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It is known that, for multi-degree-of-freedom systems under time-dependent excitation, the combination of an 
internal resonance with an external resonance will give rise to simultaneous resonances, and these resonances are 
characterized by the fact that the system in question can resonate simultaneously in more than one normal mode 
while only one resonant mode is directly excited by the excitation. The present work deals with the problem of the 
occurrence of simultaneous resonances in parametrically-excited and simply-supported rectangular plates. The 
analysis is based on the dynamic analog of von Kármán’s large-deflection theory and the governing equations are 
satisfied using the orthogonality properties of the assumed functions. The nonlinear temporal response of the 
damped system is determined by the first-order generalized asymptotic method. The solution for simply supported 
plates indicates the possibility of principal parametric resonances and simultaneous resonances. Simultaneous 
resonances involving two modes of vibration have been presented in a number of papers by the present author. 
Numerical results of simultaneous resonances involving three mode shapes are presented in this paper for the first 
time. 

 
1   Introduction 

In structural dynamics, dynamic instability has received considerable attention in the past 50 years, and a typical 
example in regard to dynamic instability of structures is the case of a rectangular plate acted upon by a periodic in-
plane load. When a such plate sustains an in-plane load of the form n(t) = n0 + nt cosλt, it may become laterally 
unstable over certain regions of the (n0, nt, λ) parameter space, and this phenomenon is referred to as parametric or 
dynamic instability. It is known that when the natural frequencies of the system are distinct, and in the absence of 
internal resonances and combination resonances, the periodic in-plane load can excite only one normal mode at a 
time; and when the plate executes lateral vibration at half the driving frequency, the corresponding resonance is 
called principal parametric resonance. In contrast with this case of simple parametric resonance, simultaneous 
resonances may also occur in multi-degree-of-freedom system subjected to parametric excitation such as a plate. 
This means that, when a parametric (external) resonance is excited in the presence of an internal resonance, the 
coincidence of these two types of resonances will give rise to simultaneous resonances. Simultaneous resonances are 
characterized by the fact that several modes might exist in the response, even though only one mode is directly 
excited by the excitation. Internal resonance is responsible for this phenomenon and, as a consequence, for a 
significant transfer of energy from the directly excited mode to other modes of vibration. 
 
Simultaneous resonances involving two modes of vibration of parametrically-excited rectangular plates have been 
studied theoretically and experimentally by the present author [1-6]. The problem of the occurrence of simultaneous 
resonances involving three spatial forms of vibration is dealt in this paper and covers an existing gap in our 
understanding of the dynamic buckling of structures. The simply-supported rectangular plate under investigation is 
acted upon by periodic in-plane forces uniformly distributed along two opposite edges; the other two edges are 
stress-free. General rectangular plates are used, the aspect ratio of the plate being regarded as an additional parameter 
of the system. 
 
 
2   Statement of the Problem 

The continuous system under investigation is a rectangular plate simply supported along its edges, and loaded by 
periodic in-plane forces uniformly distributed along two opposite edges, as shown in Figure 1. The x-y plane is 
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selected in the middle plane of the undeformed plate. The plate is assumed to be thin, initially flat, of uniform 
thickness, and the plate material is elastic, homogeneous, and isotropic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. Plate and load configuration 
 
Restricting the problem to the relatively low frequency range where the plate oscillations are predominantly flexural, 
the effect of transverse shear deformations as well as in-plane and rotatory inertia forces can be neglected. The plate 
theory used in this analysis may be described as the dynamic analog of von Karman’s large-deflection theory. The 
dimensionless differential equations governing the nonlinear flexural vibrations of the plate can be written as 
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, , , , , ,2XXXX XXYY YYYY XY XX YYR F R F F R W W W + + = −                                         (1) 

4 2 2 4
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in which a comma denotes partial differentiation with respect to the corresponding coordinates, R = b/a is the plate 
aspect ratio and ζ = 12(1−ν2), and where 

1 22 2 4, , , ,X x a Y y b W w h F f Eh T t Eh aρ = = = = =                                   (3) 

In equations (3), w(x, y, t) is the lateral displacement and f(x, y, t) the Airy stress function, h denotes the plate 
thickness, ρ the density, E the Young’s modulus, and t the time. The nonlinearity arising in the problem under 
consideration is due to large amplitudes generating membrane forces. 
 
The boundary conditions are related to both the lateral displacement and the stress function. The stress conditions 
may be expressed in the dimensionless form as 

, , 0YY XYF F= =      at X = 0, 1                                                        (4a) 

, ,( ), 0XX Y XYF N T F= − =      at Y = 0, 1                                                 (4b) 
 

in which NY(T) = NY0 + NYT cos(ΛT), and NY = (a2/Eh3)ny. The supporting conditions for a simply-supported 
rectangular plate are written as 
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2
, , 0XX YYW R W Wν= + =      at X = 0, 1                                                (5a) 

2
, , 0YY XXW W R Wν= + =      at Y = 0, 1                                                (5b) 

 

The problem consists in determining the functions F and W which satisfy the governing equations, together with the 
boundary conditions. 
 
 
3   Method of Solution 

The solution for the stress function is represented by double series consisting of appropriate beam functions which 
satisfy the relevant boundary conditions 

21
2( , , ) ( ) ( ) ( ) ( )mn m n Y

m n
F X Y T F T X X Y Y X N T= −∑∑                                       (6) 

where Fmn(T) are time-dependent load factors. The solution for the lateral displacement is sought in the form of 
double series consisting of the eigenfunctions of the freely vibrating system or beam functions which satisfy the 
relevant boundary conditions 

( , , ) ( ) ( ) ( )pq p q
p q

W x Y T W T X Y= Φ Ψ∑∑                                                 (7) 

where Wpq(T) are time-dependent generalized coordinates of the system. 
 
Applying the generalized double Fourier approach to the governing equations, using the orthogonality properties of 
the assumed functions, solving for the time-dependent stress coefficients in terms of time-dependent generalized 
coordinates of the system, omitting all indices associated with the half-wave spatial form in the unloaded direction, 
and introducing linear (viscous) damping lead to a system of nonlinear ordinary differential equations for the time 
functions as follows 

( )22 1 2 cos 0ijk
m m m m m m m i j k

i j k
W C W W M WW Wµ θ+ + Ω − + =∑∑∑&& &                              (8) 

where m = 1, 2, 3, …, Cm represents the coefficient of viscous damping, Ωm = ωm[1−NY0/Nm]1/2 is the free vibration 
circular frequency of a rectangular plate loaded by the constant component NY0 of the in-plane force while Nm 
represents the static critical load according to the linear theory, µm = NYT/2(Nm−NY0) is the load (or excitation) 
parameter, in which NYT is the dimensionless amplitude of the harmonic in-plane loading, and θ(T) is the total phase 
angle of harmonic excitation. 
 
The set of equations (8) constitutes an infinite number of simultaneous nonlinear ordinary differential equations. In 
practice, however, only a finite number of these equations are taken into account for the solution. Moreover, the plate 
theory used in the present analysis restricts the study to an investigation of the lower flexural modes which are 
generally the most important in dynamic stability problems. Then, bearing in mind that the actual problem concerns 
only three spatial forms of vibration, the set of differential equations of motion can be generalized as follows 
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where Γm1 through Γm10 are coefficients of the nonlinear (cubic) terms, and i, j, k are three generalized spatial forms 
of vibration appeared in the possible internal resonances. Hence, the number of terms in the expansion for the lateral 
displacement depends on the highest mode appeared in the internal resonance to be analyzed. 
 
 
4    Solution of the Temporal Equations of Motion 

Mathematical techniques for solving nonlinear problems are relatively limited and approximate methods are 
generally used. The method of asymptotic expansion in powers of a small parameter, ε, is an effective tool for 
studying nonlinear vibrating systems with slowly varying parameters. In the present analysis, this method is used to 
solve the temporal equations of motion. 
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Assuming that the actual mechanical system is weakly nonlinear, the damping, the excitation and the nonlinearity 
can be expressed in terms of the above-mentioned small parameter, and that the instantaneous frequency of 
excitation and the load parameter vary slowly with time. Then, the system of temporal equations of motion (9) can be 
rewritten in the following asymptotic form 

2 22 cos 2 , , ,ijk
m m m m m m m m m i j k

i j k
W W W C W M WW W m i j kε µ θ

 
+ Ω = Ω − − = 

 
∑∑∑&& &                 (10) 

 
Confining ourselves to the first order of approximation in ε, we seek a solution for the system of equation (10) in the 
following form 

( )cos ( )m m mW a τ ψ τ=                                                             (11) 
 

where τ = εT represents the slowing time, and where am and ψm are functions of time defined by the system of 
differential equations 

( )1 , , ,m
m m m mda dT a A aε τ θ ψ= =&                                                   (12) 

( )1( ) , , ,m
m m m m md dT B aψ ψ τ ε τ θ ψ= = Ω +&                                           (13) 

 

Functions A1
m(τ, θ, am, ψm) and B1

m(τ, θ, am, ψm) are selected in such a way that equation (11) will, after replacing am 
and ψm by the functions defined in equations (12) and (13), represent a solution of (10). 
 
Following the general scheme of constructing asymptotic solutions and performing numerous transformations and 
manipulations, we arrive finally at a system of equations describing the nonstationary response of the discretized 
system. 
 
 
5    Stationary Response Related to Simultaneous Resonances 

It is known that the governing equations with cubic nonlinearities are associated with many physical systems. The 
presence of these nonlinear terms has an important influence upon the behavior of the system, especially under a 
condition of internal resonance. An internal resonance is possible when two or more natural frequencies are 
commensurable or almost commensurable 

0i i
i

n Ω ≅∑                                                                     (14) 

where ni are positive or negative integers. For convenience, of all possible internal resonances associated with a flat 
rectangular plate, we will consider in this analysis only an internal resonance of the type 2Ωk − Ωi − Ωj ≈ 0. 
 
When an internal resonance coincides with an external resonance (in this case, it is a principal parametric resonance 
when the excitation frequency is approximately equal to twice the natural frequency associated with a particular 
mode of vibration, i.e., Λ ≈ 2Ωm,) the combination of the two types gives rise to simultaneous resonances. This kind 
of resonances is characterized by the fact that the system in question vibrates simultaneously in more than one 
normal mode and at different frequencies, although only one of the modes is directly excited by the parametric 
excitation. In this paper, the following case of simultaneous resonances is investigated: Λ ≈ 2Ωk and 2Ωk − Ωi − Ωj ≈ 
0. 
 
As mentioned previously, performing numerous transformations and manipulations, stationary values for the 
specified simultaneous resonances are found to be 
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in which 
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 Γ Ω
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                                                            (16) 

 

and where ψ = θ − 2ψk is the phase angle associated with the principal parametric resonance involving mode k, and 
ψ′= 2ψk −ψj −ψi represents the phase angle corresponding to the above-mentioned internal resonance. The steady-
state amplitudes, ai, aj and ak, and the phase angles, ψ and ψ′, can be obtained by solving equations (15) by a 
numerical technique. Nevertheless, from equation (16), it follows that one of the resonance conditions is 
 

11 6sgn sgni jΓ = Γ                                                                 (17) 
 

It appears from equations (15) that there are two possibilities for a nontrivial solution Either ak is nonzero and both ai 
and aj are zero, or all three are nonzero. The first possibility indicates that the specified internal resonance has no 
effect on the system response and only the principal parametric resonance involving mode k may occur. For the latter 
possibility, as mode k is the only mode excited by the parametric excitation, the presence of two other modes i and j 
in the response is possible only by the transfer of energy from the excited mode to these two modes through internal 
mechanism. 
 
 
6    Numerical Results 

In order to gain further insight into the occurrence of simultaneous resonances involving three spatial forms of 
vibration, numerical evaluation was performed for two thin rectangular plates of different aspect ratios. The various 
values of the plate parameters and material constants used for the numerical calculations are presented in Table 1. 
The specific material properties are selected in accordance with rectangular plates cut from commercially available 
sheets. 
 

 
Specimen 

Dimensions (mm) 
a × b × h 

Aspect ratio 
R 

        P-1                        440 × 762 × 1.016                       1.7318 
Material: Polycarbonate 
Modulus of elasticity, E = 2.385586 Gpa 
Poisson’s ratio, ν = 0.45 
Density, ρ = 1205.48 kg/m3 
        P-2                      174.6 × 508 × 0.914                       2.9095 
Material: Plexiglas 
Modulus of elasticity, E = 4.412645 Gpa 
Poisson’s ratio, ν = 0.38 
Density, ρ = 1187.85 kg/m3 

 

Table 1. Specifications of plate parameters 

 
For the numerical evaluation, both specimens have been reduced to seven-degree-of-freedom systems. Loaded and 
unloaded (free) natural frequencies, as well as possible internal resonances, of each specimen are given in Table 2. In 
this table, Pcr = NY0/N* designates the ratio of static critical loading, in which N* is the lowest critical load, and is 
used as a parameter in the calculations. 
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Plate 

Mode 
m 

Free natural frequency (Hz) 
ωm 

Loaded natural frequency (Hz) 
Ωm (Pcr = 0.5) 

 
Internal resonances 

 
 
 

P-1 

1 
2 
3 
4 
5 
6 
7 

4.998473 
8.748084 

14.997434 
23.746525 
34.995357 
48.743928 
64.992240 

3.926654 
6.185829 
11.782527 
20.269177 
31.393024 
45.073165 
61.280105 

Ω3 − 3Ω1 ≅ 0 
2Ω5 − Ω7 − Ω1 ≅ 0 
2Ω3 − Ω7 + Ω5 ≅ 0 

Ω1 + Ω2 + Ω5 − Ω6 ≅ 0 

 
 
 

P-2 

1 
2 
3 
4 
5 
6 
7 

32.456921 
42.744122 
59.889458 
83.892927 
114.754531 
152.474269 
197.052142 

28.536560 
29.505831 
37.877419 
56.675918 
84.797939 
120.996734 
164.659768 

2Ω5 − Ω7 − Ω1 ≅ 0 
2Ω2 − Ω7 + Ω5 ≅ 0 
2Ω3 − Ω6 + Ω1 ≅ 0 

 

Table 2. Natural frequencies and possible internal resonances of both specimens 

Of all internal resonances mentioned, only the internal resonance 2Ω5 − Ω7 − Ω1 ≅ 0, together with the principal 
parametric resonance Λ = 2Ω5, will be considered in this paper. Typical results associated with the specified 
simultaneous resonances are shown in Figures 2 to 4. In the figures, Dcr (= NYT/N*) denotes the dynamic component 
NYT of the periodic in-plane force normalized to the lowest critical load N*, and is called the ratio of dynamic critical 
loading; ∆ (= 2πCm/Ωm) is the decrement of viscous damping and has a value of 0.01. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. Frequency-response curves associated with the simultaneous resonances Λ = 2Ω5 
               (principal parametric) and 2Ω5 − Ω7 − Ω1 ≅ 0 (internal) 

 
In Figures 2 and 3, the results show the response amplitudes as functions of the excitation frequency (λ, in Hz). In 
Figure 2, the frequency-response curves are associated with the simultaneously occurring resonances Λ = 2Ω5 
(principal parametric resonance involving the fifth spatial form) and 2Ω5 − Ω7 − Ω1 ≅ 0 (internal resonance involving 
the first, fifth and seventh mode shapes). Hence the fifth mode is excited parametrically and the presence of the first 
and seventh spatial forms is possible only by the transfer of energy from the directly-excited fifth mode to two other 
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modes through internal mechanism. It is interesting to note that the lowest mode (first mode) dominates the response, 
and the unstable branch of the parametrically-excited fifth mode is over its stable solution. This study confirms again 
that the lowest mode always dominates the deflection, no matter what parametrically-excited mode is. 
 
The interaction between the specified internal resonance and the mentioned principal parametric resonance on the 
frequency-response curves is illustrated in Figure 3. As can be seen, the parametric response of the fifth mode occurs 
when Λ ≅ 2Ω5. At a certain frequency, however, the specified internal resonace occurs simultaneously; this causes 
the amplitude of the first mode, which is directly excited by the parametric excitation, drops drastically and becomes 
less than the amplitude of the first mode, which is due to internal resonance, but is still higher than the amplitude of 
the seventh mode. This implies that there is a significant transfer of energy from the fifth mode to the first mode, and 
only a small amount of energy from the fifth mode to the seventh mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. Effect of the internal resonance 2Ω5 − Ω7 − Ω1 ≅ 0 on the frequency-response curves 
               corresponding to the principal parametric resonance Λ = 2Ω5 

 
Figure 4 depicts the load amplitude-response curves associated with the specified simultaneous resonances. The 
results illustrate again the domination of the first mode to the deflection of the motion and show once more the 
significance of energy transfer when these kinds of resonances occur. 
 
 
7    Concluding Remarks 

The present work covers an existing gap in our understanding of the parametric excitation of continuous systems and 
presents a rational analysis of the occurrence of simultaneous resonances involving three spatial forms of vibration in 
parametrically-excited rectangular plates. 
The results of this investigation indicate that the coincidence between a principal parametric resonance and an 
internal resonance will give rise to simultaneous resonances. Simultaneous resonances are characterized by the fact 
that the system in question resonates simultaneously in more than one normal mode although only one of the modes 
is parametrically excited by a single harmonic excitation. Internal resonance is responsible for strong modal coupling 
and, consequently, for a significant transfer of energy from the excited mode into other nonexcited modes. Because 
of this modal interaction, modes other than the one excited can dominate the response and, generally, the lowest 
mode dominates higher modes. 
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Figure 4. Load amplitude-response curves associated with the simultaneous resonances 
               Λ = 2Ω5 and 2Ω5 − Ω7 − Ω1 ≅ 0 
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