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In order to apply the sliding mode control to a remotely operated vehicle (ROV), prior knowledge of exact 
bounds for parameter uncertainties and external disturbances is a prerequisite. However, these bounds may 
not be easily obtained because of the complexity and unpredictability of the structure of uncertainties in the 
dynamics of ROVs. In order to overcome such a difficulty in the control of ROVs, we propose a new robust 
adaptive sliding mode for dynamic positioning and trajectory tracking of ROVs. By applying this adaptive 
sliding mode controller, prior knowledge is not required because the controller is able to estimate the bounds 
of uncertainties and external disturbances. The stability of the control algorithm can be easily verified by 
using Lyapunov theory. The effectiveness of this design control method is demonstrated by means of 
numerical experiments.    
 

1  Introduction 

Applications of remotely operated vehicles have extensively grown in the last twenty years both for scientific 
investigations and industrial needs. ROVs play an important role not only in offshore oil operations but also 
in a number of other applications, such as fisheries research, dam inspection, salvage operations, military 
applications, etc., wherever human diver interventions are risky or impossible, Goheen, K.G. and Jefferys, 
E.R. (1990).  

Making a ROV a reality, however, one faces significant challenges, notably difficulties in designing the 
control system of a ROV. The control of ROVs confronts a number of unique and demanding problems. 
Major facts that make it difficult to control ROVs include, inter alia: the highly nonlinear, time-varying 
dynamic behavior of the vehicle; uncertainties in hydrodynamics coefficients; the higher order and redundant 
structure when a manipulator is attached; disturbances by ocean currents; and changes in the center of the 
gravity and buoyancy due to the manipulator motion which simultaneously disturbs the vehicle. 

So far sliding mode control is widely applied in the control of ROVs thanks to its simplicity and robustness 
properties, Slotine, J.J.E. (1991). Sliding mode control is a control technique which has many attractive 
features: besides robustness to parameter variations its insensitivity to disturbances, Khalil, H.K. (1996), has 
to be mentioned. This type of control has been known as a useful strategy to apply to uncertain systems. 
When the state is constrained to the sliding surface, sliding mode control can completely reject uncertainties 
which satisfy the matching condition, Utkin, V. (1978). In sliding mode control a vital assumption is that the 
uncertainties are bounded and their bounds are available to the designers. These bounds are an important clue 
to the possibility of guaranteed stability of a closed loop system. Unfortunately, due to the complexity of the 
structure of uncertainties in the dynamics of ROVs, such bounds may not be easily obtained.  

Sliding mode control has been applied quite successfully in the control of underwater vehicles by Yoerger 
and Slotine, Yoerger, D. R. and Slotine, J. E. (1985). They proposed to use a series of single-input single-
output (SISO) continuous time controller. They investigated the effects of uncertainties of the hydrodynamic 
coefficients and neglecting cross-coupling terms. Cristi et al., Cristi, R.; Papoulias, F. A.; and Healey, A. J. 
(1990) employed an adaptive sliding mode controller to control an underwater vehicle in the dive plane. In 
their work, they developed the control law based on a linear model which assumed no information regarding 
nonlinear characteristics of the vehicle dynamics. Walchko et al., Walchko, K.J.; Novick, D.; and Nechyba, 
M.C. (2003) applied sliding mode to control a ROV named Subjugator. In Walchko’s study the coriolis and 
centrifugal terms in the dynamic model of the ROV are neglected.  

However, what all these studies have in common is that the availabilities of bounds for uncertainties must be 
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given in advance to the designers of ROVs. It therefore confronts with the problem in obtaining the bounds 
of uncertainties in control of ROVs as described above.  

In order to cope with this problem, this study presents a new robust adaptive sliding mode for dynamic 
positioning and trajectory tracking of a ROV. By applying this adaptive sliding mode controller, prior 
knowledge of exact bounds for parameter uncertainties and external disturbances is not needed because the 
controller is able to estimate the bound of uncertainties and external disturbances. The stability of control 
algorithm can be easily verified by using Lyapunov theory. The effectiveness of this design control method is 
demonstrated by means of numerical experiments. Unfortunately, sliding mode also has other limitations, 
namely control chattering and robustness only to matched uncertainties. The chattering drawback of sliding 
mode controller is caused by imperfections in switching devices and delays. Chattering results in low control 
accuracy, high heat losses in electrical power circuits, high wear of moving mechanical parts. It may also 
excite unmodeled high-frequency dynamics, which degrades the performance of the system and may even 
lead to instability. One approach to eliminate chattering is to use a continuous approximation of the 
discontinuous sliding mode controller, Kreuzer, E. and Pinto, F.C. (1996); Pinto, F. (1996); Slotine, J.J.E. 
(1991). In this study, we also apply this approach to overcome this drawback. 
 

2  Dynamic Model of ROV 

The kinetics of an underwater vehicle can be described in a common way through six degrees of freedom 
(DOF) by means of two coordinate frames, a body-fixed frame and an earth-fixed frame, Figure 1. In general, 
the mathematical model of underwater vehicles can be represented by the following vector equation, Fossen, 
T.I. (1994)  
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where [ , , , , , ]Tx y zη     is the position and attitude vector with respect to the earth-fixed reference 

frame, [ , , , , , ]Tu v w p q rν   is the vector of linear velocity and angular velocity with respect to the body-

fixed frame, M  is a constant positive definite and symmetric inertia matrix (which includes the added 
inertia), ( )C ν  is a skew-symmetric matrix linear in ν  containing the Coriolis and centripetal terms, ( )D ν  
is a positive definite damping matrix containing drag and lift terms (and possibly skin friction and viscous 
damping), and ( )g η  is the vector of restoring forces/moments (gravitational and buoyant forces/moments), 

( )J η  is the transformation matrix between body-fixed and earth-fixed frame and vd  summarizes the 

environmental disturbances and disturbances due to a tether cable. The wave-induced forces/moments are 
assumed negligible since the vehicle operates below the wave-affected zone, the operating depth is normally 
significantly greater than 20 m. The variations of water density are also considered to be negligible. 
 

 
 

Figure 1: ROV model with two coordinate systems 
 



 187

Hydrodynamic Forces 
As the vehicle moves underwater, additional forces and moments coefficients are added to account for the 
effective mass of the fluid that surrounds the vehicle and must be accelerated with the vehicle. To describe 
the interaction between fluid and ROV the Morison’s equation will be used, Newman, J.N. (1982) 
 

  1
2=  h d W m W W W W WC A C V VF ν ν ν ν   & &  (2) 

 

where A represents a reference area of the ROV; W  is the density of the water; mC  is the added mass 
coefficient; WV  is the water volume displaced by the vehicle; ν  and ν&  are the relative velocity and the 
relative acceleration between vehicle and water, respectively. The acceleration Wν&  of the water itself can in 
general be neglected at normal working depths and so the last term in equation (2) vanishes. Moreover, the 
relative acceleration turns into the acceleration of the vehicle itself. The factor m W WC V  can then be 
included in the inertia matrix M  as the added masses. The damping due to the ROV motion in the fluid is 
expressed by the coefficient dC  and has a non-linear character due to the term ν ν . The damping is taken 
into account in ( )D ν , that is a real and strictly positive matrix, with rough assumptions such as a symmetric 
vehicle and non-coupled motion. It can be simplified to a diagonal matrix 

1 2 3 4 5 6( ) ( ,  ,  ,  ,  ,  )diag d u d v d w d p d q d rD ν   where id  (i = 1, 2, ..., 6) is the drag coefficient, 
here the linear damping is negligible. Both dC  and mC  are also difficult to determine theoretically and may 
be obtained through measurements. They depend in general on the geometry of the vehicle and also on the 
direction of relative velocity of the ROV. 
 
Thruster Forces 
The thruster forces u  are the output vector of the thruster system the dynamics of which are nonlinear and 
quite complex. Moreover, the relationship between the force/moment acting on the vehicle vτ  and the 
propulsion of the propellers u  also is highly nonlinear. In general, the thruster force and moment vector will 
be a complicated function depending on the vehicle’s velocity vector 6ν R  and the control variable 

pn R , which contains the angular velocities of propellers. Here p  is the number of control input, e.g. the 
number of thrusters. A detailed theoretical and experimental analysis of thrusters’ behavior can be found in 
Bachmayer, R. and Whitcomb, L.L. (August 1999); Whitcomb, L.L. and Yoerger, D.R. (1999a,b). Normally, 
underwater vehicles are driven by brushless DC motors. With the assumption that the time constant of 
thruster dynamics is much smaller than the time constant of vehicle dynamics, a simple static thruster model 
is often used. Each thruster force iu  is proportional to i in n , where in  is the thruster’s propeller angular 
velocity and proportional to the motor drive voltage mV . A simplified relationship between vτ  and u  is 
expressed through the linear mapping, Fossen, T.I. (1994) 
 

 v Buτ   (3) 
 

where 6 pB R   is a known and constant matrix which depends on the configuration of thrusters on the 
vehicle, TBB  is non-singular, T here means the transposition of a matrix or a vector, and u  is the vector 
the components of which are thruster forces. The ROV dynamics (1) can be also written in earth-fixed 
coordinates as follows 
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We assume that the underwater vehicle has uncertainties, i.e. 
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The uncertain components represent bounded, small, possible time varying, unmodelled dynamics or load 
changes. Substituting the expression (5) into the dynamics (4) gives rise to 
 

 0 0 0 0( ) ( ( , ) ( )M C D gη η η,η)η η η η η δ τ    && & & & &   (6) 
with 
 ( )T

v
 Jτ η τ   (7) 

   ( ) ( ( , ) ( )M C D g dδ = η η η,η)η η η η η     && & & & & . (8) 

Here δ  represents all the uncertain terms and environmental disturbances. In the cases δ 0 , we call the 
dynamics the nominal dynamics of the underwater vehicle. For this uncertainty, we assume the following 
boundedness condition. This assumption is usually satisfied in practice. 
 
Assumption: There exist positive constants 0 1,   and 2  such that 

  0 1 2    e eδ &   (9) 
 

where the tracking error vector e is defined as 
 

  ( ) ( )dt te η η    
with ( )d tη  is a desired trajectory. 

 

3  Sliding Mode Control for ROV 

Sliding mode control is a model-based method that uses the equation of motion to anticipate dynamic effects 
as well as react to feedback errors. It handles the non-linear character of a system, and can naturally deal with 
the speed dependent effects and multi-axis coupling effects seen in a ROV. A sliding mode controller can be 
configured to include an adaptive extension to compensate for changes in environment, vehicle buoyancy, 
etc. In general, the method has also several drawbacks. It requires a good dynamic model of the system and 
the knowledge of the inaccuracies or uncertainties in the model as well as a full-state feedback. Sliding mode 
control offers the best combination of performance, analytical performance guarantees, and design ease, 
Hills, S.J. and Yoerger, D.R. (1994). 

In order to design the sliding controller for a multivariable system like an ROV, the sliding surface has to be 
defined, Berstecher, R. (1998); Gao, W. and Hung, J.C. (1993) 
 rs e eλ η η   & &&   (10) 

where 6Rs  , and λ is a positive constant. 
As can be seen from (10), maintaining system states on the surface for all 0t   will satisfy the tracking 
requirements ( ) ( )dt tη η . Indeed, it will force the error vector ( )te  to approach zero, given any bounded 
initial condition (0)e . 
In order to give out the control force, let’s consider a Lyapunov-like function candidate as 

  0

1
( , ) ( )

2
TV ts s M sη .  (11) 

Differentiating  ( , )V ts  with respect to time under consideration of (10) one obtains 

 0 0 0 0

1 1
( , ) ( ) ( ) ( )( ) ( )

2 2
T T T T

rV ts s M s s M s s M s M sη η η η η η    & & &&& &&& .  (12) 

Substituting 0( )M η η&&  from (4) into (12) yields 
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noting that in (14) the property of skew-symmetry of matrix 1
2 0 0( ) ( , )M Cη ν η   

&  has been used. 

In order to guarantee V s& , in which   is a small positive number, the control force τ  can be chosen  
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as 
 cont disτ τ τ   
with 
  0 0 0 0( ) ( , ) ( , ) ( )cont r rM C D gτ η η ν η η ν η η η   && & &   (15) 
and 
 ,sgn( ),dis i i iKK sτ     .  (16) 
By choosing the control force as (15) and (16), the time derivative of V  is negative definite and thus s  
tends to zero asymptotically. 

The control law obtaining the sign function as in (16) may lead the system to chattering. In order to avoid this 
phenomenon, we apply the following smoothing control function as used in Kiriazov, P.; Kreuzer, E.; and 
Pinto, F. (1997) instead of the sign-function in (16)  

 
2

sgn( ) arctan( )x cx


 .  (17) 

In (17) the coefficient c  should be chosen large enough, so that the two functions are almost the same. 

 

4  Adaptive Sliding Mode Control 

Applying the sliding mode control for the ROV definitely requires the bounds of uncertainties and 
disturbances in advance. In the case of underwater vehicles, the complexity and unpredictability of the 
structure of uncertainties may particularly cause certain difficulties in obtaining these bounds. To overcome 
such a problem, we propose to apply the adaptive sliding mode control in order to estimate these bounds of 
uncertainties and external disturbances online. Now, the form of the adaptive sliding mode control is 
proposed as follows 
 

 cont lin disτ τ τ τ    (18) 
 

where contτ  is defined in equation (15) and disτ  is given in the following as 
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where 0 1ˆ ˆ,   and 2̂  are the adaptive variables for 0 1,   and 2  defined in equation (9). The linear 

controller linτ  is chosen as follows 
 

 lin pdK sτ    (20) 
 

with the positive definite matrix pdK . 

Theorem. If the control law (18) with the following adaptation law is applied to the nonlinear uncertain 
system defined by (4), the overall system is globally asymptotically stable 
 

  

1
0 0

1
1 1

1
2 2

ˆ

ˆ

ˆ

c

c

c

s

s e

s e













        

&

&

& &

  (21) 

 

where 0 1,c c  and 2c   are arbitrary positive constants. 

Proof : Let us consider the following positive definite function as a Lyapunov function candidate 
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where ic  (i = 0, 1, 2) are positive constants, ˆi i i   % . 
Differentiating V  with respect to time yields 
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From (10) we obtain rs η η && &&& . Hence, 
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with 0( )M η η&&  calculated from (4), we obtain 
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Substituting (18) with (15), (20) and (19) into (23) we obtain 

   
2

0

T T
pd dis i i i

i

V cs K s s τ δ  


   & &% % .  (24) 

With assumption (9), we obtain the following estimations 
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With (25) and (26), the equation (24) is written 
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Substituting (21) into (27) one obtains 
 

 0, 0TV s Ks s   & . 
This completes the proof. 
 
Finally, the control forces/moments τ  defined by (18) are distributed for p  thrusters based on least mean 
square method 
 1( ) ( )T T Tu B BB J η τ .  (28) 
 

5  Numerical Experiments 

Aiming to verify the robustness and the reliability of the controller, a dynamic model of an ROV having the 
geometrical and the mechanical structure of our experimental vehicle is taken for the numerical control 
design consideration. The experimental ROV developed at the Institute of Mechanics and Ocean Engineering 
of Hamburg University of Technology is shown in Figure 2. Its dry weight is about 80 kg, the ROV is 
designed so that its buoyancy is slightly larger than its weight. The propulsion system is made of eight 
marine propellers, which are driven by DC motors. One passive arm with six DOFs is used as a position 
sensor for the region close to submerged structure.  
 
For the simulation, we assume firstly that the inertial parameters, such as the added masses, are estimated 
with an accuracy of 20 percent. The difference between drag coefficients of the actual model and the nominal 
model is less than 20 percent. Besides, the actual model is also disturbed by a harmonic function with a 
constant part and their parameters were varied. 
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Figure 2: The experimental vehicle 

 

The first numerical experiment is a point-to-point control and station keeping at the endpoint for the vehicles. 
In this experiment, the ROV moves from point  ( , , , ) (0, 0, 0, 0)x y z    to point (3,2.5,2m,  1.0 rad)  and 

then stays at this point. The performances of the system are shown in Figures 3 and 4. The results show that 
the desired position is reached after about 10 seconds. 
 

 

Figure 3: Time history of ( ),  ( )x t y t  and ( )z t                       Figure 4: Time history of ( ),  ( )t t   and ( )t  
 
The second experiment is to force the ROV to move along a circular trajectory at a constant speed. 
Consequently, the desired movement of the ROV is defined by cos( )x R t , sin( )y R t , 
z const  and yaw angle  /2 t    , in which ,R   are constant. In this simulation, the radius of 

the circle has a value of 3 mR  . The velocity of the ROV along the trajectory is determined by 
0.5 m/sV  , with 0.5/ 3 rad/s  .  

Figure 5 shows the time history of the coordinates x(t) and y(t). In this figure, the dashed lines represent the 
desired motions, and the solid lines represent the actual motions. This figure shows that the ROV reaches the 
desired trajectory after about 10 seconds. The motion of ROV following the circular trajectory is shown in 
Figure 6. 
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Figure 5: Time history of ( )x t  and ( )y t  
 

 
Figure 6: ROV following the circular trajectory 

 

6  Conclusion 

In this paper we describe the design and implementation of a new adaptive sliding mode controller for 
dynamic positioning and trajectory tracking of an ROV. The main feature of this design is that it combines 
the sliding mode control and the adaptive algorithm. This adaptive algorithm is used to estimate the bounds 
of uncertainties and disturbances. With this controller, prior knowledge about the bounds of system 
uncertainties and external disturbances is not required. The numerical results in this study show that the 
controller is able to estimate the bounds of uncertainties and external disturbances online and still provides 
good performance. The experimental results confirm that the estimated uncertainty bound can successfully 
adapt the actual one. The proposed approach therefore could reduce the excessive control input when 
applying the algorithm into both conventional robust control and sliding mode control. The control technique 
has been finally tested in our simulation case study. The overall sys tem is globally asymptotically stable. 
Robust control of the position (dynamic positioning) relative to a structure is achieved with the use of 
adaptive sliding mode controller. A passive arm is used as a position sensor in the region close to an 
underwater structure. A model ROV has been constructed and used as a test bed for the control systems 
described. 
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