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In structural analysis the three-dimensional standard 8-node brick element has become one of the most 
favourable elements, especially due to its numerical efficiency, its versatility and its wide range of applicability 
to many types of mechanical problems. However, low-order elements, based on the irreducible displacement 
model, suffer from different kind of locking effects. For instance, shear locking occurs in the finite element 
analysis of thin plates or shells under flexural deformations. In this case pure bending modes can not be 
represented by the standard linear element due to the parasitic shear deformation. By using higher order 
elements, these locking phenomena are reduced, but the computational effort becomes larger. To overcome this 
deficiency, numerous investigations have been undertaken for finding a high accurate, low-order element 
without increasing the computational cost significantly. 
 
Based on previous research, our approach aims towards the analysis of laminated structures with solid-shell 
elements, combined with the higher order shear deformation theory to improve the transverse shear behaviour, 
necessary for stress based failure criteria in the analysis of inter-laminar fracture in multi-layer shells. As a side 
effect shear-locking is alleviated by incorporating the higher order transverse shear interpolation instead of 
using assumed natural strain formulations. The solid-shell element is used for the analysis of delamination in 
layered composite shells, where the onset of fracture in mode II and III critically depends on the transverse 
shear stress distribution in the cross section of the shell. 
 
 
 
1 Introduction 
 
Multi-layer composite shell structures are used for a wide range of applications in engineering design, e.g. for 
bridges and roofs in civil engineering, for car bodies in the automotive industry, or for light weight components 
in aero space structures. Several shell elements, based on a reference surface, have been investigated and 
developed in the past. Low-order solid-shell elements are now in the focus for the analysis of general shell 
structures and have drawn interest for a number of years. However, there is still a continuing need for more 
accurate and efficient solid-shell elements, especially if they are used for the load carrying analysis of layered 
composite structures, where a reliable resolution of the transverse shear strain and stress is required. If the 
number of nodes and elements through the thickness of the layered composite shell shall be kept low, it may be 
resorted to higher order shear deformation theories (HOSDT), where the transverse shear strain and stress 
distribution is improved as outlined for example in Liu and Reddy (1985), Nguyen et al. (2004), Rastgaar and 
Aagaah (2003), Reddy (2004) and Reddy and Lee (2004). In this paper an elegant way of incorporating parabolic 
enhanced transverse shear and normal strain interpolations into low order shell elements is discussed, which show 
poor transverse strain and stress distributions through the thickness in the case of pure and linear bending.  
 
Recent approaches to improve the element performance for shell analysis can be classified into two categories, 
namely the assumed stress and the enhanced assumed strain method (EAS). The first one is based on the 
HELLINGER-REISSNER functional with displacement and stresses as independent field variables (Marotti, 2002) - 
and boils down to a pure displacement method by pre-elimination of the stress parameters. The enhanced 
assumed strain method (EAS) adopts the three-field functional of the HU-WASHIZU type with displacements, 
strains, and stresses as independent primary variables and may be reduced to a FE-displacement scheme by 
stipulating orthogonality between the enhanced strain and stress fields and static condensation of the parameters 
for the incompatible strain field – see Simo and Rifai (1990). From a computational point of view the assumed 
stress approach is more efficient than the enhanced assumed strain method. However, the implementation of a 
general nonlinear constitutive model is more difficult in the first case, whereas the second approach makes direct 
use of a strain energy function.  
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With regard to computational shell analysis one may distinguish between shell formulations, describing the 
deformation of a reference surface in a thin-walled structure or solid-shell formulations, modelling the motion of 
the top and bottom surface of the shell – see Krätzig and Jun (2002) and Schweizerhof (2001). In the recent past 
such solid-shell elements have been developed, which show similar accuracy as degenerated elements but 
comprise complete three-dimensional constitutive relations between stresses and strains without any further 
modification such as degeneration of the constitutive tensor. But the second main assumption of the degenerated 
shell concept that the normal to the element mid-surface remains straight but not necessarily orthogonal during 
the deformation process is inherent in the solid-shell approach. In the sense of higher order shear deformation 
theories (HOSDT) the continuum based 3D–shell element is endowed with an improved transverse shear stress 
interpolation for the simulation of the delamination in layered, thin-walled composite structures. The standard 8-
node brick element with tri-linear shape functions forms the basis of the present finite shell element together with 
the EAS method as outlined in Fiolka and Matzenmiller (2007). The enhanced assumed strain method (EAS) is 
applied to the transverse shear strain field to improve the transverse shear stress distribution necessary for stress 
based failure criteria and to alleviate shear locking as a side effect It is assumed that the stress field and the 
interpolation of the incompatible strains are orthogonal, which results in the elimination of the stress field 
parameters from the discretized variational equations. In comparison to some other proposals the approach 
presented here allows the use of a lower number of strain variables, which favours the computational efficiency. 
When dealing with geometrical non-linearity, the original setting is still kept for an additive enhancement of the 
displacement-based convective Green–Lagrange strains in a way successfully employed in Ramm and 
Andelfinger (1993), after that in Klinkel and Wagner (1997) and recently consolidated by Vu-Quoc and Tan 
(2003). 
 
 
 
2 Kinematical Formulation of Solid-Shell Element  
 
In this section a solid-shell concept is described that circumvents the well-known problems with the rotational 
degrees of freedom for degenerated shell elements. The following figure shows the reference and current 
configuration and the kinematics of the solid-shell element in curvilinear coordinates.  
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Figure 1. Convected base vectors and curvilinear coordinates of linear solid-shell element 

 
Each point on the upper or lower surface of the three-dimensional shell-like continuum in its initial configuration 
is endowed with its position vector Xu or Xl respectively.  
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Figure 2. Geometry of shell with position vectors of points on upper and lower surface 
 
In the solid-shell concept the variables ξ and η  are the local convective coordinates in two independent in-plane 
directions and ζ is the local convective coordinate in the thickness direction. The vector X  and the displacement 
field u  of each point of the shell-like continuum are described by the position vector uX  and its displacement 

vector uu  of the corresponding points on the upper shell surface and on the lower one by lX and lu . 
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1)( ξ,ηζξ,ηζξ,η,ζ lu XXX −++=  (1) 

Rewriting the equation for the initial geometry as follows: 
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and similarly for the current configuration: 
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The relation x = X + u leads to the description of the geometry in the actual state which is essential for the 
evaluation of the deformation gradient. The notation ηξ,  and ζ  for the local coordinates is abbreviated for the 

purpose of index notation and summation convention into iξ  with ηξξξ == 21 ,  and  ζξ =3  in the next 
equations.  
 
The covariant base vectors are obtained from the position vectors of the reference configuration X and the current 
one x by their partial derivatives with respect to the convective coordinates: 
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The contravariant base vectors iG  and  ig  are defined as follows:  
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j
j

i δ=GG  and i
j

j
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Then the deformation gradient is given by the sum of dyadic products:  
 
 i

i GgF ⊗=  (6) 
Therefore, the Green–Lagrange strain tensor is computed by the formula: 
 

 jiu GGE ⊗= u
ijE  with )(

2
1

ijij
u
ij GgE −= ,  where  (i, j = 1, 2, 3) (7) 
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and the metric coefficients of the reference and current configuration:  
 
 jiij GG=G   and  jiij gg=g  (8) 
 
 
 
3 Enhanced Assumed Strain Method (EAS Method)  
 
The enhanced assumed strain method (EAS) in Simo and Rifai (1990) evolved from Wilson et al. (1973) and 
Taylor et al. (1976) for the purpose of improving the performance of the irreducible displacement model by 
adding an additional term E~ to the compatible strain field )(u uE .  
 
 )(~)(u α+= EuEE  and )(~δ)(δδ u α+= EuEE  (9) 

The tensor )(~ αE  denotes the enhanced part of the strain, depending on the parameters iα , assembled in the 
vector α . The parameters can be eliminated on the element level and, thus, the formulation preserves the original 
character of the displacement based method.  
 
The EAS method, based on a three-field variational principle of HU-WASHIZU, is defined by the functional:  
 
 ∫ ∫∫∫

Ω ΓΩΩ σ

−−−+=Π ΓΩΩW ddd~d)~,(),~,( TTTu tubutσEEExσEu  (10) 

where W denotes the stored energy function, b the body forces throughout the domain Ω  of the structure and t  
the surface tractions on the force boundary σΓ  of the body. Setting the first variation Πδ  equal to zero, eq. 
(10) leads to the three variational equations: 
 

 0d))~,(~(~δ uT =−+
∂
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∫
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ΩW σEEx
ε
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 ∫
Ω

= 0d~δ ΩEσ T  (12) 

 

 0dδdδdδ TTTu =−−∫ ∫∫
Ω ΓΩ σ

ΓΩΩ tubuσE  (13) 

In the context of the finite element approximation the coordinates of the position vector X  and the ones of the 
displacement field u  are interpolated by using the standard isoparametric shape functions. The enhanced strain 
field is computed by:  
 
 e)(~ αGE ξ,η,ζ=  , (14) 
where )(ξ,η,ζG is the interpolation matrix, which is chosen as a function of the convective coordinates and can 

be extend in different modifications of the element and eα is the vector with the free parameters for the enhanced 
strain distribution of the element. Since only C-1-continuity is required at the inter-element boundaries for the 
enhanced strain field, the resulting system of algebraic equations may be solved for the parameters eα  on for 
each element individually by static condensation for quasi-static problems as it is typical for hybrid FE-methods. 
Then, the total strain field is given as:  
 
 ee )()(~ αGdBE ξ,η,ζξ,η,ζ +=  (15) 

with B  as the discrete, linearized, kinematical operator of the finite element and ed  as the vector of element 
nodal displacements. In eq. (15) the enhanced strain interpolation and the compatible part of the strains must be 
independent. In addition, the columns of the matrix )(ξ,η,ζG  are assumed to be linearly independent. In 
important basic conditions is necessary to ensure the stability of the enhanced strain approximation, requiring the 
enhanced strain field to be orthogonal to the stress field:  
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 ∫
Ω

= 0d~ T ΩδσE  (16) 

The treatment of the virtual stress field in the discretization process is not obvious in order to satisfy the 
orthogonality condition. If the distribution of virtual stresses is assumed constant throughout the element, then eq. 
(16) implies that the matrix )(ξ,η,ςG  must have the property  
 

 ∫
Ω

= 0G Ωξ,η,ζ d)(   (17) 

which is only a sufficient condition to satisfy consistency. However, eq. (17) is overly restrictive for the 
incorporation of the HOSDT into the tri-linear brick element by means of the EAS-method, which rather relies on 
eq. (16).  
 
 
 
4 Transverse Shear Strain Interpolation 
 
Irreducible displacement models for linear finite LAGRANGE elements exhibit undesirable behaviour - called 
locking - under modes of pure bending or incompressibility. Locking occurs when the element fails to present a 
certain mode of deformation without parasitic strains and stresses. Transverse shear locking appears in low order 
thin plate or shell elements under pure bending moments in the absence of any transverse shear forces. It occurs 
only in elements, which take into account transverse shear deformations and is provoked by the parasitic 
transverse shear strains altering the pure bending deformation. The disproportional large stiffening depends on 
the aspect ratio of the elements (ratio of length to thickness) and becomes more pronounced as this proportion 
augments. In order to alleviate locking effects, many formulations, which include strains and stresses as 
additional primary fields have been proposed. In the continuum based 3D–shell element, previous modifications 
have used assumed natural strain (ANS) –see Bathe and Dvorkin (1986) or Stander et al. (1989) - or enhanced 
assumed strain (EAS) formulations, applied to the transverse shear strain field for the alleviation of the shear-
locking phenomenon, see Klinkel et al. (1998, 1999), Klinkel and Wagner (1997), Vu-Quoc and Tan (2003), 
Ramm and Andelfinger (1993) and Fontes Valente et al. (2002), (2005) and (2006).  
 
The interpolation of the incompatible strain components in eq. (14) is constructed by means of monomials of the 
curvilinear coordinates ηξ,  and ζ  of the shell. The VOIGT vector notation of the strains tensors 
 
 ),,,,,()( u
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231312332211 EEEEEE=αE , (18) 

 
is used for the representation of the transverse shear strain enhancement with the interpolation matrix )(ξ,η,ζG as 
for constant JACOBIAN elements – see Taylor et al. (1976): 
 

 )(
det

det
)( 0

0 ξ,η,ζξ,η,ζ MT
J

J
G =  (19) 

Here, 0J  and J  denote the JACOBI matrices at the centre of the element and at the integration points for the 
GAUSS quadrature respectively. ( )ξ,η,ζM  is the interpolation matrix for the enhanced strain part in the EAS 
method and is specified below. 0T  denotes the transformation matrix (Klinkel et al., 1999, Schweizerhof, 2001, 
Fiolka and Matzenmiller, 2007) of the strain tensor from the local coordinate chart at the element centre 

0=== ζηξ  with the base vectors )0(:0 ==== ζηξjj GG  in the cotangent space to the local convective 

coordinate system jG  at the sampling points for the GAUSS integration of the element – see figure 1 with 

covariant base vectors iG  of the tangent space. The elements ijT0 , denoted by 

 i
jj

i
j

iij tT GGGG ⋅⋅ === 000 ::  (20) 

of the transformation matrix 0T  are given as: 
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Based on the theoretical foundations of the high-order shear deformation theories, the main focus of this 
approach is put on the interpolation matrix )(ˆ ξ,η,ζMM = . The transverse shear components of the strain field 
will be enhanced by incompatible parts in order to avoid shear locking and to allow parabolic shear strain fields 
as necessary for the deformation of plates and shells under transverse loading. In order to account for the higher 
order shear deformation theory, the interpolation matrix M  is defined for the enhanced transverse shear strains, 
as follows for the 8-node quadrilateral element Q8S12: 
 
 )(ˆ ξ,η,ζMM =  (22) 
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Note, due to the parabolic strain interpolation in thickness direction 3G  the integration rule must be changed to 
2x2x3 GAUSS quadrature for the formation of the element stiffness matrix and the element force vector. It is easy 
to show that the term ( )251 ζ−  satisfies the orthogonality condition in eq. (16) for the well-known parabolic 
transverse shear stress distribution of engineering mechanics for beams under shear forces.  
 
The interpolation matrix ( )ξ,η,ζM̂  can be simplified and reduced to a constant and to linear monomials of the 
local coordinates for the enhanced transverse shear part for a computationally more efficient solid-shell element – 
see eq. (23a, b). The resulting elements are denoted as Q8S4 and Q8S8. They still allow a 2x2x2 GAUSS 
integration scheme for the element stiffness computation: 
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The extension of the transverse shear strain interpolation in element Q8S8 pays off, when the solution for the 
strain distribution provokes the linear part of the polynomials.  
 
 
 
5 Finite Element Analysis of Thick Cantilever Beam (L / h = 5) 
 
Typically a clamped thick beam is studied first for the numerical investigation of the element behaviour in order 
to verify the implementation and to validate the performance, the efficiency and the accuracy of the three 
transverse shear improved models as given in the eqs. (22), (23a) and (23b) above. The clamped, thick beam, 
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subjected to a concentrated loading P at the tip, is considered as a benchmark problem, where shear 
deformations are pronounced. The performance of the transverse shear improved element in this approach is 
compared to successful, standard, linear shell and solid-shell elements with enhancements according to the EAS 
and ANS method, published previously. The beam is divided into 10 three-dimensional linear solid-shell 
elements along the length for the finite element approximation – see figure 3. In order to improve the resolution 
for the transverse shear strain and stress distribution a finite element mesh with 16 layers of 8-node LAGRANGE 
bricks through the thickness is analysed under the assumptions of the small displacement theory. The results for 
the deflection and the shear strain and stress distributions are compared to the ones of a standard, simple 
discretization with only one element through the thickness but the same number of bricks along the length.  

 

10 

2 

4
4
P

⋅  

1 

 
Figure 3. Geometry and FE-mesh of thick cantilever beam 

 
In the figure above b = 1 cm  is defined as the width,  L = 10 cm  as the length, and  h = 2 cm  as the thickness of 
the beam. The standard 8-node brick element Q8 with and without modified distributions of the transverse shear 
and normal thickness strains is used in the analysis of the beam. The performance of the different elements is 
compared in the diagrams below.  
 
Since the transverse shear deformations contribute only little to the deflection of even a fairly thick beam of 
isotropic material, an anisotropic elasticity model with low transverse shear stiffness for the beam is chosen in 
order to increase the contribution of the transverse shear deformations as it is typically encountered in uni-
directionally reinforced laminates of polymeric matrices with large shear compliance moduli and fibres of high 
stiffness. Thus, two numerical examples with an isotropic and a transverse isotropic, linear elastic constitutive 
model are considered. For the beam with the isotropic elastic material assumption YOUNG’s modulus is 

000100=E N/mm2, POISSON´s ratio is taken as 4.0=ν  and a point load of P = 4 000 N is applied at the tip of 
the cantilever.  
 

For the beam with the transverse isotropic model the elasticity parameters of the material are chosen as E 1 = 
61011.3 ⋅ 2cm/N , E 2 = E 3 = 61076.0 ⋅ 2cm/N , G 12 = G 13 = 61029.0 ⋅ 2cm/N ,  G 23 = 61026.0 ⋅ 2cm/N , 

12ν  = 0.303 and the privileged axis in the direction of the centre line. The concentrated loading at the tip of the 
anisotropic beam is reduced to P= 40 N.  
 
The deflection maxw  at the tip may be computed for the cantilever with I as the moment of inertia and A  as the 
area of the cross section from classical engineering mechanics by means of the TIMOSHENKO theory for beams 
with flexure and transverse shear deformations:  
 

 
GA

PLh
EI

PLw
103

23

max +=  (24) 

 
It is equal to 0.2067 cm in the case of the isotropic material and equal to 0.659 cm in the one for the transversely 
isotropic constitutive assumption. 
 
The results of a geometrical linear analysis for the displacement field in the transverse direction (ζ-direction) of 
the beam are plotted in Figures 4, 5, 6, 7, and 8 for various cases of elasticity models over the length of the 
cantilever for both thickness discretizations by means of the three different elements with strain interpolations as 
proposed above. They are compared to some well accepted solid-shell elements with assumed natural strains 
(ANS) – see Bathe and Dvorkin (1986) - and enhanced assumed natural strains (EAS). The specific element 
types are abbreviated by the following notation - see Klinkel et al. (1999) and appendix: 
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Q8:  Standard 8-node displacement based brick element with tri–linear shape functions. 
 
Q8A2:  Standard displacement based tri-linear brick element with ANS formulation for the transverse shear 
 strain fields 13E  and 23E  only. 
 
Q8A3:  Standard displacement based brick element with tri–linear shape functions and ANS formulations for 
 the transverse shear strains 13E , 23E  and in addition for the normal strain 33E  in thickness direction 
 3G  in order to avoid locking effects as they occur in strongly curved structures, discretized by linear 
 elements. 
 
Q8E1,  Q8E3, Q8E4 and Q8E7:  The EAS formulation for the thickness strain 33E  is used with 1, 3, 4 and 7 
 parameters for the standard displacement based element with tri–linear shape functions according to 
 Klinkel et al. (1997, 1999), Vu-Quoc and Tan (2003), Ramm and Andelfinger (1993) and others.  
 
Q8A3E1 or Q8A2E1, Q8A3E3 or Q8A2E3, Q8A3E4 or Q8A2E4, Q8A3E7 or Q8A2E7: EAS and ANS 
 formulations are applied for the standard displacement based element with tri–linear shape functions - 
 see interpolation matrix in the appendix. 
 
Q8S4  and Q8S8: The transverse shear strain field is enhanced with 4 and 8 parameters in the standard 
 displacement element with tri–linear shape functions, the interpolation matrices ( )ξ,η,ζM̂  are defined 
 by linear monomials. 
 
Q8E1S4 and Q8E1S8: the EAS method is additionally used for the enhancement of the thickness strains in order 
 to locking due to the POISSON effect for the Q8S4 and Q8S8 element in bending deformations. 
 
Q8S12: The transverse shear strain field is enhanced with 12 parameters in the standard displacement 
 element with tri–linear shape functions. Quadratic polynomials are used in the matrix ( )ξ,η,ζM̂  for the 
 improved transverse strain interpolation to account for the shear deformation theory of second order for 
 thick shells.  
 
Q8E1S12: Same as Q8S12, but with the EAS method for the linear interpolation of the thickness strain field in 
 order to avoid locking due to the POISSON effect. 
 
Q4E4   and Q4E4S1: Standard four-node plane stress elements with 4 and 5 EAS-parameters for the 
 improvement of all three strain component of the 2D-model - see Simo and Rifai (1990) and Simo and 
 Armereo (1992).  
 
The differences between the results from most elements are caused by the various assumptions of the transverse 
shear strain interpolation and their treatment in the finite element formulation. Some small deviations among the 
elements stem from the incorporation of normal strains in thickness direction and are due to the different 
handling of the thickness strains in the EAS concept.  
 
Figures 4 and 5 show that the elements Q8S12 and Q8E1S12 are the most flexible ones, whereas the standard 
Q8-brick is the stiffest one. The constant distribution of the transverse normal strains in the tri-linear solid 
element additionally stiffens the element behaviour in the case of pure bending. The results for the displacements 
of the EAS-elements Q8S4 or Q8S8 and the ANS-elements Q8A3 are nearly same in both Figures 4 and 5. If the 
transverse normal strain is interpolated linearly, as it is the case in the elements Q8E1S4, Q8E1S8 and Q8A3E1 
or Q8A3E3 and Q8A3 E4, the deformation behaviour becomes softer and improves the displacement 
approximation – see Huettel and Matzenmiller (1999). In order to exclude the influence of the thickness straining 
from the results for the transverse displacement, the elasticity parameter for POISSON’s ratio is set equal to zero in 
the investigation presented in section 6. The 4-node elements Q4E4 and Q4E4S1 describe the beam in plane 
stress conditions, which hold exactly, if the width of the beam tends towards zero. Thus, their bending behaviour 
is softer than the one for the three-dimensional beam models in the general case of a non-vanishing POISSON’s 
ratio. 
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Figure 4. Deflection of beam axis, 1 layer of elements through thickness, isotropic material 

 
The solutions with various finite element formulations are given in Figure 5 for the deflection of the cantilever 
beam with the transversely isotropic material model. The tendency of the element behaviour is the same as 
before. The EAS formulation is applied to the normal strain E33 in thickness direction for all Q8EXX-elements 
denoted by E in the appendix EXX. It “softens” especially the elements Q8A3E1, Q8A3E3 and Q8A3E4, where 
in addition assumed distributions for the natural transverse shear strains 13E  and 23E  according to the ANS 
approach are used to avoid shear locking in the thin shell limit. Although the elements Q8S4, Q8S8 and Q8S12 
for the HOSDT, denoted by the characters SXX in the element label do not use the ANS formulation, the 
numerical results show that they were rather successful and efficient for improving the shear and flexural modes 
of the deformation.  
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Figure 5. Deflection of beam axis, 1 layer of elements through thickness, transversely isotropic material 

 
The success of especially the quadratic transverse shear approximation on the deflection curve can be 
quantitatively studied by comparing the results of the isotropic cantilever beam with the mesh of one element 
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through the thickness to the investigation of a fine discretization with 16 layers of elements in thickness direction, 
where a sufficiently exact resolution of the transverse shear strain as a step or piecewise linear or parabolic 
function is obtained. The performance of the 8-node brick element with a parabolic enhancement of the 
transverse shear strain –see element Q8S12 or Q8E1S12 (with linear normal strains in thickness direction) - in 
the discretization of the beam with a single layer in Figure 4 may be compared to the analysis of the mesh for 16 
tri-linear bricks with constant and linear transverse shear strains as realized in the elements Q8S4 and Q8S8 or 
Q8A3 in figure 6, where the displacement w in transverse direction along the length of the beam is plotted. It 
shows again that the elements Q8S12 and Q8E1S12, based on the HOSDT, are the most flexible ones.  
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Figure 6. Deflection of beam axis, 16 layers of elements through thickness, isotropic material 

 
In Figure 6 the numerical results are poor for the displacement field of the standard 8-node brick element Q8 as 
expected and already shown in Figures 4 and 5. The elements Q8E1 and Q8E7 behave as the standard brick Q8 
when the Poisson effect does not matter, since no improvement of the transverse shear strain field is carried out. 
Their displacement field is not significantly better than the one for the standard Q8 element, which improves in 
the ANS-case, as shown by the element Q8A3. The influence of the transverse normal strain 33E  on the 
displacement field is eliminated next, so the approximation error of the transverse shear strain is more isolated. 
 
 
 
6 Numerical Results of Cantilever Beam without Transverse Normal Strains  
 
In an additional analysis of the thick beam above, the POISSON’s ratio of the isotropic elasticity model is set to 
zero   (ν =0.0) in order to suppress the transverse normal strains E33 in thickness direction due to the longitudinal 
bending strain E11. With the same loading at the tip of the cantilever, as given in Chapter 5, the maximum of the 
deflection is calculated according to engineering mechanics as cm2048.0048.02000.0max =+=w . The 
transverse displacement field w  along the length of the thick, isotropic beam is plotted for a finite element mesh 
of one and 16 layers in figures 7 and 8 respectively. The effect of the parabolic shear stress contribution of the 
Q8S12 element is noticeable when its graph is compared to the one of the Q8S4- and Q8S8-elements, since the 
parabolic interpolation of the transverse shear strain field softens the element, whereas the linear part in the Q8S4 
and Q8S8-brick is hardly provoked in the single layer mesh. Even the small tendency to shear-locking of the 
standard 8-node brick element Q8 may be seen in this example of a thick beam in both figures. In addition one 
realizes that the displacements of all ANS-modified elements such as Q8A2, Q8A2S4, Q8A2S8, where only the 
transverse shear strain fields for 13E  and 23E  are manipulated, are about the same as for the Q8S4 and Q8S8 
approaches, since the linear interpolation of the transverse shear is not provoked. The calculated displacements of 
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all elements in the case of normal thickness strains 33E  identical to zero are very close to the numerical data 
found for the beam with POISSON’s ratio ν= 0.4, as it can be anticipated - compare figures  4 to 7 and 5 to 8.  
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Figure 7. Displacement field over length of thick beam for single layer with POISSON’s ratio ν  = 0.0 

 
The solution of the mesh with 16 layers of brick elements for the thick, isotropic, clamped beam is depicted in 
Figure 8 below. All degrees of freedom at the built in edge are suppressed.  
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Figure 8. Displacement field of 16 layer mesh for thick beam with POISSON’s ratio ν  = 0.0 

 
The numerical solutions for the distribution of the transverse shear strain over the thickness in the middle of the 
beam for the brick elements with different higher order shear interpolations (Q8S4, Q8S8, Q8S12) are compared 
to the standard 8-node brick element Q8 and to the one with the ANS modification (Q8A2). The FE-solutions are 
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shown for the single layer mesh in Figure 9. The theoretical solution for the transverse shear strain 13E  is found 

from the classical beam theory as 4100.6232 max13
−⋅== GbhPE  for its maximum and =average132E  

=GbhP 4010.4 −⋅  for its average over the cross section with )1(2 νEG += as the shear modulus of the linear, 
isotropic elasticity model.  
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Figure 9. Distribution of total and compatible as well as incompatible part of transverse shear strain E13 across 

thickness for FE- mesh with single layer of elements Q8S12 
 
Figure 10 shows the distribution of the transverse shear stress 

13
σ  across the thickness for the thick beam with 1 

layer of elements.  
 

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

-2,50E-04 5,00E+02 1,00E+03 1,50E+03 2,00E+03 2,50E+03 3,00E+03 3,50E+03

shear stress σ13

th
ic

kn
es

s 
co

or
di

na
te

 
ζ

Q8S12

 
Figure 10. Distribution of transverse shear stress 

13
σ  across thickness for FE-mesh with single layer of elements 

 
The solutions of the transverse shear strain are shown for the mesh with 16 layers of elements and various EAS- 
or ANS-assumptions in Figure 11, where the graph connects the strain results, evaluated at the centre of the 
elements in the cross section at the middle of the beam.   
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Figure 11. Distribution of transverse shear strain E13 across the thickness for FE-mesh with 16 element layers  

 
 
 
Thin Beam Example (L / h = 50 and 500) 
 
Although the transverse shear deformations are negligibly small in thin beams, a cantilever with a length (L= 10 
cm to thickness ratio of L / h = 500 and of L / h = 50 is analysed in addition with the Q8S12- and Q8S8-element 
and compared to the standard Q8-model in order to show that the EAS modified elements with the HOSDT are 
free of shear locking in the thin beam limit. The load P at the tip is reduced each time by a factor of 1000, if the 
thickness h  - taken as 2.0 mm in the thick case, 0.2 mm (thin beam) and 0.02 mm (very thin structure) - 
decreases by a factor of 10 in order to compensate the reduction of the bending stiffness. The maximum 
deflection wmax at the tip of the cantilever is listed in table 1 for the element Q8S12 as outlined in eq. (22) and 
compared to the standard tri-linear solid element Q8 and the EAS element Q8S8 as given in eq. (23).  
 

L / h wmax  for Q8S12 wmax  for Q8S8 wmax  for Q8 

5 0.20422 cm 0.20342 0.18127 

50 0.19942 cm 0.19946 0.01482 

500 0.19918 cm 0.19918 0.00016 

 
Table 1: Tip deflection of thick (2.0), thin (0.2 cm), and very thin (0.02 cm) cantilever with adapted point load P 
 
As expected the standard hexahedron element Q8 exhibits shear locking, whereas the Q8S12 and Q8S8 model 
with higher order shear deformations do not, due to the extensions of the first two columns in the matrix M of eq. 
(22) and (23).  
 
Sufficiently accurate transverse shear stresses are necessary for the analysis and the design of layered composite 
beams and shells, where the individual laminae are uni-directionally reinforced with fibres of high tensile 
strength. The higher order shear deformation theory is applied to the interlaminare fracture analysis of layered 
beams, which may fail under transverse loading due to their low shear strength.  
 
 
 
7 Delamination of Layered Composite Beam – A Short Introduction 
 
One of the most encountered damage mechanisms in layered composite beams is the separation – called 
delamination – of the laminae from the rest of the plies of the laminate. The cracking at the interface between 
adjacent layers can cause a significant reduction of the compressive and shear load carrying capacity of a 
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structure and may initiate structural failure of the beam. In order to prevent delamination, it is necessary to 
predict accurately its onset and growth. The main work for the investigation of inter-laminar cracking may be 
divided into the study of the delamination initiation and the analysis of the continuing crack propagation. The 
simulation of the delamination process in composite structures is quite complex, and requires advanced FE 
modelling techniques - see Mi et al. (1998), Dávila and Camanho (2001), Iannucci (2006), Morais and Pereira 
(2007), Reeder (1998) or Fiolka (2008) for example.  
 
The analysis of delamination is usually based on stresses and uses criteria such as the quadratic interaction of the 
interlaminar stress components in conjunction with a characteristic distance as the critical crack opening 
displacement. The characteristic distance is an averaging length that is a function of geometry and material 
properties. Most analyses of delamination growth apply a fracture mechanics approach and evaluate the strain 
energy release rates Gi for self-similar delamination growth. The strain energy release rates can be computed 
from the nodal forces and displacements obtained from the solution of a finite element model.  
 
In many structural applications of composites, delamination growth is likely to happen under loads causing 
mixed-mode fracture. Therefore, a general formulation of the interface elements has to deal with mixed-mode 
delamination growth. For the cases of loading with pure mode I-, II- or III-deformation the onset of failure can be 
determined simply by comparing the calculated stress component to their associated strength value of the 
associated fracture mode. A quadratic failure criterion is used to predict the initiation of delamination in mixed-
mode fracture - see figure 12a: 
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and a quadratic interaction between the energy release rates for the three modes of fracture is assumed to 
determine the onset of cracking see figure 12b:  
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where t 1 , t 2  and t 3  are the components of the stress vector on the interface between the laminae (only tensile 

and shear stresses), and t max
1 , t max

2  and t max
3  are the nominal strength values for failure in pure tension and  pure 

shear. 
 

  
 

Figure 12. a) Mixed-mode stress criterion of Brewer and Lagace (1998) for mixed-mode failure initiation and    
       b) mixed-mode energy criterion of Dávila and Camanho (2001) for failure mode interaction. 

 
Failure analysis tools must be able to predict the initiation, size and propagation of the delamination process, 
which is studied at the double cantilever test for single mode fracture and at the mixed-mode bending test for 
tensile and shear deformation.  
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Analysis of Double Cantilever Beam (DCB Test) 
 
A popular example for the growth of a delamination is the double cantilever beam test (DCB), which is still 
under research and further development for the experimental and theoretical investigation of inter-laminar failure 
of layered composites and adhesively bonded joints. The numerical examples are based on the simulation of 
delamination growth in a double cantilever beam test, used to determine the toughness of mode I fracture. The 
specimen is L=105 mm long, b=45 mm wide, 2h=3.1 mm thick, and has an initial crack length of a=20 mm. 
YOUNG’s modulus of the beam material is E = 210 000 2mm/N , POISSON’s ratio is ν=0.3, and the energy 
release rates and critical stresses of the interface element are 0.7=ICG N/mm, 0.20=IICG N/mm, 

40max
1 =t 2mm/N  and  7.44max

2 =t .mm/N 2 The DCB specimen in the test and in the FE-model are shown in 
Figure 13.  

 

 

 
Figure 13. a) Geometry and loading of DCB specimen,   b) finite element model of delaminated specimen  

 
The FE-solution of the HOSDT modified elements is shown and compared to the result of the Q8-brick in figure 
14 together with the analytical solution for the load-deflection curve in the linear part and for the delamination 
process as obtained by Mi et al. (1998): 
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The entire crack opening displacement u at the tip is taken for linearu  or .delamu and also used in the plot. 
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Figure 14. Load-deflection (P-u) diagram of analytical and FE-solutions for DCB test 
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Analysis of Mixed-Mode Bending Test (MMB Test) 
 
The mixed-mode bending (MMB) test is a simple experiment to measure and identify the delamination toughness 
in a combination of standard mode I fracture (opening) and mode II cracking (sliding). It comprises as limit cases 
the double cantilever beam (DCB) test, which is the standard experiment for mode I fracture toughness and the 
end notched flexure (ENF) test for mode II toughness - see Reeder (1998) and Mi et al. (1998). The enhancement 
of the MMB test procedure include an improved method for calculating the toughness from the measured test 
quantities, a more accurate way of setting the mixed-mode ratio in the test, and the inclusion of a new alignment 
criterion for the improved consistency of the measured values.  
 
Although originally designed to test the static delamination toughness of composites, researchers have extended 
its use also to fatigue loading and to the toughness testing of adhesives. Because of the number of laboratories 
using this test, it is important that all relevant test parameters are in accordance with the standardization of the 
test protocol. Then all simulations and experimental results are directly comparable.  
 
The proportion of mode I and mode II loading in the MMB test is controlled by the setting of the lever loading 
position c, shown in Figure 15. The MMB test has several advantages with regard to other mixed-mode 
delamination tests, including the use of a single test specimen configuration and simple load application to test 
over almost the entire range of mode I to mode II ratios of fracture. As long as the deformations are still small, it 
has a closed form solution, which is used to calculate the toughness values from measured quantities and a 
mixed-mode ratio that remains essentially constant during the delamination growth in the entire range of interest.  
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Figure 15.  Mixed-mode bending (MMB) test (Reeder, 1998) 

 
The FE-model of the specimen with the super structure for the loading is depicted in Figure 16 a) in its initial 
configuration and in Figure 16 b) after cracking . 
  

        
 

Figure 16. a) FE-model with super structure of undeformed configuration and   b) of cracked specimen 
 
The simulation of the standardized MMB test illustrates the successful application of the interface delamination 
algorithm under mixed-mode loading. In contrast to the linear interaction criterion in Mi et al. (1998), the mixed-
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mode interaction parameter n of the power law in the energy criterion above has an assumed value of 2, which 
results in an ellipsoidal surface for the graphical representation of the criterion. A prescribed motion for 
displacement control is applied at the end of the lever arm with c = 41.5 mm which corresponds to a mixed-mode 
ratio of GI/GII = 1. For the numerical simulations, the specimen analyzed here has a length (2L) of 100 mm, a 
width (b) of 1 mm and the initial length (a) of the crack is 30 mm. The thickness h of the specimen is 3 mm. The 
elastic properties of the specimen are given by:  

135300=xE 2mm/N , 9000== zy EE 2mm/N , 5200=xyG 2mm/N , 24.0=ν=ν xzxy , 46.0=νyz  and the 
energy release rates, the strength values and the elastic stiffness parameters of the interface element are: 

0.4== IICIC GG mm/N , 57max
2

max
1 == tt 2mm/N  and 00010== nt KK 3mm/N  according to Mi et al. 

(1998) or Dávila and Camanho (2001). 
The analytical relation between the load P and the deflection δ prior to crack growth is obviously linear and has 
been found earlier to be: 
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The analytical relation for the load/deflection curve during delamination growth has been derived for a < L as: 
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Where:  P
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L)c(PI 4
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=     and     P
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L)(cPII
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=  (30) 

The MMB test will turn into pure mode II cracking as in the end-notched flexure experiment (ENF) when the 
lever loading position c becomes zero. The load-deflection diagrams for the loading point on the lever arm are 
computed for the ENF (c = 0.0) and the MMB (c = 41.5 mm) test cases with implicit FE-analysis of the quasi-
static displacement equations in contrast to Iannucci (2006) with the standard brick and the modified solid-shell 
element and plotted in figures 17 and 18: 
 

 
 

Figure 17. Load-deflection diagram for the ENF test case (mode II) 
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Figure 18 illustrates the load-displacement diagram of the mixed mode bending case for c = 41.5 mm and with 
the parameters L, b, a, and  h as  specified above. 
 

 
 

Figure 18. Load-deflection diagram for mixed-mode bending test (MMB) with c = 41.5 mm 
 
 
 
8 Conclusions and Summary 
 
The paper aims towards the incorporation of the higher order shear deformation theory (HOSDT) into 3D-
volume-shell elements by means of the EAS method for the nonlinear analysis of laminated shell structures as 
demonstrated at the numerical investigation of the double cantilever beam (DCB) and the mixed-mode bending 
test. New insight is given into the assumption of the higher order transverse shear strain distribution for the 
successful parabolic shear stress computation with the standard 8-node brick-shell element for shear flexible thin-
walled structures.  
 
The numerical results indicate that the higher order transverse shear element shows locking–free bending 
behaviour. The EAS method for the transverse shear strain discretization may be linked to the high-order shear 
deformation theory to replace the ANS formulation for the alleviation of shear locking. The combined approach 
gives the exact solution for the transverse shear stiffness of plate and shells without the need to introduce shear 
reduction factors such as 65  for the rectangular cross section. 
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Appendix  
 
The interpolation matrices M( ξ,η,ζ ) for the enhanced strain part of the EAS modified elements are given here 
together with the ANS notation for solid-shell elements as outlined in Klinkel et al. (1999): 
 
a. Q8: Standard displacement element with tri–linear shape functions. 
 
b. Q8A3: Standard displacement element with tri–linear shape functions, using ANS formulations for 13E , 23E  

and 33E ;   Q8A2: ANS formulation is used for E13 and E23 only (without any EAS modifications). 
 
c. Q8A3E1 element (or Q8A2E1): same as Q8 but in addition with EAS and ANS formulations; element Q8E1 

uses only a linear monomial in the thickness coordinate for the enhanced transverse normal strain in order to 
account for the POISSON effect in the direction of the element´s normal in the case of bending:  
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 M( ξ,η,ζ )  =



























ζ

0
0
0

0
0

  

 
d. Q8A3E3 element (or Q8A2E3) same as Q8 but in addition with EAS and ANS formulations; element  Q8E3 

uses only an incomplete linear interpolation for the enhanced transverse normal strain field: 
 

 ( )ξ,η,ζM  =



























ζηζξζ

000
000
000

000
000

   

 
e. Q8A3E4 element (or Q8A2E4) same as Q8 but in addition with EAS and ANS formulations; element  Q8E4  

uses only enhanced transverse normal strains with a complete linear interpolation:  
 

 M( ζηξ ,, ) =



























ζξηζηζξζ

0000
0000
0000

0000
0000

  

 
f. Q4E4 and Q4E4S1 standard four-node plane elements (for the plane stress problem):  
 

 M( ζηξ ,, ) =
















ζξ
ζ

ξ

00
000
000

          with   2x2 GAUSS integration points and     

             M( ζηξ ,, ) =
















ζζξ
ζ

ξ

200
0000
0000

   with   2x3 GAUSS integration points 

 

 
g. Q8E1S4 element same as Q8S4 but in addition with enhanced transverse normal strain field by means of a 

linear monomial - see also eq. (23a):  
 

  M( ζηξ ,, ) =



























ξηη
ξηξ

ζ

000
000
00000
0000
00000
00000

 ,  

 
      in order to avoid POISSON-locking for the Q8S4 element. 

 

 
h. Q8E1S8 element same as Q8S8 but in addition with enhanced transverse normal strain field by means of  

linear monomials - see also eq. (23b): 



 355

 

  M( ζηξ ,, ) =



























ηζξηζη
ξζξηζξ

ζ

00000
00000
000000000
00000000
000000000
000000000

 ,  

 
in order to avoid Poisson- locking for the Q8S8 element.  

 

 
i. Q8E1S12 element with enhanced transverse shear and normal strain fields in order to avoid locking due to the 

POISSON effect in the Q8S12 element - see eq. (22) for the high-order SDT: 
 
 M( ζηξ ,, ) = 
 

      =
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j. Q8A3E7 element (or Q8A2E7): EAS (and additionally ANS) formulations are used – see below;  
 Q8E7: EAS modifications are applied without ANS formulations according to Vu-Quoc and Tan (2003) – 
 see below: 
 

 M( ζηξ ,, ) =















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
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η
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