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Parametric Torsional Vibration of Mechanical Drive Systems
with non-uniform Transmission Mechanisms

Nguyen Van Khang, Nguyen Phong Dien, Hoang Manh Cuong

This report deals with the torsional vibration of a flexible drive system with non-uniform transmission
mechanisms. The dynamic model of this system can be viewed as a parametric torsional vibration system,
since the reduced moments of inertia of the rotating parts in the model are time varying. Firstly, the
differential equations of motion for the system are established in general by using the Lagrangian equation
of the second type. Then, the parametric vibration model of a ship propeller drive will be considered as a
typical practical example. The initial conditions will be taken into account to find periodic solutions of the
mathematical model derived from the vibration model. Some results of the forced response of the vibration
system in time and frequency domain are included.

1 Introduction

Transmission mechanisms are usually used for transformation of the motion from the driver output into
motion of the working components in many technical applications, e.g. processing machines, ship propeller
drives and agricultural machines.

It is well known that the non-uniform transmission characteristic of mechanisms leads to the phenomena of
parametric vibrations of the entire flexible drive system. In general, the dynamic model of this system can be
viewed as a parametric torsional vibration system, since the reduced moments of inertia of the rotating parts
in the model are time varying. The governing equations of motion for the system in the steady state can be
ordinary linear or non-linear differential equations having periodic, time-varying coefficients. An excellent
review about the parametric vibration of drive systems with planar mechanisms as well as the theoretical
background of the subject may be found in Dresig (2006). This subject ranges from general mathematical
principles to applications to specific classes of mechanisms, such as cam, planar four-bar linkages and slider-
crank mechanisms.

The purpose of this report is to investigate the parametric torsional vibration of a drive system with non-
uniform transmission mechanisms. Firstly, the differential equations of motion for the system are established
in general by using the Lagrangian equation of the second type. Then, the parametric vibration model of a
ship propeller drive is described in detail. This system includes a four-cylinder engine connected to a
flywheel and a gearbox. The initial conditions are taken into account to find periodic solutions of the
mathematical model derived from the vibration model. Based on this, the forced response of the vibration
system is calculated using numerical methods.

2 Modelling of the Mechanical Drive System as a Parametric Torsional Vibration System

The general model of torsional vibration systems investigated in this report is schematically shown in Figure
1. The mechanical system of the driver shaft, the transmission mechanism and the operating mechanism can
be considered as set of n rotating disks connected by elasto-dissipative elements with time-invariant stiffness
k, and constant damping coefficient d,. Let us introduce into our study the moments of inertia of rotating

disks J,(¢,) as a function of the rotating angle ¢;, (i=12..., n), and the torques acting on the disks
M. (¢;,9;). This kind of the model is also considered in ref. (Dresig and Holzweissig, 2006).

310



Ji(@y) Jo(92) J3(3) 1 (@ 1) J(@,)

Figure 1. Mechanical model of a parametric torsional vibration system

The kinetic energy T, the potential energy IT and the dissipative function ® of the system can be expressed in
the following forms

1 .
T=22.7:(0)9 (1)
i=1
1 n—1 2
Im= Ezki (qu+1 _qu) @
i=1
1 . .2
D= Ezdi ((Pi+1 _(Pi) 3

i=l1

By using the Lagrangian equations of the second type

afer) ot oo, "
dt\ 0¢; ) Og; o9, 0¢;

the differential equations of motion for this system can then be written in the form

.o 1 . . .
J1(901)901+EJ1,1(901)9012+d1((P1_902)+k1(§01_(l’2)= M, ©)
J (@), +5Ji, (o )901'2 —d; ((PH _qu)+ d; ((Pi _(Pi+1)
—kiy ((pi—l _(pi)+ki (‘Pi _(Pi+1) = M, (6)
(for i=2,3,....,.n—1)
.1 . . .
Jn ((pn )an +5Jn, n(an )(p;f +dn—l (an—l _(pn ) + kn—l (an—l _(pn) = Mn (7)
where we use the notation
d
Jii=——Ji(9;) ®)
do;

Now we consider the case which often occurs in practical application. When the angular velocity Q of the
driver output is assumed to be constant in the steady state

@, =, (€))
it leads to the following relation
0, =Qt+q,, i=23,..,n (10)

M, =M, (O, @,,¢,)=M,(QU+2r, ¢,,¢;), i=12,.,n (11)
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If we assume that ¢, varies little from its mean value during the steady state motion, i.e. there is only small
torsional vibration g, in the system, then the moment of inertia J,(¢;)and torque M,( ¢, ¢;,¢;) depend

essentially on the rotating angular ¢, = Q2. Using the Taylor series expansion around ¢; = 0, we get

J,(Q1+) =T,Q0)+ T, (@04, 3T, Q04 +.. (12)
M (91, Qi +q,,Q+ ¢,) = M (Qt)+ M, (Q)g, + M, ,(Q)g; +... (13)
M, M, 2
where M, , =L, M, , =a—,l, Ji =d—J,-((P,-)-
' o9, oog, " de!

Substituting Eqgs. (12) and (13) into Eqs. (6) and (7) and neglecting nonlinear terms, we obtain the linear
differential equations of the torsional vibration for the mechanical drive system with non-uniform
transmission mechanisms as follows

jz(Qf)éjz +[d1 +d, +Q°72,2(Qt)_[‘72,2p(gt):|q.2 —dyq,

1 _,- - | - _ (14)
+|:k1 +k, +EQZJ2,2(QI)_M2,2 (Qf)}b —kyq; = _EQZJz,z(Ql)‘*‘Mz(Ql)
-71' QNG —d; g, + I:di—l +d; + QZZ Q1) - Mi, i (Ql)J 4, —d:q;,
—k, g, +[k,., +k +%sz,ﬁ Q1) - M, l.(Qt)}ql. —kq,,, = —%szq Q1)+ M,(Q1) (15)
(for i=3,..., n—1)
jn (Qt)qn - dn—l ('?n—l + I:dn—l + £l7n,n (Qt) - Mn,np (Qt):l qn
[ - 1 - _ (16)
—k, . q,,+| k. +EQ o QO =M, (Q1) |g, = _EQ Jn Q1)+ M, (Q1)
Egs. (14) - (16) can be rewritten in the compact matrix form as
M(Q1)q+D(Qr)q+K(Qr)q = h(Q) (17)
Where
T
q=[q2 qy .. qn] (18)
L@ 0 .. 0
0 J,Q) .. 0
M(©Q1) = () (19)
0 0 .. J,(Q)
(d+dy +QT,, —M,,, —d, 0 1
—d, dy+dy+QJ5 5 -M; 5, —d,
D(Qt) = 0 —d, dy+d,+QJ, ,—M,,, . (20)
0 0 —d,
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k, +k, +1927m -M,, —k, 0
—k, ky +k, %9273,33 — M, —k,
1) =
K(CX) | (21)
0 —k, ks +k, +5£22J4’44 -M,,
0 0 —k,
_ P }
- Jyy+ M,
1 o= =
——Q%J M
hQ)=| 273373 (22)
1, —
—EQ Jpw+ M,

The methods for finding periodic solutions of Eq. (17) under considering the initial conditions have already
been investigated in some studies, e.g. references Nguyen Van Khang (1982, 1986), Nguyen Van Khang
(1996), Nguyen Van Khang and Vu Van Khiem (1996). The above described theory on parametric torsional
vibration is illustrated by the following example with numerical simulations.

3 Parametric Torsional Vibration of a Ship Propeller Drive

3.1 Vibration Model

A ship propeller drive is schematically shown in Figure 2. This system includes a four-cylinder engine
connected to a flywheel and a gearbox. Four crankshafts are the part of the engine which translate
reciprocating linear motion of pistons into the rotating motion of the driving shaft. The drive system can be
considered as a typical torsional vibration system due to the torsional elasticity of the driving shaft, gears and
the propeller.

............................................................

| | | | reverse )
T lTl E :
| J_ | | J_ | forward
- - speed
----------------- f our—cyhnderengme flywheel gearbox propeller

Figure 2. A ship propeller drive

Figure 3 shows the torsional vibration model of the ship propeller drive. The crankshafts are modelled by
four rotating disks with the reduced moments of inertia J;(¢;) (i =1,2,3,4). Moments of inertia Js5 Js and J;

for the flywheel, gearbox and propeller are assumed to be constant. M, M,, M; and M, denote the torques
load applied on the system and M- represents the resistance torque acting on the propeller.
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Figure 3. Torsional vibration model of the ship propeller drive

3.2 Reduced Moment of Inertia of the Crankshaft

Let us consider the motion of piston B connected to crank AC through connecting rod CB as shown in Figure
4 (as would be found in internal combustion engines). The well-known kinematic relationship of the
mechanism is given by

Xz =rcos@ +/cosy (23)
siny = Asin¢@ (24)

where [ and r are rod length and crank radius respectively, ¢ is crank angle and xp the piston pin position
along cylinder bore centerline x, A =r/I.

Figure 4. Geometric layout and kinematic schema of a crankshaft

The position of the center of mass S of the connecting rod in the fixed coordinate frame {x,y} is given by
Xy =rcos@ +E&g cosy +1g siny (25)
yg =rsing—&Eg siny +ng cosy (26)

Where &g ng are coordinates of S in the body-fixed coordinate frame {é,n} as shown in figure 4. By
differentiating Eqgs. (23) - (26) with respect to time, we obtain velocity relationships

Xy =—r@sing —ly siny 27

. A cos

v = ¢ cosg (28)
cosy
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Xy =—r@sing —l/}(és siny —n cosy/)
Vs =r@cosQ —y (gs Cosy +1g Sin‘//)

Taking into account that A <1 and
2

. AT
cosy =+/1-A%sin’ @ zl_? sin” @,

then Eq.(28) takes the form
V= AQ cosqo(l +%/12 sin’ qoj

The kinetic energy of the crankshaft can be expressed in the following form

_1 .2 1 .2 1 .2 .2 1 .2
T—E 4P +E-]s‘l/ +Ems(xs+J’s)+EmeB

(29)

(30)

€2))

(32)

(33)

where J, is mass moment of the inertia of the crank referred to the z-axis through fixed point A, mg denotes
the mass of the connecting rod and mp is the mass of the piston, Js is the moment of the inertia of the

connecting rod referred to the center of mass S.

By substituting Eqs. (27), (29), (30), (32) into Eq. (33) and using some trigonometric relations, for instance

. 1
cospsin® @ = Z(cosqo —cos3p),
. 3 1 . l .
cos@sin” ¢ = —sin2@p ——sindo ,
4 8
cosgsin® @ = ! cosQ — 3 cos3p + ! cosS
¢ % 3 % 16 % 16 .,
cos@sin® ¢ = > sin2¢ — ! sindo + ! sinb6:
2 2 0 % 3 2 0 Q,
we can rewrite kinetic energy 7 of the crankshaft in term of ¢ and ¢ as
1 .
=2
The reduced moment of inertia J(¢) has the form of a periodic function
6
J(@)=J,+ Z[a,({l) cos k(p+b,£') sin k(p]
k=1

where the constant term

212 214 5 5 ) 212 214
Jo=J,+Jg [7+?J+ms {r +(§S +ns) 7+?

4 2 244 246
=2r&; 1A A |+ my r +i ,
2 64 2 8 16

and constant coefficients a{” and b{" are

At A A0
0 = |t myrl | —+—
a msris( 3 g j mpyr ( 3 2

A_2+ myg (gé +77§))~2

) _
ay,’ =J
2 N D) 2
A3t A3l
a5’ =msrts (7*7]*’"3”’(7*7
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al’ =Jg %+M+émsr§w +mgl* [%4+%J (40)
ald =%msrﬁsl4+%, a =émsrﬁsls +%§A6 (41)
b = mgrns [A—;JT;] BV = mgrns [/1 +%5] (42)
BV = mgrég [’1—22+ 31’164 ]+ Brl[;L; +%J (43)
bil) =mgig %: bs(l) =mgig %» b6(1) =mgig é_; (44)

According to the flat configuration, the ship engine uses four cranks with throws spaced 180 degrees apart.
Using Eq. (35) we obtain

Ji(p)=J,+ Z[a,f” coskq, +b,£1) sinko, ] (45)

k=1

=

Jy(p)=J,+ [ M cosk —37r)+b,fl) sink((p2 -3 )] (46)

Jy(@y)=J, + [ O cosk ¢y — )+ sink (o, —n)] (47)

S

J4(¢4)=JO+Z[ ) cosk(p, )+b,£')sink((p4—27r)J (48)
k=1
where coefficients a,(cl) and b,f” for k=1, 2, .., 6 are determined by Eqgs. (37)-(44).

3.3 Differential Equations of Motion of the System in the Steady State

As already mentioned in the previous section, the differential equations of forced torsional vibration of the
system in the steady state can be written in the compact form

M(Q¢) i+ D(Qf)q+K(Qf)q = h(Q) (49)

where angular velocity ¢, of the propeller is assumed to be constant, ¢, =€, and the generalized
coordinates

a=[¢, @ - 4] (50)
are defined by the following relation (see also Figure 3)

0, =Qt+q, i=12,..,6 (51)
According to Egs. (19)-(21) we can find

J Q) 0 0 0 0 0]
0  J,Qn 0 0 0 0
M) = 0 0 Jy,(Q0) ~ 0 0 0 (52)
0 0 0 J,Q) 0 0
0 0 0 0 J; 0
0 0 0 0 0 Jg|
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Llp

-d, 0 0 0 0
dy+dy +QJ,, M, -d, 0 0 0
-d, dy+dy +QJ, 5~ M, 5, -d; 0 0
-d, dy+d,+QJ, —M,,, -, 0
-d, dy+ds  -ds
0 -ds  ds+d |
-k, 0 0 0 0
kl +k2 + 2 22 Mz,z '1(2 0 0 0
'kz kz +k3 + 3 33 A_43 3 '1(3 0 0
0 'ka l‘3+k + 444 MA 'k4 0
0 0 —k4 ky+ky -k,
0 0 0 ko k+kg
6
J, =J,+ Z[ I cos kQr + b sin th]
k=1
6
J,=J, +Z[a cosk(Qt—3m)+b" sink (Qt - 375)}
k=1
6
Jy=J,+ Z[a}{l) cosk Qt—) +b,£1) smk(Qt n)]
k=1
6
J,=J, +Z[ Y cosk(Qt—2m)+ b sink (Qr - Zn)J

Jl,l

M

II
4 1M 52

=~
Il

M- 1M T

>~
Il

1

[ —ka( sin kQ + kb cos k€ |

1

[kza,({l) cos kQt + KbV sin th]

=1

[ (l)smk Qt— 3n)+kb(1)cosk(Qt 311)]
[ —ka(” sin k(2 —m) + kb’ cosk (Qu — ) |

[ —ka\" s1nk Qt - 21t)+kb,£l) cosk(Qt 211)]

Y[ Faf’ cosk(Qrt—3m)+ kb sink(Qt—3m)|

>>

=1
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Where the torques acting on four cranks can be approximately represented by a truncated Fourier series

p— m k )
M,(Q1) =M, + Z[a,(f) cosEQt + b,Ez)smth}

k=1

My (Qt)=My+) a,ﬁ”cos%(gt - 37r)+b,fz)sin§(Qt - 37r)}
o 59
M, (Qt)=M, +Z a,gz)cosg(Qt—ﬂ)+b,£2)sin§(Qt —n)}
k=1L
7 SIFEW. @i K
JQN)=M,+> | af cosE(Qt —21)+D smE(Qt -2m)
k=1L
Then, using Eq. (54) we have
M, ,(Qt) = ZE[—a,Ez)sinth + b,fz)cosEQt}
’ =2 2 2
M,,(Qt)= z- —a;”sin—(Qt =37 )+ b cos—(Qr -3
’ i1 2 2 2
 k k k 0
i) z_[_a,g2>sin—(gt )+ bPcos K (- n)}
’ o2 2 2
M, ,(Qt)= z- —a;”sin—(Qt — 21 ) + b cos = (Qt — 27 )
' =2 2 2
Finally, the vector of generalized forces in Eq. (49) takes the form
1,0~ 9%, ()
_ 1 =
M, (Qr) _Engz,z Q)
_ 1 -
h(Q) = | M;(Q1) —EQZJw(Qt) , (57)

_ 1 .=
M4(Qt)—EQzJ4’4(Qt)

0
0

3.4 Numerical Calculations

In this work, we consider only periodic vibrations which are a commonly observed phenomenon in
mechanical drive systems. The periodic solutions of Eq. (49) can be obtained by choosing appropriate initial
conditions for the vector of variables q.

The following parameters are used for numerical calculations: Rotating speed of the propeller
n =1700 (rpm) corresponding to Q=178 (1/s), stiftness ky =k, =k =1,2. 10° Nm; k, = 1,8. 10° Nm; ks =
0,1166.10° and k¢ = 4,555.10° Nm for the forward speed, damping coefficients d; =d, = d; = d, = 1,484
(kg.mz/s); ds = d¢ = 0, moments of inertia J, = 0,03825 kg-mz; J5=1,122 and Js = 0,01355 (kg.mz). The

Fourier coefficients of J,(p,) are a’= 1,757.107; a) = 652107 & = -1,772.107
" =-119,47.10% a” =1591.10% ¢ =1,82.10°kg'm’> and 5" = 0. The mean value of the torques M,

(i =1,...,4) used for the calculation is M, = 60.38 (Nm). The Fourier coefficients a,((z) and b,gz) (see Eq. 55)

can be estimated by experimental works, e.g. Haug (1952), Hafner and Maass (1984) and Nguyen Thuong
Hien (1998). These values are given in Table 1 for m = 48.
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k a® b k a® b
(Nm) (Nm) (Nm) (Nm)
1 -103,591 | -90,719 25 1,570 1,540
2 46,335 | 142,002 26 -0,836 1,512
3 0,886 | -132,584 27 0,457 1,365
4 11,925 | 104,299 28 -0,14 -1,295
5 11,551 |  -80,856 29 -0,131 1,230
6 -8,926 69,324 30 0,412 -1,126
7 13,933 | -60,712 31 -0,601 1,023
8 -17,566 49,307 32 0,847 -0,865
9 17,606 | -37,897 33 -0,970 0,601
10 -15,038 30,010 34 0,961 -0,359
11 14,096 | -24,808 35 -0,858 0,261
12 -13,684 20,019 36 0,894 -0,205
13 13,109 | -15,307 37 -0,926 0,039
14 -11,705 11,388 38 0,865 0,185
15 10,490 -8,356 39 -0,661 -0,324
16 -9,055 6,009 40 0,501 0,361
17 7,870 -4,345 41 -0,375 0,38
18 -6,936 3,079 42 0,289 0,425
19 6,367 -1,721 43 -0,145 -0,486
20 5,316 0,396 44 -0,017 0,527
21 4,095 0,333 45 0,215 -0,508
22 -3,146 -0,496 46 -0,351 0,431
23 2,785 0,717 47 0,452 -0,355
24 2,286 -1,202 48 -0,519 0,315

Table 1. The Fourier coefficients of torques M i

Some calculating results are shown in Figures 5-8. The solutions obtained by numeric integration of Eq. (49)
are shown in Figures. 5 and 8. These curves can be useful to estimate the dynamic errors within the
considered drive system. From the frequency spectrums in Figures 6 and 7, it can be clearly seen that the
torsional vibration of the drive shaft are dominant at the second harmonic of the rotational frequency Q . In
addition, the spectrums show different frequency components, such as Q/2,3Q/2,5Q/2. This is a
commonly observed phenomenon in parametric vibration systems. The dynamic loads acting on the
transmission system are then obtained as modelling results (see Figure 7).
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Figure 5. Calculating results for ¢; (i=1,...,6)
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Figure 7. Dynamic load k;(q, — ¢,) acting on the shaft segment between disk 3 and disk 4
a) time curve, b) frequency spectrum
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Figure 8. Calculating results of ¢, a) in time domain, b) in frequency domain

4 Conclusions

In this study, the parametric torsional vibration of flexible drive systems with non-uniform transmission
mechanisms was generally investigated. This problem is addressed through the incorporation a time-varying
vibration model of non-uniform transmission mechanisms into the time-invariant torsional vibration model of
a uniform transmission system. The torsional vibration model of a ship propeller drive with slider-crank
mechanisms was presented as an application example. The mathematical model is derived from the vibration
model, and the governing equations of motion for the system in the steady state are ordinary equations having
periodic, time-varying coefficients.

By using numerical methods, the forced responses of the torsional vibration system are obtained. We
consider only periodic solutions of the governing equations of motion. The modelling results can be useful to
estimate dynamic errors and dynamic loads within the drive system in the early stage of machine design.

Acknowledgment

This paper was completed with the financial support of the Vietnam Basic Research Program in Natural
Science

322



References

Dresig, H. and Holzweissig, F.: Maschinendynamik (7. Auflage). Springer -Verlag, Berlin (2006).
Dresig, H.: Schwingungen mechanischer Antriebssysteme (2. Auflage), Springer-Verlag, Berlin (2006).

Schiehlen, W. O. and Miiller, P. C.: Lineare Schwingungen. Akademische Verlagsgesellschaft, Wiesbaden
(1976).

Nguyen Van Khang: Dynamische Stabilitit und periodische Schwingungen in Mechanismen. Dissertation B,
TH Karl-Marx-Stadt (1986).

Nguyen Van Khang: On the dynamic stability and periodic vibration of cam mechanisms with elastic drive.
Machine Vibration, 5, (1996), 127-130.

Nguyen Van Khang: Numerischer Bestimmung der dynamischen Stabilititsparameter und periodischen
Schwingungen ebener Mechanismen. Rev. Roum. Sci. Tech. - Mech. Appl. 27 (1982), 495-507.

Nguyen Van Khang and Vu Van Khiem: Numerischer Berechnung der dynamischen Stabilidtsbedingungen
und der periodischen Schwingungen in Kurvengetrieben mit elastischer Stosselstange. Technische Mechanik,
16, Heft 4, (1996), 317-325.

Haug, K.: Die Drehschwingungen in Kolbenmaschinen. Springer -Verlag, Berlin (1952).

Hafner, K. E. and Maass, H.: Theorie der Triebwerksschwingunggen der Verbrennungskraftmaschine.
Springer -Verlag, Wien (1984).

Nguyen Thuong Hien: An Investigation on the torsional vibration of a ship drive system with DTSC50
engine. Master thesis, Hanoi University of Technology (1998).

Address: Prof. Dr.-Ing. habil. Nguyen Van Khang, Assoc. Prof. Dr.-Ing. Nguyen Phong Dien,
Department of Applied Mechanics, Hanoi University of Technology, 1. Dai Co Viet, Hanoi.
Dipl.-Ing. Hoang Manh Cuong, Haiphong Marine University, Vietnam.

email: nvankhang@mail.hut.edu.vn ; dien@mail.hut.edu.vn

323



