is

f(x) ∼= ΠN
Mf(x) =

[
M∑

k=0

αkϕ0
k(x) +

N∑
n=0

M∑

k=−M

βn
k ψn

k (x)

]
+

[
M∑

k=0

α∗kϕ0
k(x) +

N∑
n=0

M∑

k=−M

β∗n
kψn

k (x)

]
. (17)

For a real function (f(x) = f(x)) it is α∗k = αk , β∗n
k = βn

k .

The wavelet approximation, i.e. the projection into the N ×M wavelet space, is obtained by fixing an upper limits
in the series expansion (15), so that with N < ∞ , M < ∞ we have

f(x) ∼=
[

M∑

k=0

αkϕ0
k(x) +

N∑
n=0

M∑

k=−M

βn
k ψn

k (x)

]
+

[
M∑

k=0

α∗kϕ0
k(x) +

N∑
n=0

M∑

k=−M

β∗n
kψn

k (x)

]
. (18)
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Since wavelets are localized, they can capture with a few terms the main features of functions defined in a short
range interval. By increasing the scale N it is possible to quickly approximate the peaks of a function while,
in order to approximate the tails, higher values of the translation parameter M are needed. In any case, due to
the localization and compression property of wavelets only a few terms (in the series (18)) may give us a good
approximation.

However the reconstruction of a function f(x) it is impossible when the integrals (14) are not defined, therefore
the function (to be reconstructed) must be concentrated around the origin (like a pulse) and should rapidly decay
to zero. The reconstruction can also be done for periodic functions or functions localized in a point different from
zero: x0 6= 0, by using the periodized harmonic wavelets (Muniandy and Moroz, 1997; Newland, 1993).

It should be noticed that, for a non trivial function f(x) 6= 0 the corresponding wavelet coefficients (16), in general,
vanish when either

f̂(ω) = 0 , ∀k or f̂(ω) = Cnst. , k 6= 0 .

In particular, it can be seen that the wavelet coefficients (14) trivially vanish when




f(x) = sin(2kπx) , k ∈ Z

f(x) = cos(2kπx) , k ∈ Z (k 6= 0) .

(19)

For instance from (14)1 for cos(2kπx) it is

αk =
∫ ∞

−∞
cos(2kπx)ϕ0

k(x)dx

=
1
2

∫ ∞

−∞

(
e−2ihπx + e2ihπx

)
ϕ0

k(x)dx

=
1
2

[∫ ∞

−∞
e−2ihπxϕ0

k(x)dx +
∫ ∞

−∞
e2ihπxϕ0

k(x)dx

]

from where by the change of variable 2πx = ξ and taking into account that

eπin =





1, n = 2k , k ∈ Z

−1, n = 2k + 1 , k ∈ Z ,
(20)

there follows
αk =

1
2

[
ϕ̂0

k(x) + ϕ̂0
k(x)

]
x=2πh

.

According to (10) it is

ϕ̂0
k(2πh) =

1
2
e−i2πhkχ(2π + 2πh)

(20)
=

1
2
χ(2π + 2πh)

and, because of (11)
χ(2π + 2πh) = 1 , 0 < h < 1

so that
ϕ̂0

k(2πh) = 0 , ∀h 6= 0 .

There it follows that αh = 0, as well as the remaining wavelet coefficients of cos(2kπx) (with k ∈ Z and k 6= 0)
are trivially vanishing. Analogously, it can be shown that all wavelet coefficients of sin(2kπx) ( ∀k ∈ Z) are zero.

As a consequence, a given function f(x), for which the coefficients (14) are defined, admits the same wavelet
coefficients of

f(x) +
∞∑

h=0

[Ah sin(2hπx) + Bh cos(2hπx)]−B0 , (21)

or (by a simple tranformation) in terms of complex exponentials,

f(x)− C0 +
∞∑

h=−∞
Che2ihπx , (22)

so that the wavelet coefficients of f(x) are defined unless an additional Fourier series (the coefficients Ah , Bh , Ch

being constant) as in (21). This property can be extended to any frequency (i.e. different from 1/(2π)) by using a
scaling factor in the definition (9) of the harmonic wavelets.
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5 Connection Coefficients for Harmonic Wavelets

In order to apply the Galerkin method we must deal with the differential properties of the basis and, in particular,
with the computation of their derivatives through the connection coefficients (Latto, 1992; Cattani, 2005).

The differential properties of wavelets are based on the knowledge of the following inner products





λ(`)
kh

def=

〈
d`

dx`
ϕ0

k (x) , ϕ0
h (x)

〉
, Λ(`)m

kh
def=

〈
d`

dx`
ϕ0

k (x) , ψm
h (x)

〉

γ(`)nm
kh

def=

〈
d`

dx`
ψn

k (x) , ψm
h (x)

〉
, ζ(`)n

kh
def=

〈
d`

dx`
ψn

k (x) , ϕ0
h (x)

〉
,

(23)

and the corresponding inner products with conjugate functions





λ(`)
kh

def=

〈
d`

dx`
ϕ0

k (x) , ϕ0
h (x)

〉
, Λ(`)m

kh
def=

〈
d`

dx`
ϕ0

k (x) , ψm
h (x)

〉

γ(`)nm
kh

def=

〈
d`

dx`
ψn

k (x) , ψm
h (x)

〉
, ζ(`)n

kh
def=

〈
d`

dx`
ψn

k (x) , ϕ0
h (x)

〉
.

(24)

The coefficients (23),(24) can be easily computed in the Fourier domain (Cattani, 2005) and it can be shown that,
if we define the sign-function

µ(x) =




−1 , x < 0
1 , x > 0
0 , x = 0

then the following theorem is valid.

Theorem 1 The only non trivial connection coefficients λ(`)
kh, γ(`)nm

kh are given by





λ(`)
kh =

1
2π

[
i`(1− |µ(h− k)|) (2π)`+1

` + 1

− i µ(h− k)
∑̀
s=1

(−1)[1+µ(h−k)](2`−s+1)/2 `! (2i π)`−s+1

(`− s + 1)!|h− k|s
]

γ(`)nm
kh =

2−(n+m)/2

2π

[
(1− |µ(h− k)|) i`π`+12[1+(n+m)/2](`+1)(2`+1 − 1)

` + 1

− i µ(h− k)
`+1∑
s=1

(−1)[1+µ(h−k)](2`−s+1)/2 `! (i π)`−s+1

(`− s + 1)!|h− k|s

× [2[1+(n+m)/2](`+1)−2s(2`+1 − 2s)]
]
δnm

(25)

for ` ≥ 1, and λ(`)
kh = δkh , γ(`)nm

kh = δnmδkh when ` = 0.

The conjugate connection coefficients (24) λ(`)
kh are given by

λ(`)
kh = λ(`)

hk , γ(`)nm
kh = γ(`)nm

hk (26)

for ` ≥ 1, and λ(`)
kh = δkh , γ(`)nm

kh = γ(`)nm
hk when ` = 0.

The mixed connection coefficients (23)2,4 are trivially zero:

Λ(`)m
kh = 0 , ζ(`)n

kh = 0 , Λ(`)m
kh = 0 , ζ(`)n

kh = 0 . (27)
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The fundamental connection coefficients are (25),(26),(27). These coefficients enable us to characterize any order
derivative of the basis. In fact, according to (23) it is

d`ϕ0
k(x)

dx`
=

∞∑
m=0

∞∑

h=−∞
λ(`)m

kh ϕm
h (x) . (28)

A good approximation is obtained by a finite value of M

d`ϕ0
k(x)

dx`
∼=

M∑

h=0

λ(`)
khϕ0

h(x) . (29)

Analogously we have,
d`ψn

k (x)
dx`

=
∞∑

m=0

∞∑

k,h=−∞
γ(`)nm

kh ψm
h (x) , (30)

and a good approximation, which depends only on the dilation N and translational parameter M , is

d`ψn
k (x)

dx`
∼=

N∑
m=0

M∑

h=−M

γ(`)nm
kh ψm

h (x) (31)

with N ≤ n.

For the corresponding conjugate functions we have

d`ϕ0
k(x)

dx`
=

∞∑
m=0

∞∑

h=−∞
−λ(`)m

kh ϕm
h (x) ,

d`ϕ0
k(x)

dx`
∼=

M∑

h=0

λ(`)
khϕ0

h(x) ,

d`ψn
k (x)

dx`
=

∞∑
m=0

∞∑

k,h=−∞
−γ(`)nm

kh ψm
h (x) ,

d`ψn
k (x)

dx`
∼=

N∑
m=0

M∑

h=−M

γ(`)nm
kh ψm

h (x) .

(32)

6 Galerkin Approximation of Differential Operators in Wavelet Spaces

Let us consider the classical problem (derived from (6),(7))

∂2u

∂t2
− ∂2u

∂x2
= N1

∂2u

∂x2

∂u

∂x
(33)

with the boundary condition
u(0, t) = U cos(2πt) . (34)

We assume also the asymptotic condition that

lim
t−>∞

unl(x, t) = 0 , ∀x,

being unl(x, t) the contribution to wave propagation due to the nonlinear term on the r.h.s. of (33).

6.1 Van der Pol Solution

The main feature of the method of successive approximations (MOSA), also called Van der Pol method, consists
in the introduction of a small parameter ε. Since the displacements vector u(x, t) (or something similar to it) is
assumed to be sufficiently smooth, then it can be expanded for small values of x in the form

u(x, t) = u(0)(x, t) + xu(1)(x, t) + x2u(2)(x, t) + · · · , (35)

where u(0)(x, t) is the solution of the linear equation

∂2u

∂t2
− ∂2u

∂x2
= 0 (36)
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Figure 1: First approximation of the nonlinear wave by MOSA
.

together with the boundary condition (34). When u(0)(x, t) is known, the second function u(1)(x, t) is computed
as the solution of

∂2u

∂t2
− ∂2u

∂x2
= N1

∂2u(0)

∂x2

∂u(0)

∂x
, (37)

and so on for the successive approximations. Thus the solution of problem (33),(34), up to the second approxima-
tion of MOSA leads us to

u(0)(x, t) = U cos(kx− 2πt)

and u(1)(x, t) as the solution of

∂2u

∂t2
− ∂2u

∂x2
=

1
2
N1k

3U2 sin 2(kx− 2πt) , (38)

so that it is (see Fig. 1)

u(x, t) = u(0)(x) + u(1)(x)

= U cos(kx− 2πt)− 1
8
N1U

2k2x cos 2(kx− 2πt) .

(39)

6.2 Wavelet Solution

Let us assume that the solution u(x, t) is represented according to (15) by space-dependent amplitudes with time-
dependent bases

u(x, t) = uF (x, t) + uW (x, t)

with

uF (x, t) def= −B0(x) +
∞∑

k=0

Ak(x) sin 2kπt + Bk(x) cos 2kπt (40)

and

uW (x, t) def=

[ ∞∑

k=−∞
α(x)ϕ0

k(t) +
∞∑

n=0

∞∑

k=−∞
βn

k (x)ψn
k (t)

]
+

[ ∞∑

k=−∞
α∗(x)ϕ0

k(t) +
∞∑

n=0

∞∑

k=−∞
β∗n

k (xt)ψn
k (t)

]
.
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The equation (33) becomes

∂2

∂t2
(uF + uW )− ∂2

∂x2
(uF + uW ) = N1

[
∂2

∂x2
(uF + uW )

]
∂

∂x
(uF + uW ) ,

and by the projection ΠN,M we get two separate sets of ordinary differential equations, in the wavelet coefficients





〈
ΠN,M ∂2u

∂t2
u, ϕ0

k(t)
〉
−

〈
ΠN,M ∂2u

∂x2
, ϕ0

k(t)
〉

=
〈

ΠN,M

[
∂2u

∂x2

∂u

∂x

]
, ϕ0

k(t)
〉

,

〈
ΠN,M ∂2u

∂t2
, ϕ0

k(t)
〉
−

〈
ΠN,M ∂2u

∂x2
, ϕ0

k(t)
〉

=
〈

ΠN,M

[
∂2u

∂x2

∂u

∂x

]
, ϕ0

k(t)
〉

,

〈
ΠN,M ∂2u

∂t2
, ψn

k (t)
〉
−

〈
ΠN,M ∂2u

∂x2
, ψn

k (t)
〉

=
〈

ΠN,M

[
∂2u

∂x2

∂u

∂x

]
, ψn

k (t)
〉

,

〈
ΠN,M ∂2u

∂t2
, ψn

k (t)
〉
−

〈
ΠN,M ∂2u

∂x2
, ψn

k (t)
〉

=
〈

ΠN,M

[
∂2u

∂x2

∂u

∂x

]
, ψn

k (t)
〉

,

(k = 0, 1, . . . , M ; n = 0, . . . , N)

(41)

and
∂2uF

∂t2
− ∂2uF

∂x2
= N1

∂2uF

∂x2

∂uF

∂x
.

Due to (40),(34), the last one leads us in the linear case to the linear ordinary system




d2B1

dx2
+ 4π2B1 = 0 , B1(0) = 1

d2Ak

dx2
+ 4π2Ak = 0 , Ak(0) = 0

(42)

which gives, unless some inessential constants,

uF (x, t) = U cos 2π(kx− t) .

This function explains, as expected, the main contribution to the solution, and coincides with u(0)(x, t) obtained
by MOSA. Thus comparing with the MOSA model, we can write

uW (t) = xu(1)(x, t) + x2u(2)(x, t) + · · · ,

so that the projection into the wavelet space coincides with the contribution due to the nonlinearities. In other
words, the wavelet component uW (t) describes the evolution of the nonlinearity effects. From this, there follows
the importance of the wavelet analysis. In the linear case the wavelet contribution uW (t) is absent.

In particular, the projection into the N -scale approximation wavelet space ΠN,M of the derivatives is according to
(17)





ΠN,M ∂u

∂x
=

∂

∂x

[
ΠN,Mu(x, t)

]
= ΠN,M ∂uW

∂x

=

[
M∑

k=0

(
d

dx
αk(x)

)
ϕ0

k(t) +
N∑

n=0

M∑

k=−M

(
d

dx
βn

k (x)
)

ψn
k (t)

]

+

[
M∑

k=0

(
d

dx
α∗k(x)

)
ϕ0

k(t) +
N∑

n=0

M∑

k=−M

(
d

dx
βn

k (x)
)

ψn
k (t)

]

(43)
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Figure 2: Lowest scale wavelet approximation of the nonlin-
ear wave .

and 



ΠN,M ∂2u

∂x2
=

∂2

∂x2

[
ΠN,Mu(x, t)

]
=

∂2

∂x2

[
ΠN,MuW (x, t)

]

=

[
M∑

k=0

(
d2

dx2
αk(x)

)
ϕ0

k(t) +
N∑

n=0

M∑

k=−M

(
d2

dx2
βn

k (x)
)

ψn
k (t)

]

+

[
M∑

k=0

(
d2

dx2
α∗k(x)

)
ϕ0

k(t) +
N∑

n=0

M∑

k=−M

(
d2

dx2
βn

k (x)
)

ψn
k (t)

]

(44)

The projection of the evolution operator gives

ΠN,M

[
∂2

∂t2
u(x, t)

]
=

[
M∑

k=0

αk(x)
(

d2

dt2
ϕ0

k(t)
)

+
N∑

n=0

M∑

k=−M

βn
k (x)

(
d2

dt2
ψn

k (t)
)]

+

[
M∑

k=0

α∗k(x)
(

d2

dt2
ϕ0

k(t)
)

+
N∑

n=0

M∑

k=−M

β∗n
k (x)

(
d2

dt2
ψn

k (t)
)]

and, according to (29),(31),

ΠN,M

[
∂2

∂t2
u(x, t)

]
=




M∑

k,h=0

αk(x)λ(2)
khϕ0

h(t) +
N∑

n,m=0

M∑

k,h=−M

βn
k (x)γ(2)nm

kh ψm
h (t)




+




M∑

k,h=0

α∗k(x)λ
(`)

khϕ0
h(t) +

N∑
n,m=0

M∑

k,h=−M

β∗n
k (x)γ(`)nm

kh ψm
h (t)




(45)

By putting (43),(44),(45) into (41) and by the scalar product with the basis functions ϕ0
i , ϕ0

i , ψr
i (x), ψr

i (x) we
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Figure 3: Comparison of the first approximation by
MOSA with the wavelet approximation. Space [time] evo-
lution of a discrete set of points in time [space]: (a)
uF (x, 0.005j) + uw(x, 0.005j), j = 0, . . . , 499 ; (b)
uF (0.2j, t)+uw(0.2j, t), j = 0, . . . , 9 ; (c) u(0)(x, 0.005j)+
u(1)(x, 0.005j), j = 0, . . . , 499 ; (d) u(0)(0.2j, t) +
u(1)(0.2j, t), j = 0, . . . , 9.

obtain the algebraic system




M∑

k=0

αkλ(2)
ki − d2αi

dx2
= ai(x) , (i = 0, . . . , M)

M∑

k=0

α∗kλ(2)
ik − d2α∗i

dx2
= a∗i (x) , (i = 0, . . . , M)

N∑
n=0

M∑

k=−M

βn
k γ(2)nr

ki −
d2βr

i

dx2
= br

i (x) , (r = 0, . . . , N ; i = −M, . . . , M)

N∑
n=0

M∑

k=−M

β∗n
kγ(2)nr

ki −
d2β∗r

i

dx2
= b∗r

i (x) , (r = 0, . . . , N ; i = −M, . . . , M) .

(46)

The r.h.s. terms ai, a∗i , br
i , b∗r

i are functions both of the wavelet coefficients and of the nonlinear connection
coefficients. In order to compare with the MOSA method, let us assume that the r.h.s. is given as it is the case for
the equation (38). In this case the coarse wavelet approximation of the r.h.s. of (38) is

sin 2π(kx− 2πt) =
1
4

sin 4πx
[
ϕ0

0(t) + ϕ0
0(t)

]
=

1
2

sin 4πx
sin 2πt

πt

so that the corresponding wavelet coefficients are

a0(x) =
1
2

sin 4πx , a∗0(x) =
1
2

sin 4πx , br
i (x) = b∗r

i (x) = 0 .

If λ(2)
00

(25)
= −4π2/3, the only nontrivial equation is

−4π2/3α− d2α

dx2
=

1
2

sin 4πx ,
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Figure 4: Comparison of the the only nonlinear contri-
bution to the first approximation by MOSA and the wavelet
approximation. Space [time] evolution of a discrete set of
points in time [space]: (a) uw(x, 0.005j), j = 0, . . . , 499
; (b) uw(0.2j, t), j = 0, . . . , 9 ; (c) u(1)(x, 0.005j), j =
0, . . . , 499 ; (d) u(1)(0.2j, t), j = 0, . . . , 9.

which, apart from some inessential constants, is solved by

α(x) =
3

88π2
sin 4πx .

Therefore the lowest level of uW (x, t) is

uW (x, t) = x
3

44π2
sin 4πx

sin 2πt

πt

and the wavelet approximation at the coarsest level is

u(x, t) = U cos(kx− 2πt)x +
3

44π2
sin 4πx

sin 2πt

πt
. (47)

Comparing (47) with (39) (see also Figs. 1,2,3, 4, 5) we can see that

1. the wavelet solution even at the coarsest level can easily give a qualitatively good representation of the
solution

2. the nonlinearities are singled out by the wavelet coefficients

3. the MOSA method gives a too smooth approximation of the solution which instead, due to the nonlinearities,
should be more like the wavelet approximation (with higher frequency oscillations, see e.g. Fig. 5).
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Figure 5: Comparison of the the boundary profiles of the
first approximation by MOSA and the wavelet approximation:
uF (x, 0) + uw(x, 0) against u(0)(x, 0) + u(1)(x, 0).

Conclusion

It has been shown that by using

1. a suitable complex wavelet basis

2. the connection coefficients

3. the Galerkin method

the wavelet solution might be an expedient tool for the analysis of nonlinear wave propagation. Due to their
localization properties wavelets are not only a good tools for capturing nonlinearities, but this can be performed
with a minimum number of coefficients. Moreover, the behavior at different scales can be further investigated in
order to focus on the relevant scales of the phenomenon. The comparison with the MOSA also shows that the
wavelet approach seems to be more expedient for describing the oscillations during the wave evolution.
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