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The identification of damping in vibrational systems from measured free responses is a well-known problem 
and remains a challenge to dynamics specialists. Compared to an estimation of the stiffness, the damping 
coefficient or, alternatively, the  damping ratio is the most difficult quantity to evaluate. In this paper, a novel 
procedure is developed for the identification of  modal damping ratios in a multi-degree-of-freedom 
vibrational system . The procedure is based on the demodulation technique with respect to the continuous 
wavelet transform and the Morlet-wavelet function. Numerical simulations demonstrating the applicability of 
the method to multi-degree-of-freedom vibrational systems are presented. The proposed procedure is also 
compared with measured response data  from a gearbox. 
 
1  Introduction 
 
The identification of damping in vibrational systems from measured response data appears to be of crucial 
interest. Compared to an estimation of the stiffness, the damping coefficient or, alternatively, the damping 
ratio is the most difficult quantity to determine. Damping always requires a dynamic test to measure. The 
majority of damping measurements performed today are based on experimental modal analysis. However, 
this approach requires a specific measurement hardware and a complex software for determining the 
frequency response function of the system and extracting the modal data. Furthermore, the frequency 
response functions will often give significant errors resulting from influences of the noise.  
 
From a signal processing viewpoint, measured free responses of the vibrational system are usually effected 
by the modulation phenomena. The response signal is the product of the modulating signal with the high-
frequency carrier signal. The modulation signal is the signal envelope which measures the dissipation of 
vibration energy caused by damping, and the carrier signal contains some resonance frequencies of the 
vibrational system . In order to identify the damping directly from this response signal, the signal envelope 
must be extracted by using specific demodulation methods.  The Hilbert transform, combined with the digital 
filtering technique and FFT, is usually used as a traditional method for extracting the signal envelope. 
However, this method exhibits several weaknesses due to the inconvenient selection of the passband and the 
spectrum overlap.  
 
Over the past 10 years, wavelet theory has become one of the emerging and fast-evolving mathematical and 
signal processing tool for its many distinct merits (Mallat, 1999). General overview of application of the 
wavelet transform may be found in some studies, e.g. (Peng and  Chu, 2004), (Nguyen Phong Dien, 2003). 
The wavelet transform has dominant advantages in signal filtering and time-frequency characteristics, which 
make it applicable to system identification (Robertson et. al, 1998), (Newland, 1999). The state-of-the-art 
demodulation method is based on the continuous wavelet transform (CWT). Yuh-Tay Sheen and Chun-Kai 
Hung (2004) proposed a novel wavelet-based envelope function for demodulating vibration signals. This 
envelope function is effectively used to extract the envelope of the signal. The study showed that the CWT of 
the signal simultaneously provides the modal extraction and the signal envelopes for estimating damping 
ratios.   
 
Recently, the common CWT-based procedures for damping identification in multi-degree-of-freedom  
vibrational systems are already known, e.g. (Ruzzene et. al., 1997). Staszewski (1997) introduced a effective 
method  for estimating the damping ratios by using CWT and the Morlet-wavelet function. Boltezar and 
Slavic (2004) proposed a procedure  using the modified CWT and the Gabor-wavelet function to overcome a 
some limitations of Staszewski’s method, such as the edge-effect.     
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In this paper, a novel procedure is developed for the identification of  modal damping ratios in a multi-
degree-of-freedom vibrational system . Basically, the procedure is based on the demodulation technique with 
respect to the wavelet ridges of the CWT and the Morlet-wavelet function. Some extensions of the method 
will be proposed. The following numerical example demonstrates  the improvements of  the proposed 
wavelet-based method to damping identification. The procedure was also tested by measured response data  
from a gearbox. 
 
2  The Continuous Wavelet Transform  and Wavelet Ridges 
 
This section presents a brief background on the Continuous Wavelet Transform (CWT) utilized in this paper. 
A thorough discussion of wavelets is given in several references, e.g. (Mallat, 1999).  
Using a mother-wavelet function ψ(t), wavelet functions are family of functions of type   
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generated from ψ(t) by the operation of dilation by s and translation by τ. In the time domain, ψτ,s  is centered 
at τ with a spread proportional to s. The CWT of a signal x(t) is defined by 
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where ψ* is the complex conjugate of the wavelet function ψ. A wavelet coefficient Wx(τ,s) measures the 
variation of signal x(t) in a neighborhood of position τ. By varying the scale s and translating along the 
localized time τ, the wavelet modulus W ( , )x sτ  can construct a wavelet plot showing both the amplitude of 
any features in the signal versus the scale and how this amplitude varies with time. Therefore, the 
information in the time domain will still remain, in contrast to the Fourier Transform (FT), where the time 
domain information becomes almost invisible after the integration over entire record length of the signal 
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A complex mother-wavelet function can be constructed with a frequency modulation of a real and symmetric 
window g(t) 

 0( ) ( ) i tt g t e ηψ =  (4)  

where 0η  is a constant parameter and 1i = − . The Morlet mother-wavelet is obtained  with a Gaussian 
window  

 
21/ 4 / 2( ) tg t eπ − −=  (5) 

 
21/ 4 / 2ˆ ( )g e ωω π − −=  (6) 

In this study the Morlet mother-wavelet is used to perform the CWT. The relation between the scale s and the 
frequency ω of the Morlet wavelet function can be derived analytically as (Torrence and Compo, 1998) 

 0s η
ω

=     (7) 

The parameter 0η  balances the time-frequency resolution of the Morlet wavelet. Increasing the value of 0η  
will increase the frequency resolution, but it decreases the time resolution (Meltzer and Nguyen Phong Dien, 
2004). 
Consider a signal x(t) that can be expressed by a modulated sinusoidal function 
 0( ) ( )cos( ) ( ) cos ( )x t a t t a t tα β ϕ= + =  (8) 

where a(t) is the envelope function of x(t) and 0( )t tϕ α β= + , 0α  and β are constant.   

The CWT of this signal can be derived analytically by a simple function as follows (see also Mallat, 1999) 
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where 0 0ˆ ( )g sη α− is the Fourier transform of g(t) at 0 0sω η α= −  and ( , )sε τ is the corrective term. If the 
variations of a(t) are slow compared to the period 02 /π α , the term ( , )sε τ can be neglected (Mallat, 1999). 
In this case, by considering relationship (7) the CWT of x(t) can be rewritten in the form   
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The wavelet modulus W ( , )x sτ  is given by 
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Since ˆ ( )g ω  is maximum at 0ω = , expression (11) shows that W ( , )x τ ω  gets the maximal value at 

0ω α= .  The corresponding points ( )0,τ α  are called wavelet ridges. A set of these points creates a parallel 
line with the time axis in the wavelet plot. 

For 0ω =  expression (6) leads to 1/ 4ˆ (0) .g π −=  The envelope a(τ) at 0ω α=  is given by 

  1/ 4
0 0 0 0( ) 2 / ( , ) . ( , )x xa W Wτ π α η τ α τ α= = Κ  (12) 

where Κ  is a positive constant, 1/ 4
0 02 / .π α ηΚ = Expression (12) shows that the wavelet modulus 

W ( , )x τ ω  at wavelet ridges (i.e. 0ω α= ) is proportional to the envelope of signal x(t) described in 

expression (8). 0W ( , )x τ α  are called the wavelet envelope of the signal x(t) at frequency 0 .α  

 
3  Damping Ratio Estimation Procedure 
 
It is well known that a damped n-degree-of-freedom system with proportional damping  
 + + =M q Bq Cq 0&& &  (13) 

can be solved by using the modal analysis. This leads to n decoupled modal equations 

 2
0 0( ) 2 ( ) ( ) 0, 1,2,...,i i i i i ip t p t p t i nζ ω ω+ + = =&& &    (14) 

Here ( )ip t  denotes the i-th modal coordinate, 0iω  is the i-th undamped natural frequency and iζ  is the i-th 
modal damping ratio. The modal damping places an energy dissipation term of the form 02 ( )i i ip tζ ω &  
(viscous damping). This form is chosen largely for its mathematical convenience. The modal damping ratios 

iζ  are assigned by making measurements of the free damped response and estimating iζ .  

As can be seen from expression (2), the CWT is a linear transform. Its linearity makes it possible to analyze 
each i-th component xi(t) of a multi-component signal 
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The task of interest is to determine the modal damping ratios associated with each mode shape. The linearity 
of the CWT is useful for extracting modal data of each mode from measured free responses of the system.  
Consider the free response of a linear vibrational system  for the unterdamped case, the signal model 
corresponding to the i-th mode can be described by   

 0( ) sin( )i i t
i i di ix t A e tζ ω ω ϕ−= +  (16) 

where Ai is a constant amplitude, 0iω  and diω  are the i-th undamped and damped natural frequency 

respectively. The decay envelope of this signal is 0( ) .i it
i ia t A e ζ ω−=  Note that it is difficult to extract  the 

envelope ( )ia t from measured free response with numerous natural frequencies. According to the signal 
model (16),  the logarithmic decrement δi is given by  
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where m is any positive integer and 2 /i diT π ω= . Note that the variations of ai(t) are slow compared to the 
period Ti. By using expressions (12) and (17), the logarithmic decrement δi can be expressed in term of  
wavelet modulus as     
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Finally, the modal damping ratio iζ  can then be determined from the value of δi  (Nguyen Phong Dien, 2005) 
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A specialized program has been developed on the MATLAB numeric computing environment for 
estimating damping ratios from measured free responses of  vibrational systems. The program includes the 
following procedure: 
 -  transforming the time signal into time-frequency domain by using the CWT  
 -  detecting wavelet ridges in the wavelet plot to estimate natural frequencies diω   

 -  extracting the wavelet envelope W ( , )x τ ω  at the natural frequencies  

 -  calculating the damping ratios according to formulas (18) and (19).    
 

4  Numerical Example 
 
In order to assess the performance of the proposed wavelet-based demodulation method, a test-signal  with 
three exponentially-decaying components was chosen for simulating the free response of a damped 
vibrational system   
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where r(t) is a random signal which describes the noise. The parameters of the signal are given in Table 1. 
The frequencies of signal-components are very different, the last component has a high frequency with a 
small damping ratio. Figure 1 shows the signal in the time domain.   
 

Component  i ai / 2i if ω π=  (Hz) iζ  iϕ  

1 1.0 250 0.02 -π/8 
2 1.25 500 0.045  π/6 
3 0.5 1250 0.005  π/8 

Table 1.  Parameters of the test-signal  

 

Firstly, the signal is transformed in time-frequency domain using the CWT with Morlet-wavelet. Figure 2 is 
the wavelet plot displayed as a three-dimensional surface, obtained by plotting the amplitude of the wavelet 
modulus W ( , )x τ ω  against time and frequency. Three exponentially-decaying components are separated 
from the original signal and can be clearly identified.  
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Figure 1. The test-signal  
 

In order to identify the “natural” frequency iω  of each signal-component from the wavelet plot in Figure 2, a 
numerical algorithm is developed to determine wavelet ridges. The positions of the wavelet ridges reveal the 
corresponding natural frequencies in frequency axis (see section 3).  
 

 
Figure 2. The wavelet plot of the test-signal 

The wavelet envelope W ( , )x iτ ω  can be extracted from the wavelet plot by a slice parallel to the time axis 

through frequency iω  in the frequency axis. According to formulas (18) and (19), this wavelet envelope can 
be used to estimate the corresponding damping ratio. Figure 3 shows the wavelet envelope extracted at the 
third natural frequency 3ω . The identification data are given in Table 2. It can be seen that results of the 
identification task are very good.   
 
                  
 
 
 
 
 
 
 
 

 
 

Figure 3. The wavelet envelope of the third signal-component extracted from the wavelet plot in Figure 2 
 

),(W ωτx  

Time τ (s) 

Frequency / 2ω π  (Hz) 

1. Component 

2. Component 3. Component 

 t [sec.] 

τ (sec.) τ (sec.) 

3ln W ( , )x τ ω3W ( , )x τ ω
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Parameter i = 1 i = 2 i = 3 

/ 2iω π  (Hz) 247 500 1255 

Ti (sec.) 4×10-3 2×10-3 7.97×10-4 
m 10 15 50 
τ0 0.080 0.0567 0.060 

0W ( , )x iτ ω  2.6167 2.5620 0.9835 

0W ( , )x i imTτ ω+  0.7340 0.0485 0.2060 

iδ  0.1271 0.2645 0.0313 

iζ  0.0202 0.0421 0.0049 

Error of iω  (%) 1.1 0.0 0.4 

Error of iζ  (%) 1.0 6.4 2.0 
 

Table 2. Results of damping identification for the test-signal  
 

5  Experiment 
 
Now the above proposed method is applied to estimate the damping ratio of a spur gear-pair system. The 
dynamical model used for parameter identification has been presented in (Nguyen Van Khang et. al., 2004). 
The gear mesh is modelled  as a pair of rigid disks connected by a spring-damper set along the line of contact 
(see also details in Appendix A).  
 
The experiments have been performed at an ordinary back-to-back test rig to investigate the influence of 
different tooth faults on the measured vibration signals and the feasibility of an early fault recognition by 
some signal processing methods. The test rig and the test procedure is described in detail in some studies, e.g. 
Nguyen Phong Dien (2003),  Meltzer and Nguyen Phong Dien (2004). Only some specific measurements are 
used for the purpose of the present study.   
 
During the test, one tooth of the driving gear is cracked on the tooth root.  As shown in Figure 4, the gear pair 
is run under load. When they mesh with each other, the teeth of the driving gear are bent backwards, those of 
the driven gear forwards. The pitch of the driving gear is decreased, while the pitch of the driven gear is 
increased. The deformation of the pair of teeth in mesh results from Hertzian deformation on the contact area 
and the cantilever bending of the teeth. If one of the teeth is cracked or heavy damage appears on the tooth 
root, the resultant deformation will be larger and causes a larger pitch. The following pair of teeth are 
engaged prematurely and produce an impact of high magnitude. The meshing impact excites free vibrations 
of the gear-pair system.  
 
 
  

 
 
 
 
 
 
 
 
 
 

Figure 4. Deformation of the meshing gears 
 
In order to measure these free responses, a Laser Doppler vibrometer has been used for measuring oscillating 
parts of the angular speed 1ϕ& and 2ϕ& of the shafts. The measurement was taken with two non-contacting 
transducers mounted in proximity to the shafts, positioned at the closest position to the test gears. Figure 5 
shows a time record of )(tq&  resulted from this measurement.  



 330

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A measured free response of  the gear-pair system 
 

Figure 6 displays the wavelet plot of the measured signal. Based on this figure, a wavelet ridge is detected at 
frequency 0 0 2 854f ω π= =  Hz that corresponds to the mean value of the natural frequency 0f  calculated 
from the vibration model (see Appendix B). The wavelet envelopes displayed in Figures 7 and 8 are used for 
estimating the damping ratios.  In Figure 9, the results of the damping estimate corresponding to several 
measurements are given. It can be clearly seen that the values of the damping ratio are very close around the 
mean value 0.024,ζ = and can be used for modelling the gear-pair vibrational system .        
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The wavelet plot of  the signal shown in Figure 5   

 
 
 

 
 
 
 
 
 
 

Figure 7. The wavelet envelope extracted from the wavelet plot shown in Figure 6 

t [sec.] 

q&  [mm/s] 

τ [sec.] 

W ( , )x τ ω

f = / 2ω π [Hz] 

τ [sec.] 

0W ( , )x τ ω



 331

 
 

 
 
 
 
 
 
 

Figure 8. The wavelet envelope (with logarithm scale) for evaluating the damping ratio   
 

 
Figure 9. Results of a damping estimate from some measurements on the gearbox 

 
 
6  Conclusions 
 
A wavelet-based demodulation method for the damping identification from measured free response of linear 
mdof vibrational systems with viscous damping is presented. The proposed method carries out the CWT of 
response signals and the extraction wavelet envelopes from wavelet plots in the time-frequency domain. The 
damping ratio of each vibration mode is then determined by the value of the logarithmic decrement. As can 
be seen from the identification data, this innovative approach proves to be an effective signal processing tool 
for the experimental vibration analysis, especially for parameter identification tasks.    
 
First, a simplified mathematical formulation is derived through analytical ways to demonstrate capabilities of 
the processing method for extracting signal envelopes (Eq. (12)) and evaluating the damping ratios (see Eq. 
(18)). The numerical simulations have confirmed feasibility of the proposed method.  
 
Second, this study deals with the parameter identification problem in gearboxes by using the proposed 
demodulation method. The obtained result seems to be very helpful for modeling the gear-pair system, 
because the inclusion of damping into the analysis significantly expands the usefulness of the analytical 
calculations. But it should be noted that a complicated gearbox often has complex vibrational response 
characteristics and numerous natural frequencies of torsion shafts and gear bodies. In this case, the natural 
frequency of the gear-pair in mesh must be theoretically determined in advance by using vibration models or 
finite element. This value is required to detect free responses of the meshing gears in the wavelet plot of the 
measured signal with multi-component as explained.           
 
 
 
 
Appendix A    Vibration Model of the Gear-Pair System     
 
The vibration model of the gear-pair system was described in detail in (Nguyen Van Khang et. al, 2004). For 
the purposes of the present study it is necessary to recall few concepts only.  
The differential equations of motion for this system can be expressed in the compact form 

τ [sec.] 

0ln W ( , )x τ ω
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where  iϕ  (i = 1,2) are rotation angle of the input pinion and the output wheel respectively.  J1 and  J2 are the 
mass moments of inertia of the gears. M1(t) and M2(t) denote the external torques load applied on the system. 
rb1 and  rb2  represent the base radii of the gears, e(t) is a displacement excitation at the mesh. The mesh 
stiffness cz(t) is expressed as a time-varying function and the viscous damping coefficient of the gear mesh dz 
is assumed to be constant.  
The differential equations of motion can be rewritten in the form (Gelman, 2007) 
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ω =  the  undamped natural frequency. 

 
 
Appendix B    Model Parameters    
 
The following parameters of the model are pre-known: J1= 9,3.10-2 kgm2; J2 = 0,272 kgm2; rb1 = 30.46 mm  
and  rb2 = 84.66 mm. For this gear-pair, the mesh stiffness cz(t) is obtained by means of  the finite element 
analysis. In steady state motion of the gear system, the mesh stiffness can be approximately represented by a 
truncated Fourier series  

                  ∑
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1
0 )cos()(    (B1)  

where zω  is the gear meshing angular frequency which is equal to the number of gear teeth times the shaft 
angular frequency and K is the number of terms of the series. The values of coefficients are given:                          
c0 = 8,04.108; c1 = 0,304.108; c2 = 0,185.108; c3 = 0,050.108 N/m with corresponding phase angular γ1 =1,02; γ2 

= -0,72; γ3 = -0,93 rad. So, the mean value 0ω  of the undamped natural frequency can be determined as  

10
0 5397 ,
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−= ≈ω corresponding to  0 0 2 859f ω π= ≈  Hz. 
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