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In this paper, the problem of constructing one of the kind of program motion is discussed. The motion program 
is a set of conditions imposed on the behavior of phase trajectories of the particles of the system, by which the 
positions and velocities of the system under consideration cannot be arbitrary. In other words, the system of 
program motion belongs to the systems with constraints. This means that it is possible to treat the program as a 
set of constraints that restrict the motion of the system, in the sense of analytical mechanics. In this paper, these 
cases are discussed. The passive control system is designed using only relative motion. For better results, an 
active control system can be used. However an instability of system could appear. In such case some methods of 
a feedback controller system using sensors can be used to achieve a stable controlled system.  
 
 
1 Introduction 
 
In the development of today’s technology, almost all of the engineering problems are related to program motion 
control. As it is commonly known, a dynamic system performs a program motion as it is exerted by appropriate 
forces from actuators which are driven by controllers. If a dynamic system receives external energy to power 
control actuators, it is called an active control system. Conversely, a passive control system varies its energy by 
changing its geometric properties such as the center of mass or the moment of inertia or its dissipation and 
elasticity parameters such as damping and spring coefficients. From the energy point of view, an active control 
system uses external forces to supplement additional energy to perform the prescribed program motion. A 
passive control system uses internal forces to vary its subsystem motion which causes to adjust its energy in 
order to carry out the desired program motion. The advantage of the active control approach is creating fast 
dynamic response and a direct solution of this problem (motions caused by forces). However, the supplementary 
energy may cause the system to become unstable. Moreover, to make actuators deliver the required forces 
sometimes can cause technically difficult problems (e.g. due to actuators’ saturation) or can cause impulse 
motion (impact). In contrast, the advantage of the passive control approach is to make use of interactive motions 
among  components of the system to adjust energy smoothly, and to eliminate impulse effects through dampers 
and springs.  However, this approach hardly creates the required forces to meet the program motion due to 
inertial effects and the delay of dynamic responses. Recently, there appears the hybrid approach, a semi-active 
control method, which tries to combine the benefits of the two above approaches. 

In the paper, the passive control method is used to force the dynamic system to follow the program motion 
through the relative motion control of a subsystem. In other words, the subsystem is used as a controller to force 
the mother system to perform the desired program motion. The  motion of the subsystem indirectly changes the 
motion of the mother system. This kind of problem inherently embodies the synthesis property. 

Let us consider a program of motion as a relation between the time, coordinates, velocities, and accelerations, 
which implies requirements on the behavior of the solutions of the equations of motion of the considered 
systems. A set of mathematical expressions describing a program is called a manifold. Mathematically, 
manifolds are similar to mechanic constraints. However, mechanical constraints are created by physical 
interactions among objects, whereas motion programs are simply imaginary restrictions on dynamic motion 
behavior  of the system. Commonly, mechanical constraints are known as physical constraints to distinguish 
from motion programs. 
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2 The Construction of Program Motion Through Relative Motions 
 
Let’s consider a dynamic system. Its position is located by the generalized coordinates qi (i=1,m ), subject to r 
ideal constraints in the forms 
    0=ofq + f&& ,                                                                                                (2-1) 
where f, q&&  and fo are matrices, the sizes of which are rxm, mx1, and rx1, respectively. 
The stationary holonomic constraints with redundant coordinates and stationary linear nonholonomic constraints 
are written in the above mentioned form, where  the elements of matrix f are functions of q  and the elements of 
matrix fo are functions of q and q& . In the case of unstationary nonlinear nonhohonomic constraints of first order 
these elements depend on coordinates, velocities and time. 
For the aim of simplicity we will only consider the system with the stationary constraints. 
The purpose of this paper is to design a subsystem mounting on the original dynamic system such that the 
motion of the original system can be controlled by the motion of the subsystem to perform the program motion 
in the form 
    ( , ) 0 ; 1,t sα α= =g q                    (2-2) 
The original system and the subsystem are named as the mother system and the child system, respectively. For 
simplicity, the child system is holonomic and its position is determined by holonomic generalized coordinates 

( 1, )u sα α = , which are independent to each other and to the generalized coordinates ( 1, )iq i m= . Let’s denote 

the control forces subject to the subsystem asUγ   (γ =1, p ), where p depends on the requirements of the control 
problem. 
As  mentioned above, the mechanical constrains are assumed to be stationary, the kinetic energy of the system is 
of the forms 

   
, 1

1 1
2 2

m s m s

ij i j i i
i j i

T a q q b u u c q uαβ α β α α
αβ α=

= + +∑ ∑ ∑∑& & & & & & ,    (2-3) 

and we can write it in the matrix forms as 

    1 1
2 2

TT = + +T Tq Aq u Bu q Cu& & && & & ,     (2-4) 

where A and B are symmetric quadratic matrices of dimension of m and s respectively, whose elements are 
functions of q and u only, C is a m s×  matrix. By means of the Principle of Compatibility, the equations of 
motion of the whole system (the mother-child system) take the following forms 

    ( 1, )qi qi
i i

d T T Q R i m
dt q q

∂ ∂
− = + =

∂ ∂&
,    (2-5) 

    ( 1, )u u
d T T Q R s
dt u u α α

α α

α
∂ ∂

− = + =
∂ ∂&

,    (2-6) 

where  
• Rqi and Ruα are generalized forces corresponding to the mechanical constraints. 
• Qqi and Quα ( 1, ; 1,i m sα= = ) are generalized forces of applied forces corresponding to generalized 

coordinates qi and uα.( 1, ; 1,i m sα= = ). Control forces Uγ  (γ =1, p ) are included in Quα (α=1, s ). 

Let’s define the independent generalized coordinates of the mother system as ( ), 1,  ;kq k n n m r= = − . To build 

the condition of ideality of the constraints, one first expresses the generalized accelerations  iq&& (i=1,m ) in the 

terms of the independent generalized accelerations kq&& (k =1,n ) and the child system’s generalized accelerations 

uα&&  (α=1, s ) by the constraints (2-1). In such a way, we have 

     
1

....
n

i ik k
k

q d q
=

= +∑&& && ,                  (2-7) 

where the unwritten terms do not include generalized accelerations The matrix DT of size (m+s) x (n+s) takes the 
forms quantities  the 
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Notice that some elements in DT take unit values. As is known, the condition of ideality of the constraints (2-1) 
can be expressed in the form 
      DR = 0      (2-9) 
Obviously, the generalized forces corresponding to the generalized coordinates absent in (2-7) are equal to zero. 
Accordingly, one easily notices that 
      Ru  = 0,                                (2-10) 
where the matrix Ru of size sx1 takes the forms 
     [ ]1 ... T

u sR R=R                  (2-11) 
The equations (2-5) and (2-6) can be written in the matrix forms as 
     q q qAq + Cu = Q + G + R&& &&                 (2-12) 
     u uCq + Bu = Q + G&& && ,                 (2-13) 
where 

• , and q uQ Q  are the matrices of the generalized forces of the applied forces corresponding to the 
generalized coordinates q and u.  

• , and q uG G are the matrices built from the rest part of the equations. 
Based on the condition of ideality of the constraints (2-1), the equations (2-12) and (2-13) turn into the forms 
     oo oA q + C u = Q&& &&                  (2-14) 
     Cq + Bu = Uº&& && ,                  (2-15) 
where 
   ,  , .o = =o q u u oA = D A Q D(Q + G ) , Uº (Q + G ) C = DC                (2-16)  
Notice that the system of equations (2-14), (2-1) and (2-2) is a complete one (m+s equations with m+s 
unknowns, qi  and uα, i = 1,m ; α=1, s ).  The control forces are included in the terms of Uº . 
Now solve the system of equations (2-1), (2-2) and (2-14) with the following initial conditions: 
 

    ( ) , ( ) , ( ) , ( )o o o
o o o o oq t q q t q u t u u t u= = = =& & & & ,                (2-17) 

we have 
    i( ),  ( ),  q ( ),  and u = ( )i iq q t u u t q t u tα α α= = =& & & &                (2-18) 

The control forces γU  (γ =1, p ) are determined by substituting expressions in (2-18) into equations (2-15). The 
problem is said to be complete if the number of control forces is equal to the number of motion programs. If the 
number of control forces is greater than that of motion programs, additional constraints should be supplemented 
into the mother system. 
 
 
3 The Controller 
 
If we use only relative motion u(t) as a control input, the control system is passive. For better performance, we 
can use active controllers. In this paper, two approaches are applied to design the controller for the system. The 
first one is an open loop controller. As the illustration in the next section, the control force F(t) exerts on the 
slider. By this approach, the relationship between input and the resultant state is the equations of motion of the 
system (including additional constraints). The desired state is obtained by solving directly the equations of 
motion (in DAE form). In contrast to the passive controller, the active controller can cause the system to become 
unstable. Hence a closed loop controller is recommended for getting stability or obtaining more accurate and 
more adaptive control. In this second case, both the control force F(t) and the moment M(t)  vary. One of the 
nonlinear design methods is applied as Feedback Linearization (FBL) method. The control laws are assumed 
using full state feedback (no observers). The main idea of this method is trying to transform a nonlinear system 
into a linear system by coordinate transformation and applying linear control design methods to the new linear 
system (Jean- Jacques E. Slotine; Weiping Li, 1991). The likewise pseudo inverse method will be applied to find 
the control forces U. If the mass matrix M is invertible, we have: 
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1( ) ( ( ) )−= +q M q f q,q BU&& &       (3-1) 
 

Linearize the system of equations (3-1) as follows: 
 

=q v&& ,        (3-2) 
where 1 2( ) ( )d= − − −− d dv q K K q qq q&& & & . Here K1, and K2 are diagonal constant matrices that make the 
following system of equations stable: 

+ =+1 2e K e e 0K&& &       (3-3) 
where e is the error vector, de = q - q , q are state variables and qd are desired state variables. 
The control forces are calculated from equations (3-1) and (3-2) as follows: 
 

{ },+ −U = B Mv f(q q)&       (3-4) 
 where B+ is the pseudo inverse matrix of B. 

4 An Illustrative Example 
 
Consider a single-wheel vehicle 
moving along a straight horizontal 
road under acting the couple of the 
moment M0(t) exerted on the wheel 
of mass m3 and radius r rolling 
without slip as sketched in Figure 
4.1. The floorboard is subjected the 
couple of moment M0(t) in opposite 
direction. The mass of motor 
attached to the floorboard is 
neglected. The coefficient of rolling 
friction is a. A worker stands in the 
rear of the vehicle, holding a handle 
fixed at a height of L2 from the 
floorboard. The worker-handle 
system is modeled as a massless rod 
AB of length L2 rotated about joint 
A, a particle B of mass m2 at the tip of the rod, and a system of a spring  and viscous dashpot with spring 
constant c2 and dashpot constant b2 , respectively. The system AOC + OD + motor has the mass m0 and the 
inertial moment J0 about the common centre of mass of the system at point O. The system, supported by a 
bearing of dashpot constant b0 and restrained by a torsional spring of constant c0, is controlled by a subsystem in 
order to keep it in the horizontal balance. Note one of the ends of the torsional spring is connected to the center 
O of the wheel and the second one is connected to the floorboard AC. The subsystem consists of a slider M of 
mass m1 and a spring of constant c1 and a dashpot of constant b1. The position of M is controlled by a controller 
device (not shown in the figure) that drives the force F(t) acting on the slider on aligned direction with the 
floorboard AC and the force being equal in opposite to the F(t) on the OD. 
The generalized coordinates are x, ϕ1, ϕ2, ϕ3 and u which respectively are the horizontal displacement of the 
vehicle, the angular displacement of the floorboard from the horizontal, the angular displacement of rod AB 
from the horizontal, the angular displacement of the wheel, and the displacement of the slider M with respect  to 
the floorboard (the relative displacement). The slider M plays a part in the passive control. The control 
objectives are to keep the floor AC balanced ( 1 1 10, 0,and 0ϕ ϕ ϕ= = =& && ), the worker vibrates as little as possible 
(ϕ2≅π/2), the variation of vehicle’s velocity is little and the displacement u is in the valid range. 
The following notations are used in the paper from now on 

i i jcos ,  sin ,  os( ) , sin( )i i i i j i j i jC S c C Sϕ ϕ ϕ ϕ ϕ ϕ≡ ≡ + ≡ + ≡  
The kinetic energy and potential energy of the system are as follows 
 

2 2 2 2 2 2 2 2 2
0 2 1 2 1 2 2 1 2 2 2 3 3

2
2 1 1 2 12 1 1 2 2 12 2 1 2 2 1 2 2 1 2

1 1 1 1 1[J ( 2 ) ]
2 2 2 2 2
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2

o

o
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o o

T m x m L L L L C m u m L J m u

m L S L S m S u m L S x m C xu m L L L C

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ
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+ − − − + + −

& & && &

& & & && & & &
  (4-1) 
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Figure 4.1. The model of the single-wheel vehicle 
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( )22 2
2 1 1 2 12 0 1 1 2 2 2 0 1 10

1 1 1= (-L S  +L  S  ) +  + ( ) ( )
2 2 2 2om g m guS c u u c L cπ

ϕ ϕ ϕΠ − + − + − ,  (4-2) 

where m0=m0+m1+m2+m3, J3=m3r2/2 and the centre of mass of the body AODC coincides with the point O in 
assumption. 
The mother system is subject to a holonomic constraint as follows 
     3 0x rϕ+ =&& ,      (4-3) 
or in the form of (2-1) as 3 0x rϕ+ =&&&& . 
The generalized forces take the following forms 
 

   
1 2 1 1 2 2 12 1 3 0 1

2 2 2 12 2 2 2 2 2

3 3

1 1 1 1

0,
,

( ) ,
2

,
( ) ( ) .

x

o o

o

u o

Q
Q m gL C m gL C m guC M a b

Q m gL C c L b

Q M a
Q F t m gS c u u b u

ϕ ϕ
π

ϕ ϕ

ϕ

=

= − − + − −

= − − − −

= − +

= − − − −

& &

&

&
&

    (4-4) 

 
The independent generalized coordinates are x, ϕ1, ϕ2, and u. The matrix D is in the form 
 

    

11 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

r
 − 
 
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 
 
  

D       (4-5) 

 
In accordance with the equations (2-14) and (2-15), the equations of motion of the system are written as follows 
 
     ( ) ( )= +M q q f q,q BU&& & ,     (4-6) 
where 
 

3
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5 Simulation Results 
 
The single wheeled vehicle’s parameters used for simulation are as follows: m0 = 30 kg, m1 = 9 kg, m2 = 60 kg, 
m3 = 10 kg, L1 = 0.5 m, L2 = 1.5 m, J0 = 0.75 kgm2, c0 = 200 Nm, c1=3370 N/m, c2=7616 N/m, b0=200 Ns/m, 
b1=900 Ns/m, b2=600 Ns/m, r=0.1 m, and a=30 Ns/m. The vehicle’s steady state speed is maintained at 2.77 
m/s; the floorboard position is kept horizontally balanced; the rod AB is held vertically, and the slider is kept 
around 1 m from axis O. The simulation time is about 20 seconds. The initial conditions for the closed loop case 
are as follows 

1 1 2 2 3 3(0) 0,  (0) 0.2,  (0) / 4,  (0) 0,  (0) 3 / 4,  (0) 0,  (0) 0,  (0) 2,x x ϕ π ϕ ϕ π ϕ ϕ ϕ= = = = = = = = −& & &&
(0) 0.7,  (0) 0u u= =& . The initial position of vehicle is not balanced. Under the effect of the controller, the 

vehicle would be gradually driven to the balanced status after a short time. 

 

5.1  The Open Loop Approach 

The simulation results are shown as follows 

 
Figure 5.1. The time history of x 

 
Figure 5.2. The time history of ϕ1 

 
Figure 5.3. The time history of ϕ2 

 
Figure 5.4. The time history of ϕ3 

 
Figure 5.5. The time history of u 

 
Figure 5.6. The time history of F 
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5.2  The Closed Loop Approach 

The matrices K1, K2 are chosen as follows: 
 

18 0 0 0 80 0 0 0
0 18 0 0 0 80 0 0

,  
0 0 18 0 0 0 80 0
0 0 0 18 0 0 0 80

   
   
   = =
   
   
   

1 2K K    

  

The simulation results are shown as follows 
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Figure 5.7. The angle ϕ1 
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Figure 5.8. The angular velocity 1ϕ&  
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Figure 5.9. The angle ϕ2 
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Figure 5.10. The angular velocity 2ϕ&  
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Figure 5.11. The relative displacement u 
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Figure 5.12. The velocity x&  
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Figure 5.13. The moment M0(t) 
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Figure 5.14. The force F(t) 

 
 
6 Conclusion 
 
In the development of today’s technology, more and more engineering problems are involved in control of 
program motion using relative motion. In the paper, the single-wheel vehicle has been kept balanced by using 
two different control methods: one using only the subsystem and the other using both the subsystem and the 
mother system. From control point of view, the control system is active in both cases and the control system is 
passive in case to specify the relative motion. In summary, for unstable systems (like the single-wheel vehicle), 
the hybrid method that controls both the mother system (external force) and the subsystem (internal force) might 
achieve the best effect (results). 
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