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Free Vibration Analysis of Stiffened Laminated Plates  
Using a New Stiffened Element 

 
Tran Ich Thinh, Ngo Nhu Khoa 

 
 
A new 9-noded rectangular stiffened plate element for the vibration analysis of laminated stiffened plates based 
on Mindlin’s deformation plate theory has been developed. The stiffened plate element is a combination of basic 
rectangular element and beam bending component. The stiffened plate element has been developed to include 
the effects of transverse shear. The element can accommodate any number of arbitrarily oriented stiffeners and 
obviates the use of mesh lines along the stiffeners. Free vibration analyses of stiffened laminated plates have 
been carried out with this element and the results are compared with those published. The finite element results 
show very good matching with the experimental ones. 
 
 
1     Introduction 
 
Stiffened composite plates are used extensively in many industrial structures: Aerospace structures, ship hulls, 
bottom shell-machine girder plate of composite boat etc. So determination of the natural frequencies of the 
stiffened composite plates is a practical demand, in order to solve the anti-vibration problems when the structures 
are subjected to periodic exciting loads. 
  
A number of analytical and numerical models for the analysis of stiffened laminated plates have been proposed 
in the literature such as Kirk (1961), Satsangi (1987), Mukhopadhyay (1989), Kolli (1996), Satish Kumar 
(2000), Gangadhara Prusty (2003)  etc. Among all the numerical methods, the finite element method (FEM) has 
been found to be reasonably accurate with less complexity to model stiffened plates. A more accurate model is 
achieved by representing the plate and stiffeners separately and maintaining compatibility between them. 
Thomson (1988) et al. and Satsangi (1987) used 8-noded rectangular plate elements and assumed that the 
stiffeners follow the same displacement field as that of the plating. The FE model of Kolli (1996) consists of the 
9-noded rectangular plate element and 3-noded beam element, the beams are placed along the plate nodal lines. 
Edward et al. (2000) used a stiffened plate element that is composed of a rectangular 9-noded rectangular plate 
element and a number of 3-noded stiffener elements placed within the plate element and parallel to the element 
edges. Gangadhara Prusty (2003) studied linear static analysis of composite hat-stiffened laminated shells using 
8-noded rectangular plate element and 3-noded beam element. The existing finite element techniques stimulate 
the stiffener to pass along the plate nodal lines. In these studies, no discussion has been made for the stiffeners of 
various shapes and having arbitrary orientation in the plate. To overcome this problem, Satish Kumar and 
Mukhopadhyay (2000) have developed a stiffened triangular plate element for the analysis of laminated stiffened 
plates. This basic plate element is a combination of Allman’s plane stress triangular element and discrete 
Kirchhoff-Mindlin plate bending element. However, the interpolation of displacements in their model is very 
complex and the natural frequencies obtained are less accurate than those published. 
 
In an attempt to efficiently solve this problem, we developed a new 9-noded stiffened rectangular laminated 
element. This element can accommodate any number of arbitrarily oriented stiffeners and is completely free 
from the usual constraints on the mesh division of the stiffened plates. 
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2      Stiffness Matrix of the Stiffened Plate Element 
 
The displacement field based on the first-order shear deformation plate theory is given by 
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The displacement field of stiffener 
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here, x  is x-axis of stiffener. In general, ( ) ϕ=∠ xx ,  as shown in Figure 1. 
 

 
 

Figure 1. Nine-noded rectangular stiffened plate element 
 
 
The element stiffness matrix of stiffened plate is determined by 
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where p
eK  and st

eK are the element stiffness of flat plate and stiffener respectively and given by Ngo (2007) 
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A, B, D and A’ are popular matrices (Tran, 1994); Dst is the rigidity matrix of the stiffener; bst is the width of 
stiffener, Bi is the strain-displacement matrix of the plate (Ngo, 2007). 
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Ni are quadratic shape functions; Bst is the strain-displacement matrix of the stiffener  
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Tst is the strain transformation matrix of the stiffener (Ngo, 2007) 
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The rigidity matrix of the stiffener due to parallel laminations: The rigidity matrix of the stiffener is expressed as 
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where, the coefficients of rigidity matrix are calculated by  ignoring  the  stresses  in  the  width  or y  direction 
of stiffener ( )0=== zxyxy ττσ  but not the strains ( )0≠≠≠ zyyxy γγε : 
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st
jiC' (i, j = 1, 2, 3, 4, 5 and 6) are the stiffness coefficients of the stiffener material and 
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The rigidity matrix of the stiffener due to perpendicular laminations: The rigidity matrix of the stiffener is 
expressed as 
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where ds is the height (depth) of the stiffener. 
 
 
3      Mass Matrices 
 
The kinetic energy of plate element with distributed mass is given by 
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We can express u in terms of the nodal displacements, a, by using shape functions N. 
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where [ ]eM  is the mass matrix of plate element 
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The kinetic energy of stiffener member with distributed mass is given by 
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stu&  can be expressed by 
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These terms in plate element coordinates are expressed as 
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The displacement compatibility between the stiffener and the plate is ensured by the beam element’s 
displacement field which is interpolated from plate element’s nodes 
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where 
2

hds +
=δ  is eccentricity, ds is depth of stiffener, and h is thickness of plate.  

Finally 
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and [ ]e st
M  is the mass matrix of stiffener 
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4      Results and Discussions  
 

4.1   Validation of the Model 

 
Example 1 
 
In order to check the reliability and accuracy of the present element, we  consider the free vibration of a simply 
supported blade stiffened plates. The variation of natural frequencies with stiffener eccentricity are presented for 
specially orthotropic cross-ply laminates with three equally spaced stiffeners (Figure 2). The geometry of the 
stiffened laminates are a × b × h = 400 × 300 × 3.4 (mm3), the lamination of plate and stiffeners is (900/00/900)T. 
The ply properties are E1 = 9.71 GPa; E2 =  3.25 GPa; G12 = G13 = 0.9025 GPa; G23 = 0.2356 GPa; ν12 = 0.29; 
ρ=1347kg/m3 for both the plate and the stiffener. The width of the stiffener is 3 mm. The numerical results are 
compared with those of  Biswal and Ghosh, (1994) (4-noded rectangular element with 7 d.o.f at each node) and 
Chao and Lee (1980). The variation of natural frequencies with stiffener half-depth (Figure. 3) shows better 
agreement with those of Biswal and Ghosh than those of Chao and Lee. This may be due to neglecting of the 
shear effects by Chao and Lee. 
 

 
Figure 2. Laminated stiffened plates, eccentricity is variable 
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Example 2 
 
In this example, we consider the free vibration of a cross-stiffened plate. The geometry of cross-stiffened plate is 
a = b = 254 mm, h =12.7 mm, dsx = dsy = 25.4 mm, bsx = bsy = 6.35 mm. Where, dsx, bsx is depth and width of the 
x-direction stiffener; dsy, bsy is depth and width of the y-direction stiffener. The following ply properties of 
AS4/3501 graphite/epoxy composites are used: E1 = 144.8 GPa; E2 = 9.67 GPa; G12 = G13 = 4.14 GPa; G23 = 
3.45 GPa; ν12 = 0.3; ρ = 1389.23 kg/m3. The stiffener laminations are parallel to the plate midplane. The 
frequencies of the first four modes of various boundary conditions of a (0/90) and (45°/-45°) cross-stiffened plate 
are presented in Table 1 and they are compared with those reported in (Satish Kumar et al., 2000), 
(Chandrasekhra et al., 1997) and (Ray, 1998), using 10×10 mesh for full plate. The fundamental  frequencies 
shown good agreement with those of Satish Kumar et al.(2000), whereas the frequencies of higher modes 
compared excellently with those of Ray (1998). According to the analysis of Satish Kumar et al.(2000), 
Chandrasekhra et al. (1997) used the reduced stiffness coefficients in the rigidity matrix of the stiffener which 
reduced its stiffness. Moreover, they have ignored the coupling coefficients in the strain-energy of the stiffener 
element. Therefore, the fundamental  frequencies with the present element  are higher than that of Chandrasekhra 
et al.  
 
 

0o/90o 45o/-45o 
 Boundary 
Conditions 

Mode  Present Ref. [3] Ref. [13] Ref. [14] Present Ref. [3] Ref. [13] 

 
SSSS 

1 
2 
3 
4 

1014.0 
2139.5 
2397.9 
2683.0 

1076.0  
2059.6  
2302.7  
2635.8  

961.81  
1954.41 
2325.41  
2641.18  

1092.64 
1837.04 
2491.85 
2654.51 

1007.1 
2284.7 
2434.5 
3208.3 

1005.7 
2254.4 
2358.7 
3247.4 

870.94 
2164.51 
2470.08 
3863.65 

 
CCCC 

1 
2 
3 
4 

1542.1  
2848.3 
3041.4    
3653.5 

1666.5  
2929.2  
3140.1  
3666.3  

1583.50  
2831.53  
3165.27  
3634.62  

1753.79 
2716.65 
3319.93 
3686.53 

1573.8 
2909.4 
2967.7 
3896.3 

1714.2 
3049.3 
3077.4 
3943.9 

1465.37 
2918.90 
3178.11 
4813.52 

 
CCSS 

1 
2 
3 
4 

1333.7  
2259.6 
2929.5 
3221.7 

1445.8 
2107.7 
3054.0 
3196.8 

1342.1  
2101.6  
3024.58  
3211.27  

1468.82 
2029.11 
3074.45 
3212.13 

1304.0 
2483.6 
2835.2 
3557.0 

1380.9 
2471.6 
2912.6 
3609.6 

1191.43 
2508.92 
2803.99 
3992.08 

 
Table 1. Effect of boundary conditions on natural frequencies (Hz) of cross-stiffened plates 

 
 
4.2    Experimental Study 
 
Let us consider a stiffened rectangular composite plate made of glass fiber/polyester 3210 with lamination 
[M300/WR800/M300/WR800/M450]. Where, M300 denotes glass fiber in Mat form with its weight per unit 
area is 300g/m2; M450 denotes glass fiber in Mat form with its weight per unit area is 450g/m2 and WR800 
denotes glass fiber in WR form with its weight per unit area is 800g/m2.The sides of plate are a × b = 800 × 
500mm2. The plate is reinforced by 6 longitudinal (nx = 6) and 9 transverse (ny = 9) closed section (hat) stiffeners 
(Figure 4). The stiffeners were made by glass fiber in Mat and have the same sizes as follows: bst × hst ×  tst = 10× 
20 × 1.8 mm3 (Nguyen, 2005).  
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Figure 4. Experimental set-up and testing procedure for stiffened composite plate 
 
 
Three first natural frequencies of unstiffened and stiffened plates subjected to various boundary conditions were 
measured by using a Multi-vibration measuring machine (DEWE BOOK-DASYLab 5.61.10) and are given in 
Table 2. 
 

     Plates Mode  
 

Clamped  
at 4 edges 

CC at x-edges 
     SS at y-edges 

CC at y-edges 
    SS at x-edges 

Simply Supported  
at 4 edges 

 
Unstiffened 

1 
2 
3 

36.430 
53.560 
82.320 

34.595 
45.770 
68.510 

22.620 
43.600 
61.030 

18.310 
33.530 
59.380 

 
Stiffened 

1 
2 
3 

147.660 
206.330 
322.370 

139.280 
168.630 
259.810 

82.070 
166.500 
242.080 

65.460 
118.640 
225.135 

 
Table 2. Experimental results on natural frequencies (Hz) of  stiffened composite plate 

 
 
4.3    Finite Element Results and Comparison 
 
In this section, we calculate the natural frequencies for the above stiffened composite plate by our computer 
program. The first three natural frequencies will be compared with those of experimental ones. 
The elastic constants of material used in the calculation were determined by our mechanical tests (Tran et al., 
2005). 
 
- For Mat layer: E11 = E22 = 4.807GPa; G12 = 2.05GPa; ν12 = 0.17 
- For WR layer (0° and 90°): E11 = 10.58GPa; E22 = 2.64GPa; G12 = 1.02GPa; ν12 = 0.17 
- Thickness of a M300 layer, tM3 = 0.6mm; thickness of a M450 and WR8 layer, tM45 = tWR8 =1mm 
 
The hat-stiffeners are modeled, as shown in Figure 5. The laminations of stiffeners are perpendicular and parallel 
to the plate midplane. The frequencies of the first three modes of various boundary conditions of a cross-
stiffened plate using 12×12 mesh for full plate are presented in Table 3 and they are compared with those 
reported in (Nguyen, 2005). The fundamental frequency of clamped plate at 4 edges shown very good agreement 
with those of Nguyen (2005), whereas the frequencies of simply supported plate at 4 edges are higher than that 
of Nguyen (2005). This may be due to the boundary condition constructed in experimental study (not simply 
supported absolutely). 
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Figure 5. Modelling of hat-stiffener. 

 
 

Plates 
 

Mode  
 

Clamped  
at 4 edges 

CC at x-edges 
SS at y-edges 

CC at y-edges 
    SS at x-edges 

Simply Supported  
at 4 edges 

 
Unstiffened 

1 
2 
3 

38.141 (4.5%) 
56.620 (5.4%) 
90.764 (9.3%) 

35.742 (3.2%) 
47.591 (3.8%) 
72.857 (5.9%) 

23.219 (2.6%) 
46.712 (6.6%) 
64.335 (5.1%) 

19.202 (4.6%) 
35.500 (5.5%) 
62.402 (4.8%) 

 
Stiffened 

1 
2 
3 

152.804 (3.4%) 
211.263 (2.3%) 
324.447 (0.6%) 

144.064 (3.3%) 
178.788 (5.6%) 
268.849 (3.3%) 

90.196 (9,2%) 
168.866 (1.4%) 
259.238 (6.6%) 

72.442 (9%) 
125.446 (5.4%) 
235.724 (4.5%) 

Remark: (...%) denotes the error percent between FE results and experimental ones. 
 

Table 3. Natural frequencies (Hz) of  stiffened plates  calculated by finite element program 
 
 
 
5     Conclusions 

 
In this paper, we have presented a new 9-noded stiffened rectangular plate element for the vibration analysis of a 
laminated composite plate with rectangular and hat laminated stiffeners. The stiffener is elegantly modeled and 
does not introduce any additional nodes. The plate element accommodates any number of arbitrary oriented 
stiffener elements and eliminates the usual constraints imposed on the mesh division of stiffened plates. The 
model is validated by comparing with existing results documented in the literature. Some problems on free 
vibration analyses of laminated stiffened plates made of graphite/epoxy and glass/polyester are analyzed with the 
present element. Moreover, the element has been very effective in analysis of both thin and moderately thick 
plates. The finite element results compare well with experimental ones. It is recommended that the present 
formulation can be used to determine the fundamental frequencies required in the design and analysis of 
eccentric composite stiffened plates. 
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