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This report deals with the torsional vibration of a flexible drive system with non-uniform transmission 
mechanisms. The dynamic model of this system can be viewed as a parametric torsional vibration system, 
since the reduced moments of inertia of the rotating parts in the model are time varying. Firstly, the 
differential equations of motion for the system are established in general by using the Lagrangian equation 
of the second type. Then, the parametric vibration model of a ship propeller drive will be considered as a 
typical practical example. The initial conditions will be taken into account to find periodic solutions of the 
mathematical model derived from the vibration model. Some results of the forced response of the vibration 
system in time and frequency domain are included.    
 
 
1  Introduction 
 
Transmission mechanisms are usually used for transformation of the motion from the driver output into 
motion of the working components in many technical applications, e.g. processing machines, ship propeller 
drives and agricultural machines.  
 
It is well known that the non-uniform transmission characteristic of mechanisms leads to the phenomena of 
parametric vibrations of the entire flexible drive system. In general, the dynamic model of this system can be 
viewed as a parametric torsional vibration system, since the reduced moments of inertia of the rotating parts 
in the model are time varying. The governing equations of motion for the system in the steady state can be 
ordinary linear or non-linear differential equations having periodic, time-varying coefficients. An excellent 
review about the parametric vibration of drive systems with planar mechanisms as well as the theoretical 
background of the subject may be found in Dresig (2006). This subject ranges from general mathematical 
principles to applications to specific classes of mechanisms, such as cam, planar four-bar linkages and slider-
crank mechanisms.  
             
The purpose of this report is to investigate the parametric torsional vibration of a drive system with non-
uniform transmission mechanisms. Firstly, the differential equations of motion for the system are established 
in general by using the Lagrangian equation of the second type. Then, the parametric vibration model of a 
ship propeller drive is described in detail. This system includes a four-cylinder engine connected to a 
flywheel and a gearbox. The initial conditions are taken into account to find periodic solutions of the 
mathematical model derived from the vibration model. Based on this, the forced response of the vibration 
system is calculated using numerical methods.    
 
 
2  Modelling of the Mechanical Drive System as a Parametric Torsional Vibration System 

 

The general model of torsional vibration systems investigated in this report is schematically shown in Figure 
1. The mechanical system of the driver shaft, the transmission mechanism and the operating mechanism can 
be considered as set of n rotating disks connected by elasto-dissipative elements with time-invariant stiffness 

ik  and constant damping coefficient .id  Let us introduce into our study the moments of inertia of  rotating 
disks ( )i iJ ϕ  as a function of the rotating angle , ( 1,2..., ),i i nϕ =  and the torques acting on the disks 

( , ).i i iM ϕ ϕ&  This kind of the model is also considered in ref. (Dresig and Holzweissig, 2006). 
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Figure 1. Mechanical model of a parametric torsional vibration system 

The kinetic energy T, the potential energy Π and the dissipative function Φ of the system can be expressed in 
the following forms 
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By using the Lagrangian equations of the second type  
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the differential equations of motion for this system can then be written in the form 
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where we use the notation 
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Now we consider the case which often occurs in practical application. When the angular velocity Ω of the 
driver output is assumed to be constant in the steady state 

       1 ,tϕ = Ω  (9) 

it leads to the following relation 
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If we assume that iϕ  varies little from its mean value during the steady state motion, i.e. there is only small 
torsional vibration iq  in the system, then the moment of inertia ( )i iJ ϕ and torque , , )i i iM t( ϕ ϕΩ &  depend 
essentially on the rotating angular 1 .tϕ Ω=   Using the Taylor series expansion around qi = 0, we get 

 2
, ,
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Substituting Eqs. (12) and (13) into Eqs. (6) and (7) and neglecting nonlinear terms, we obtain the linear 
differential equations of the torsional vibration for the mechanical drive system with non-uniform 
transmission mechanisms as follows 
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Eqs. (14) - (16) can be rewritten in the compact matrix form as 

  ( ) ( ) ( ) ( )t t t tΩ + Ω + Ω = ΩM q D q K q h&& &  (17) 
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The methods for finding periodic solutions of Eq. (17) under considering the initial conditions have already 
been investigated in some studies, e.g. references Nguyen Van Khang (1982, 1986), Nguyen Van Khang 
(1996),  Nguyen Van Khang and Vu Van Khiem (1996). The above described theory on parametric torsional 
vibration is illustrated by the following example with numerical simulations.   

3   Parametric Torsional Vibration of a Ship Propeller Drive    

3.1  Vibration Model 

 
A ship propeller drive is schematically shown in Figure 2. This system includes a four-cylinder engine 
connected to a flywheel and a gearbox. Four crankshafts are the part of the engine which translate 
reciprocating linear motion of pistons into the rotating motion of the driving shaft. The drive system can be 
considered as a typical torsional vibration system due to the torsional elasticity of the driving shaft, gears and 
the propeller.  

    

 

 

 

 

 

 

 

 

 

 

Figure 2. A ship propeller drive 

 

Figure 3 shows the torsional vibration model of the ship propeller drive.  The crankshafts are modelled by 
four rotating disks with the reduced moments of inertia ( )i iJ ϕ  ( 1, 2,3,4).i =  Moments of inertia J5, J6 and  J7  
for the flywheel, gearbox and propeller are assumed to be constant.  M1, M2, M3 and M4 denote the torques 
load applied on the system and M7 represents the resistance torque acting on the propeller.    

 

flywheel four-cylinder engine gearbox propeller 

forward 
speed 

reverse  
gear 
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Figure 3. Torsional vibration model of the ship propeller drive    
 
 
3.2  Reduced Moment of Inertia of the Crankshaft  
 

Let us consider the motion of piston B connected to crank AC through connecting rod CB as shown in Figure 
4 (as would be found in internal combustion engines). The well-known kinematic relationship of the 
mechanism is given by  

 cos cosBx r +lϕ ψ=  (23) 

 sin sinψ λ ϕ=  (24) 

where l and r are rod length and crank radius respectively, ϕ  is crank angle and xB the piston pin position 
along cylinder bore centerline x, .r lλ =   

 
    
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Geometric layout and kinematic schema of a crankshaft    
 

The position of the center of mass S of the connecting rod in the fixed coordinate frame {x,y} is given by  

  cos cos sinS S Sx r +ϕ ξ ψ η ψ= +  (25) 

 sin sin cosS S Sy r ϕ ξ ψ η ψ= − +  (26) 

Where ,S Sξ η  are coordinates of  S in the body-fixed coordinate frame { },ξ η as shown in figure 4. By 
differentiating Eqs. (23) - (26) with respect to time, we obtain velocity relationships  
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 ( )sin sin cosS S Sx rϕ ϕ ψ ξ ψ η ψ= − − −& &&  (29) 

 ( )cos cos sinS S Sy rϕ ϕ ψ ξ ψ η ψ= − +& &&  (30) 

Taking into account that 1λ <  and 

 
2

2 2 2cos 1 sin 1 sin
2
λ

ψ λ ϕ ϕ= − ≈ − , (31)  

then Eq.(28) takes the form 

 2 21cos 1 sin
2

ψ λϕ ϕ λ ϕ ≈ + 
 

& &  (32) 

The kinetic energy of the crankshaft can be expressed in the following form  
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where JA is mass moment of the inertia of the crank referred to the z-axis through fixed point A, mS denotes 
the mass of the connecting rod and mB is the mass of the piston, JS is the moment of the inertia of the 
connecting rod referred to the center of mass S.     
 
By substituting Eqs. (27), (29), (30), (32) into Eq. (33) and using some trigonometric relations, for instance 
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we can rewrite kinetic energy T of the crankshaft in term of ϕ  and ϕ&  as  
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The reduced moment of inertia ( )J ϕ  has the form of a periodic function 
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According to the flat configuration, the ship engine uses four cranks with throws spaced 180 degrees apart. 
Using  Eq. (35) we obtain     
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where coefficients (1)
ka  and (1)

kb  for k = 1, 2, .., 6 are determined by Eqs. (37)-(44). 
 
3.3  Differential Equations of Motion of the System in the Steady State   

 
As already mentioned in the previous section, the differential equations of forced torsional vibration of the 
system in the steady state can be written in the compact form   

  ( ) ( ) ( ) ( )t t t tΩ + Ω + Ω = ΩM q D q K q h&& &  (49) 

where angular velocity 7ϕ&  of the propeller is assumed to be constant, 7 ,ϕ = Ω&  and the generalized 
coordinates  
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are defined by the following relation (see also Figure 3) 
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Where the torques acting on four cranks can be approximately represented by a truncated Fourier series        
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Then, using Eq. (54) we have 
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Finally, the vector of generalized forces in Eq. (49) takes the form 
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3.4  Numerical Calculations  
 
In this work, we consider only periodic vibrations which are a commonly observed phenomenon in 
mechanical drive systems. The periodic solutions of  Eq. (49)  can be obtained by choosing appropriate initial 
conditions for the vector of variables q.  
 
The following parameters are used for numerical calculations: Rotating speed of the propeller 

1700 (rpm)n = corresponding to 178 (1/ ),sΩ =  stiffness k1 = k2 = k3 = 1,2.106 Nm; k4 = 1,8.106 Nm;       k5 = 
0,1166.106 and  k6 = 4,555.103 Nm  for the forward speed, damping coefficients  d1 = d2 = d3 = d4 = 1,484 
(kg.m2/s); d5 = d6 = 0, moments of inertia  J0 = 0,03825 kg·m2; J5 =1,122 and J6 = 0,01355 (kg.m2). The 
Fourier coefficients of ( )i iJ ϕ  are (1)

1a = 1,757.10-3;   (1)
2a  = -6,52.10-3; (1)

3a  = -1,772.10-3;                        
(1)
4a = -119,47.10-6; (1)

5a  = 15,91.10-6; (1)
6a  = 1,82.10-6 kg·m2 and  (1) 0kb = . The mean value of the torques iM  

(i = 1,...,4) used for the calculation is M0 = 60.38 (Nm). The Fourier coefficients (2)
ka  and (2)

kb  (see Eq. 55) 
can be estimated by experimental works, e.g. Haug (1952), Hafner and Maass (1984) and Nguyen Thuong 
Hien (1998). These values are given in Table 1 for  m = 48. 
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k (2)
ka  

(Nm) 

(2)
kb  

(Nm) 

k (2)
ka  

(Nm) 

(2)
kb  

(Nm) 

1 -103,591 -90,719 25 1,570 1,540 

2 46,335 142,002 26 -0,836 -1,512 

3 -0,886 -132,584 27 0,457 1,365 

4 -11,925 104,299 28 -0,14 -1,295 

5 11,551 -80,856 29 -0,131 1,230 

6 -8,926 69,324 30 0,412 -1,126 

7 13,933 -60,712 31 -0,601 1,023 

8 -17,566 49,307 32 0,847 -0,865 

9 17,606 -37,897 33 -0,970 0,601 

10 -15,038 30,010 34 0,961 -0,359 

11 14,096 -24,808 35 -0,858 0,261 

12 -13,684 20,019 36 0,894 -0,205 

13 13,109 -15,307 37 -0,926 0,039 

14 -11,705 11,388 38 0,865 0,185 

15 10,490 -8,356 39 -0,661 -0,324 

16 -9,055 6,009 40 0,501 0,361 

17 7,870 -4,345 41 -0,375 -0,38 

18 -6,936 3,079 42 0,289 0,425 

19 6,367 -1,721 43 -0,145 -0,486 

20 -5,316 0,396 44 -0,017 0,527 

21 4,095 0,333 45 0,215 -0,508 

22 -3,146 -0,496 46 -0,351 0,431 

23 2,785 0,717 47 0,452 -0,355 

24 -2,286 -1,202 48 -0,519 0,315 

Table 1.  The Fourier coefficients of  torques iM   

 
Some calculating results are shown in Figures 5-8. The solutions obtained by numeric integration of Eq. (49) 
are shown in Figures. 5 and 8. These curves can be useful to estimate the dynamic errors within the 
considered drive system. From the frequency spectrums in Figures 6 and 7, it can be clearly seen that the 
torsional vibration of the drive shaft are dominant at the second harmonic of the rotational frequency Ω . In 
addition, the spectrums show different frequency components, such as / 2, 3 / 2, 5 / 2.Ω Ω Ω  This is a 
commonly observed phenomenon in parametric vibration systems. The dynamic loads acting on the 
transmission system are then obtained as modelling results (see Figure 7).          
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Figure 5.  Calculating results for qi  (i = 1,…,6) 
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Figure 6.  Frequency spectrum of q1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Dynamic load 3 4 3( )k q q− acting on the shaft segment between disk 3 and disk 4 
a) time curve, b) frequency spectrum 
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Figure 8.  Calculating results of 6q& a) in time domain, b) in frequency domain 
 
 

4   Conclusions 
 
In this study, the parametric torsional vibration of flexible drive systems with non-uniform transmission 
mechanisms was generally investigated. This problem is addressed through the incorporation a time-varying 
vibration model of non-uniform transmission mechanisms into the time-invariant torsional vibration model of 
a uniform transmission system. The torsional vibration model of a ship propeller drive with slider-crank 
mechanisms was presented as an application example. The mathematical model is derived from the vibration 
model, and the governing equations of motion for the system in the steady state are ordinary equations having 
periodic, time-varying coefficients.  
 
By using numerical methods, the forced responses of the torsional vibration system are obtained. We 
consider only periodic solutions of the governing equations of motion.  The modelling results can be useful to 
estimate dynamic errors and dynamic loads within the drive system in the early stage of machine design. 
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