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Thanh Ngọc Trần, R. Kreißig, M. Staat 
 
 
A method is introduced to determine the limit load of thin shells using the finite element method. The method is 
based on an upper bound limit and shakedown analysis with the elastic-perfectly plastic material model. A 
nonlinear constrained optimisation problem is solved by using Newton’s method in conjunction with a penalty 
method and the Lagrange dual method. The numerical investigation of a pipe bend subjected to bending 
moments proves the effectiveness of the algorithm. 
 
 
1  Introduction 
 
In practical engineering, the calculation of the load carrying capacity for structures has been a problem of great 
interest to many designers. In the early 20th century, it could be relatively easily obtained by imposing the stress 
intensity at a certain point of the structure equal to the yield stress of the material. This implies that structural 
failure occurs before yielding. However, many materials, for example the majority of metals, exhibit distinct, 
plastic properties. Such materials can deform considerably without breaking, even after the stress intensity 
attains the yield stress. This implies that if the stress intensity reaches the critical (yield) value, the structure does 
not necessarily fail or deform extensively. To this case, elastic-plastic structural analyses permit higher loads. All 
design codes for pressure vessels make implicitly use of Limit and Shakedown Analysis (LISA) in the 
assessment of elastic stresses. This is a kind of extrapolation of linear elastic analyses to the plastic behaviour 
which is critically discussed in (Taylor et al., 1999). In Europe LISA has been developed as direct plasticity 
method for the design and the safety analysis of severely loaded engineering structures, such as nuclear power 
plants and chemical plants, offshore structures etc. (Gokhfeld and Cherniavsky, 1980), (König, 1987), (Staat 
2002; Staat and Heitzer, 2003). Annex B of the new European pressure vessel standard EN 13445-3 is based on 
LISA (European standard, 2005-06), (Taylor et al., 1999), (Zeman, 2006) thus indicating the industrial need for 
LISA software. All design codes are based on perfect plastic models. The extension of LISA to hardening 
materials is no problem (Staat and Heitzer, 2002). The direct route calculates the design resistance (limit action) 
with respect to ultimate limit states of the structure. The following limit states are included in EN 13445-3 
Annex B: 
• Gross Plastic Deformation (GPD), with excessive local strains and ductile rupture (collapse).  
• Progressive plastic Deformation (PD), with incremental collapse (incremental collapse, ratchetting). 
• Instability (I), with large displacements to a new stable geometry of the structure under compressive actions 

(buckling). 
• Fatigue (F), with alternating plasticity (AP) or with high cycle fatigue. 
• Static Equilibrium (SE), with possible overturning and rigid body movement. 
A structure is said to shakedown under a load history if all plastic deformations decay and the plastic dissipation 
is bounded so that the structural response becomes asymptotically elastic. The PD check and the (non-
mandatory) AP check can be made directly by shakedown analysis. Limit analysis is included as the special case 
of a monotonic load path and is used in a direct DPD check. 
 
Shell structures are used in many engineering applications due to their efficient load carrying capacity relative to 
material volume. From the engineering point of view, shells often allow to build structures with high strength 
and stiffness and relatively low weight. From the analysis point of view, shell structures stand for a challenging 
problem mostly due to the three-dimensional finite rotations. Plasticity in shell structures is accounted either by 
means of integration of stress over the thickness (layer approach), or stress resultant modelling. By the latter 
approach the yield surface becomes more complicated than with the former approach, thus requiring a special 
consideration in algorithm for updating of the stress resultant. Ilyushin (1948) has derived a yield surface which 
expresses the von Mises yield function in terms of the stress resultants of thin shells and only neglects the effects 
of the transverse shear forces. In this sense it is an exact yield surface for geometrically linear problems. 
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Landgraf (1968) has presented a method for determining the yield condition in stress resultants including shear 
forces axisymmetric plate and shell problems, based solely on Feinberg's static principle and hence not involving 
any kinematic considerations. The linear approximation of the exact Ilyushin yield surface has been 
recommended in (Taylor et al., 1999) for the design checks of pressure vessels. Bisbos and Papaioannou (2006) 
have used it for lower bound shakedown analysis of steel shells. Second-order cone and semidefinite 
formulations of material yield and failure criteria with application to the linearized Ilyushin yield surface can be 
found e.g. in (Bisbos, Pardalos, 2007). In the corrections of (Taylor et al., 1999) it is remarked that the linear 
approximation of the Ilyushin function is not accurate enough for limit analyses and that Ivanov’s quadratic 
approximation is almost as fast but much more accurate.  
 
This paper concerns the application of a kinematic formulation for the finite element limit and shakedown 
analysis of general thin shells. The technique is based on an upper bound approach using the re-parameterized 
exact Ilyushin yield surface and a nonlinear optimization procedure. The solution of the problem is obtained by 
discretizing the shell into finite elements. The exact Ilyushin yield surface has been used by Seitzberger (2000) 
to solve plastic buckling collapse problems of thin-walled structures with the so-called sequential limit analysis 
method. It is typical for the direct plasticity methods that the development of algorithms for the structural 
problem is influenced by the material modelling which is here isotropic, elastic perfectly-plastic von Mises 
material. In this sense the paper does not follow the design codes which prescribe the Tresca yield function for 
limit analyses and the von Mises yield function for shakedown analyses. Using different yield surfaces for the 
same material may be the legal approach of pressure vessel design but not a particularly physical one.  
 
 
Nomenclature 
 
α +  upper bound of shakedown load factor 

yσ  yield stress 
,ij ijN M   physical in-plane and flexural stress resultant components 

,n m   normalized in-plane and flexural stress resultant vectors 
,ij ijε κ   physical mid-plane strain and curvature components 

,e k&   normalized mid-plane strain rate and curvature vectors 
,ε σ&% %   “engineering” strain rate and stress resultant vectors 

0 0 0 0, , ,N M ε κ  normalized quantities 
, ,P P Pε εκ κ  intensities of quadratic incremental strain resultants 
, ,t tm mQ Q Q  intensities of quadratic stress resultants 

, ,υ β γ  new parameters of the Burgoyne and Brennan yield surface 
pdε%   incremental plastic strain resultant vector 

m  number of load vertices ( 1m =  in limit analysis) 
AP alternating plastic deformation (low cycle fatigue) 
GPD gross plastic deformation (collapse) 
PD progressive plastic deformation (ratchetting) 
NG  total number of Gauss’ points on the structure 
 
 
2  Plastic Dissipation Function in Term of Stress Resultants 
 
Consider a convex polyhedral load domain L  and a special load path consisting of all load vertices k̂P  
( 1,...,k m= ) of L . In lower bound shakedown analysis an interior approximation to the shakedown load 
domain αL  is calculated. Melan’s static theorem states that a given structure will shakedown if the yield 
condition is satisfied and the stresses are statically admissible for all load vertices k̂P  ( 1,...,k m= ), (Gokhfeld 
and Cherniavsky, 1980), (König, 1987). The maximum safe load factor α −  is obtained for which the structure is 
safe against GPD, PD and AP for all load histories included in α −L . 
 
In upper bound shakedown analysis an exterior approximation of the shakedown load domain is calculated. 
Koiter’s kinematic theorem states that a given structure will not shakedown over a certain load path if the total 
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plastic strain rate 
1

m
kk =

∆ = ∑ε ε& &% %  over this load path is kinematically compatible and the external power exceeds 

the plastically dissipated power ( )p pD ε&% , (Gokhfeld and Cherniavsky, 1980), (König, 1987). The minimum 
failure load factor α +  is obtained for which the structure may fail by GPD, PD or AP for some load history 
included in α +L . It is shown in optimization theory that the largest lower bound and the least upper bound are 
the same (i.e. { } { }sup infα α− += ) so that both methods give the same solution. The GPD check is usually the 
more restrictive one because it involves a safety factor whereas no safety factor is included in the PD check. 
Therefore the numerical examples in this paper concentrate on limit analyses. Limit analysis is the special case 
that L  contains only one point. The only load vertex 1̂P  ( 1m = ) represents a monotonous loading to the plastic 

collapse at the limit load 1̂Pα . 
 
Let h  be the shell thickness and yσ  the uniaxial yield stress. The non-dimensional ‘engineering’ stress and 
strain resultant vectors are introduced as follows 

[ ] [ ] [ ]
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in which 0 yN hσ= , 2
0 / 4yM hσ= , 2

0 (1 ) /y Eε σ ν= −  and 0 04 / hκ ε=  are the normalized quantities, 

{ },  ( , 1, 2 )N Mαβ αβ α β ∈  are the physical in-plane force and bending moment components (see figure 1) and 

{ },  ( , 1,2 )αβ αβε κ α β ∈  are physical mid-plane strain and curvature components. The quadratic strain intensities 
are defined in terms of the incremental ‘engineering’ strain resultant by 
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where pdε%  is the plastic strain increment resultant vector, P  and its inverse 1−P ,  ( 1,2,3)i i =P  are 
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Figure 1.  Static shell quantities 
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Ilyushin (1948) published the derivation of a stress resultant yield surface as presented in figure 2, describing the 
case where a cross-section of a shell is fully plastified. The derivation of this yield surface is based on the 
following assumptions: perfectly plastic isotropic material behaviour obeying the von Mises’ yield criterion, the 
validity of the normality rule for the plastic deformations, plane stress conditions in each material point and the 
validity of the Kirchhoff hypothesis for both total strains and plastic strains. Corresponding to the quadratic 
strain resultant intensities, quadratic stress resultant intensities can also be defined 

       ( 0),

  ,  

    ( 0).

T

t

T

tm

T

m

Q

Q

Q

= ≥

=

= ≥

n Pn

n Pm

m Pm

                             (4) 

However, this yield surface has not been used because the parametric form in which it was described was not 
amenable to numerical calculation because it is ill-conditioned and unstable. In order to avoid the difficulties 
arising with the parameterization of the Ilyushin yield surface and to use the exact yield surface in practical 
computations, Burgoyne and Brennan (1993) introduced three new parameters 

2,       and   =P P
P P

ε εκ

κ κ

υ β γ υ β= = − − .                    (5) 

With these parameters, the plastic dissipation function per unit area of the mid-plane of the shell may be written 
in the form (Tran et al., 2007) 

( )2 2
0 0 1 1 2 2 0( )

3
p p PD N Kκε β β γ β β γ γ= + + + +ε&%                    (6) 

where 1β , 2β  and 0K  are 

( ) ( )
( ) ( )
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2
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ln .
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K

β β β β

β γ β
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 − + + − =
 + + − + 

         (7) 

 

 
Figure 2.  Exact Ilyushin yield surface eq (4) constructed in terms of β  and γ ; the edge line is 0γ = . 

 
It is noted that pD  is convex but not everywhere differentiable (Capsoni and Corradi, 1997). In order to allow a 
direct nonlinear, non-smooth, constrained optimization problem, a “smooth regularization method” should be 
used by adding to γ  and Pκ  a small positive number, namely 2η . Thus, in this case, equation (7) is amenable to 
a numerical evaluation for all values of pε&% . 
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3  Upper Bound Limit and Shakedown Algorithm for General Shell Structures 
 
The kinematic shakedown theorem (Koiter’s theorem) states that a given structure will not shakedown over a 
certain load path contained within the load domain L  if the total plastic strain rate over this load path (cycle) is 
kinematically compatible and the external power exceeds the internally dissipated power. It means that the upper 
bound shakedown load factor α +  which is the smaller one of the low cycle fatigue limit, and the ratchetting limit 
is the ratio between the dissipated power and the external power. By discretizing the whole structure by finite 
elements and forcing the external power equal to one, the shakedown limit, may be found by the following 
minimization  
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The first constraint means that the total generalized strain rate over a load cycle ε&%  must be kinematically 
compatible. The second one is the normalization condition implying that the total external power is equal to one. 

iB  denotes the deformation matrix, u&  is the displacement rate vector, iw  is the weighting factor of the Gauss 
point thi  and NG  is the total number of Gauss points in the structure. Eσ%  denotes the fictitious elastic 
generalized stress vector which would appear in an infinitely elastic material for the same loading. By 
introducing some new notations 

0 0
ˆ,     ,     E

ik i ik ik ik i i iw N wε= = =e t B B&& % %ε σ                     (9) 

where ike& , ikt , ˆ
iB  are the new strain rate vector, new fictitious elastic stress vector, and new deformation 

matrix, respectively, we obtain a simplified version for the upper bound shakedown analysis 
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This is a nonlinear constrained optimization problem. By applying Newton’s method in conjunction with a 
penalty method and the Lagrange dual method to solve the Karush-Kuhn-Tucker optimality conditions of the 
system (10) we obtain the Newton directions du&  and ikde& , which assure that a suitable step along them will lead 
to a decrease of the objective function α + . If the relative improvement between two steps is smaller than a given 
constant, the algorithm stops and leads to the shakedown limit factor (Tran et al., 2007). It is noted, that in limit 
analysis there is only one load and this load does not vary. Then the load domain reduces to one point ( 1m = ). 
This fact means that the above upper bound of the shakedown load factor reduces to the upper bound of the limit 
load factor. 
 
 
4  Numerical Example 
 
We present in this section the numerical calculation of plastic collapse limit load for a well-known shell problem 
in order to evaluate our algorithm. Consider an 90o  elbow with mean radius r , bend radius of curvature R  and 
thickness h . One of its ends is supposed clamped and the other one is subjected to a constant in-plane closing 
moment IM  or a constant out-of-plane bending moment IIM  as shown in figure 3b. The curvature factor is 
defined as follow 

 2

Rh
r

λ = .                                                                                                                      (11) 
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Generally, 0.5λ ≤  corresponds to a highly-curved pipe, while λ → ∞  corresponds to a straight pipe. In order to 
evaluate the model, different values of λ  within the range [ ]0.1,  1.2  are examined. Our model that is used for 
elastic-plastic analysis is meshed by 700 quadrangular flat 4-node shell elements as shown in figure 3a. The 
elastic-perfectly plastic material model is used with 208000 MPaE = , 0.3ν = , 250 MPayσ = . For each test 
case, some existing analytical and numerical solutions found in literature including large displacement analysis 
are briefly represented and compared for the sake of completeness. 
 
An external moment applied to one end of the pipe bend, tends to deform the annular cross section significantly 
both in and out of its own plane, i.e. it is subjected to warping and ovalization. The moment-end rotation curves 
show a defined limit load behaviour for the closing mode of in-plane bending but not for the opening mode 
(Shalaby, Younan, 1998). This difference can be explained as an effect of large displacements. We do not 
consider the opening mode here. The direct plasticity methods have been used to treat stochastic uncertainties 
with great advantages in (Tran et al. 2007). The direct limit and shakedown analysis is not only very effective 
but it also provides a well defined limit state function and the sensitivities that are required for first and second 
order reliability analysis. This approach could be extended to stochastic fields to consider the effect of 
imperfections such as thickness variations on the collapse of shells.  
 

Elbow under in-plane closing Bending Moment  

We define the limit load factor / s
I I IM Mα = , where IM  is the limit moment of the elbow and s

IM  is the limit 
moment of the straight pipe which has the same radius as the elbow. Calladine (1974) proposed a lower bound 
solution for an infinite, strongly-curved pipe ( 0.5λ ≤ ) 

 2 / 30.9346C
Iα λ= .                                                                                                      (12) 

 

This solution is considered in the literature to come close to the experimental limit load factor (Bolt and 
Greenstreet, 1972; Goodall, 1978; Griffiths, 1979). According to Yan (1997), it is a good approximation when 

0.7λ < . For a slightly-curved pipe ( 0.7λ ≥ ), he proposed an approximate solution which is validated by 
numerical analysis 

       cos
6

Y
I

π
α

λ
 =  
 

.                                                                   (13) 

 
(a)  

 
 

(b) 

Figure 3. FE-mesh and geometrical dimensions 
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Desquines (1997) proposed a more general analytical solution as a lower bound, which can applied for any value 
of λ  

      
2

1
1 0.3015

De
Iα

λ −
=

+
.                                                                                                  (14) 

Spence and Findlay (1973) also expressed an analytical solution for the limit load of an elbow  

 0.60.8 ,     1.45SF
Iα λ λ= < .                                                                                         (15) 

 

All the foregoing expressions are based on small displacement analysis and assume perfectly plastic material 
behavior. Based on large displacement analysis, Goodall (1978) proposed the maximum load-carrying capacity 
of the elbow subjected to closing bending moment as 

 
2 /31.04

1
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I

λ
α

β
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+
.                                                                                                          (16) 

where 

                                       ( )2 / 324 3(1 ) 3
2

3
yr

Eh
ν σ λ

β
π

 −
= + 

  
  

Based on the experimental study at CEA DEMT, Touboul et al. (1989) proposed the following equations of 
closing collapse moments of elbows 

 2 /30.715T
Iα λ= .                                                                                                         (17) 

Drubay et al. (1995) expressed another closing mode collapse moments of elbows as 

 2/ 30.769Dr
Iα λ= .                                                                                                       (18) 

 

Our numerical results are introduced in table 1 and figure 4, compared with these above analytical solutions and 
a numerical solution of Yan (1997). It is shown that our solutions compare well with the other analytical 
solutions, which are based on small displacement theory, but bigger than those which are based on large 
displacement theory. They converge as an upper bound of Calladine’s solution and lower bound of Desquines’s 
solution. 
 

λ  Calladine 
(12) 

Yan 
(13) 

Desquines 
(14) 

Spence & 
Findlay (15) 

Goodall 
(16) 

Touboul 
(17) 

Drubay 
(18) 

Present 
paper 

0.100 0.2013 - 0.1791 0.2001 0.1489 0.154 0.1657 0.2155 
0.200 0.3196 - 0.3422 0.3046 0.2817 0.2445 0.263 0.3279 
0.250 0.3709 - 0.4144 0.3482 0.3401 0.2838 0.3052 0.3900 
0.300 0.4188 - 0.4794 0.3885 0.3947 0.3204 0.3446 0.4614 
0.363 0.4756 - 0.5515 0.4355 0.4593 0.3638 0.3913 0.5200 
0.400 0.5074 - 0.5888 0.4617 0.4955 0.3882 0.4175 0.5589 
0.500 0.5887 - 0.6732 0.5278 0.5879 0.4504 0.4844 0.6260 
0.600 0.6648 - 0.7377 0.5888 0.6741 0.5087 0.5471 0.6930 
0.650 0.7013 - 0.7639 0.6178 0.7153 0.5365 0.577 0.7227 
0.700 0.7368 0.7330 0.7868 0.6458 0.7554 0.5637 0.6063 0.7494 
0.750 - 0.7660 0.8069 0.6732 0.7945 0.5902 0.6348 0.7773 
0.800 - 0.7933 0.8244 0.6998 0.8327 0.6162 0.6627 0.7974 
0.903 - 0.8365 0.8544 0.7525 0.909 0.668 0.7184 0.8341 
1.000 - 0.8660 0.8765 0.8000 0.9782 0.715 0.769 0.8617 
1.200 - 0.9063 0.9093 0.8925 1.1138 0.8074 0.8684 0.9006 

Table 1.  Limit load factors of elbow under in-plane closing bending moment 
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Figure 4.  Limit load factors of elbow under in-plane closing bending moment 

 
 

λ  Yan  
(19a) 

Yan  
(19b) 

Present 
paper 

0.100 0.2763 - 0.2476 
0.200 0.4188 - 0.4047 
0.250 0.4788 - 0.4709 
0.300 0.5341 - 0.5244 
0.363 0.5989 - 0.5675 
0.400 0.6348 - 0.6063 
0.450 0.6813 - 0.6337 
0.500 0.7257 0.7143 0.6575 
0.550 - 0.7374 0.6924 
0.600 - 0.7591 0.7245 
0.650 - 0.7796 0.7539 
0.700 - 0.7991 0.7808 
0.750 - 0.8177 0.8053 
0.800 - 0.8355 0.8276 
0.903 - 0.8699 0.8674 
1.000 - 0.9000 0.8984 
1.200 - 0.9564 0.9467 

Table 2.  Limit load factors of elbow under out-of-plane bending moment 
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Figure 5.  Limit load factors of elbow under out-of-plane bending moment 

 

Elbow under out-of-plane Bending Moment  

We define the limit load factor / t
II II IIM Mα = , where IIM  is out-of-plane limit moment of the elbow, t

IIM  is 
the torsion limit moment of the axle which has the same radius as the elbow. 
By this definition, Yan (1997) proposed an analytical solution for the elbow subjected to out-of-plane bending 
moment 

 0.61.1 ,        0.5Y
IIα λ λ= < ,                                                                                        (19a) 

     1/30.9 ,       0.5 1.4Y
IIα λ λ= ≤ ≤ .                                                                               (19b) 

Numerical results are introduced in table 2 and figure 5, compared with the analytical solution of Yan (1997). It 
is shown that our solutions compare well with Yan’s solution outside the range 0.4 0.7λ≤ ≤ . 
 
 
5  Conclusions 
 
The numerical solutions demonstrate that the proposed method is capable of identifying reasonable estimates of 
the limit load factor for a wide range of thin shell problems. It has been tested against several limit loads which 
have been calculated in literature. A numerically very effective method is achieved from the lesser 
computational cost by using shell elements compared with volume elements and by direct plasticity methods 
which achieve plastic solutions in the computing time of only several linear elastic steps. This method seems to 
be particularly suited to comparatively large problems or to the application in structural optimization and 
structural reliability. 
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