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Load-Transfer to an Orthotropic Fibre-Reinforced Composite 
Strip via an Elastic Element 
 
I.V. Andrianov, V.V. Danishevs’kyy 
 
 
An asymptotic approach is proposed to describe the load-transfer to an orthotropic fibre-reinforced composite 
strip via an elastic element. To start with we simplified the input boundary value problem (BVP) using ratios of 
the elastic constants as small parameters. The simplified BVP can be solved exactly. Then we homogenized the  
obtained solution and estimate the asymptotic error of the homogenization method. We also analysed the 
influence of  the weak interface between fibres and matrix. 
 
 
1 Introduction 
 
The wide-spread use of composites with increasingly complex internal structures raises the question how the 
load-transfer from one to another part of the composite can be properly described. Melan (1932) was the first to 
study the problem of the stress transmission between an infinite fibre and an infinite linear elastic matrix. His 
paper was reconsidered and extended by many authors; see for the references papers by Lenci (2000), Muki and 
Sternberg (1968), Sternberg (1970), and books by Christensen (1979), Grigolyuk and Tolkachev (1987), 
Manevitch and Pavlenko (1991). Exact analytical solutions can be obtained only for the infinite matrix (Lenci, 
2000; Muki and Sternberg, 1968). For the solution of the plane problem for a strip one obtains a singular integral 
equation or a system of equations that can be solved only numerically (Grigolyuk and Tolkachev, 1987; 
Sternberg, 1970). The method of boundary layers, i.e., the asymptotic approach for a highly anysotropic matrix 
(Christensen, 1979; Manevitch and Pavlenko, 1991) must be used carefully for the isotropic case. A lot of papers 
are devoted to a half-plane or a strip isotropic matrix reinforced along the boundaries (Alexandrov and 
Arutyunyan, 1983; Antipov, 1993; Antipov and Arutyunyan, 1993;   Bardzokas and Sfyris, 2005; Bufler, 1964; 
Melan, 1932). On the other hand, many papers deal with fibre-reinforced composites without boundary reinforce 
element (Grigolyuk and Tolkachev, 1987; Lenci, 2000; Manevitch and Pavlenko, 1991). For example, the 
problem of interfaces between fibres and a matrix with friction has been analysed by Antipov and Arutyunyan 
(1993), who considered the simultaneous presence of Coulomb friction and the perfect adherence. In a paper by 
Lenci (2000), Melan’s problem has been reconsidered under the hypothesis that the adherence between the fibre 
and the matrix is not perfect. Authors do not know any result for the combined problem – transfer of load to a 
fibre-reinforced composite  via the boundary reinforce element. 
 
In the present paper we address a special problem of load transfer between an orthotropic fibre-reinforced 
composite strip and the boundary elastic element. This problem is of practical importance for layered, in 
particular sandwich composites with at least one layer being fibre-reinforced. It can also be interesting for 
foundation engineering for the calculation of structures of the “wall in the soil” type. The following strategy is 
applied: firstly, an asymptotic simplification of boundary conditions allows obtaining the exact solution of the 
governing problem. Then we analyse the area of applicability of the homogenized solution. In the last section of 
the paper we report a solution for the case of weak interfaces between the fibres and the matrix. 
 
 
2 Statement of the Problem 
 
We study a composite strip ( 0 x H≤ ≤ , y−∞ < < ∞ ) reinforced in the x-direction by a regular system of fibres 
(Fig 1). The proposed analysis is based on the following approximate assumptions: the fibre is a 1D elastic 
continuum; bending of the fibre is neglected; the matrix is of the fibre a 2D elastic continuum according to the 
conventional theory of the generalized plane stress; the attachment of the fibre is modelled as an ideal line-
contact. We suppose firstly that the bond between the matrix and the fibre is perfect and continuous 
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Figure 1. Fibre-reinforced composite strip with boundary beams. 
 
 fu u= , (1) 

where fu  and u  are, respectively, displacements of the fibre and of the matrix at the line of interface. 
 
Then the problem is reduced to a system of PDEs with respect to the components u and v of the displacement 
vector 
 
 ( )11 33 12 33( ) 0f xx yy xyB E F y u B u B B v + Φ + + + =  , (2) 

 ( )22 33 21 33 0yy xx xyB v B v B B u+ + + = , 
 

where ijB  are the rigidities of the orthotropic strip, ( ) ( )
k

y y kbδ
∞

=−∞

Φ = −∑ , b  is the distance between the fibres, 

( )δ ⋅  is the Dirac delta-function, fE  is the Young modulus of the fibres, F is the area of their cross-section, and 
indexes x  and y  denote the corresponding partial derivatives. 
 
The expressions for stresses can be written as follows 
 
 1 11 12x yN B u B v= + ,   yx vBuBN 22122 += ,   ( )12 33 y xN B u v= + . (3) 
 
Then the transmission stress ( )kτ  between the k-th fibre and the matrix is: 
 
 ( )( ) ( )( )

12 120.5 k kk N N− += −τ ,   0, 1, 2, ...k = ± ± , (4) 

 
where ( )

1212
0

limk

y bk
N N±

→ ±
= . 

 
The fibre-force ( )kT  satisfies the equilibrium equation 
 

 
2

( ) ( )
2 2k k

f
y bk

d uT E F
dx =

= = τ . (5) 

 
We assume that the composite strip is reinforced at 0,x H=  by elastic beams symmetrically located with respect 
to the middle plane of the strip. Then the boundary conditions for system (2) is 
 
 ( )33 1 1y x yyB u v E F v+ = ±    at 0,x H= , (6) 

 11 12 10 1 1
2( ) cosf x y yyyy

yB E F y u B v T E I u
L

 + Φ + = ± 
π    at 0,x H= , (7) 

 

b 

y 

x 

h 1
 

h 1
 

H
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where 1E  is Young’s modulus and 1F  is the cross-section’s area of the boundary beams, 1 1 2F h h= , 1h  is the 
height of the beams (Fig. 1), 2h  is the thickness of the strip, I  is the first moment of the cross-section of the 

beams, 3
1 2 12I h h= , 10T  is the intensity and L  is the period of the applied load. 

 
The boundary conditions (6), (7) are very important from the practical standpoint, because usually external loads 
are transferred to composite structures via an elastic element. Unfortunately, the mixed BVP (2), (6), (7) does not 
allow for an exact analytical solution. On the other hand, as a limiting case one can obtain from (6), (7) the 
following boundary conditions at 0,x H=  
 
 0v = , (8) 

 11 12 10
2( ) cosf x y

yB E F y u B v T
L

 + Φ + = 
π . (9) 

 
The BVP (2), (8), (9) can be solved exactly. Below we shall show that the boundary conditions (6), (7) can be 
approximately reduced to a simplified form. 
 
 
3 Analysis of Boundary Conditions 
 
Let us introduce the non-dimensional co-ordinates 2 x Lξ π= , 2 y Lη π= . The equilibrium equations (2) and 
the boundary conditions (6), (7) can be written as follows 
 
 [ ] ( )1 3 12 31 ( ) 0b F u b u b vξξ ηη ζηη ν+ Φ + + + = , (10) 

 ( )2 3 21 3 0b v b v b uηη ξξ ξην+ + + = , 

 { }1 0,x h
u v e v

=
+ = ±η ξ ηη , (11) 

 [ ]{ }1 12 0 2 0,
1 ( ) cos

x h
b u v T e u

=
+ Φ + − = ±ξ η ηηηηη ν η , (12) 

 
where ( )1 112 fb E F B Lπ= , 2 22 11b B B= , 3 33 11b B B= , 12 12 11B B=ν , 2h H Lπ= , ( )1 1 1 332e E F B Lπ= , 

( ) ( )
33

2 1 112e E I B L= π , ( )0 10 112T LT Bπ= , ( )( )
i

Ф i n
∞

=−∞

= −∑η δ η , 2n L b= π . 

 
In many practical cases it is possible to estimate 
 
 1 1e >> ,   2 1e << . (13) 
 
In order to verify these estimations we consider the following numerical example. Let the matrix be isotropic; 
then ( )2

11 2 1B Eh= − ν , where E  is the Young’s modulus and ν  is the Poisson’s ratio of the matrix. As it has 

been emphasized by Christensen (1979) (see Chapter 3.4), for most of the real fibrous composites, the rigidity of 
reinforcement elements fits the range: 2 3

1 10 ...10E E = . Let 1 100E E = . For thin boundary beams it is natural 
to suppose 1 2h h= . We also assume that the applied load changes slowly so that 110L h= π . Then 1 20e = , 

2 1 15e = . Hence, in practical calculations 1e  can be considered as a large parameter and 2e  as a small one. 
 
Using estimation (13), the boundary condition (11) can be reduced to a simplified form 
 
 0v =    at 0, hξ = . (14) 
 
Condition (8) can be approximately represented as follows: 
 – for a part of the solution that is slowly varying in the η -direction 
 
 [ ]1 01 ( ) cosb u T+ Φ =ξη η    at 0, hξ = , (15) 
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 – for a part of the solution that is fast varying in the η -direction 
 
 0u =    at 0, hξ = . (16) 
 
In order to clarify the terms “slowly” and “fast varying” let us analyse a part of the solution having the form 

( )cosa mϕ ξ η , where the parameter a is an m-dependent constant. Due the linearity of the governing problem a 

is of the order of m. Comparing the terms uξ  and 2e uηηηη  in condition (10) we can estimate that for m m∗<  the 

solution is slowly varying and for m m∗>  the solution is fast varying; here 3
21m e∗ = . 

 
 
4 Exact Solution 
 
Firstly, let us consider a half-plane. In this case the boundary conditions can be written as follows 
 
 [ ]1 01 ( ) cosb u Tξη η+ Φ =    at 0=ξ , (17) 
 0v =    at 0=ξ , (18) 
 , 0u v →    at x → ∞ . (19) 
 
Applying to the first equation of system (10) the cos-Fourier transforms and to the second one the sin-Fourier 
transforms (Tranter, 1971) 
 

 
0

( , ) ( , ) cos( )u p u p dη ξ η ξ ξ
∞

= ∫ ,   
0

( , ) ( , ) sin( )v p v p dη ξ η ξ ξ
∞

= ∫ , (20) 

 
and taking into account the boundary condition (17), one obtains the following system of two ODEs: 
 
 [ ] ( )2

1 3 12 3 01 ( ) cosb F p u b u b pv Tηη ηη ν η+ Φ − + + = − , (21) 

 ( ) 2
2 21 3 3 0b v b pu b p vηη ην− + − = . 

 
The periodicity of the governing problem in the η -direction allows for representing the solution of system (21) 
in the following form 
 

 
1

( , ) ( ) cos( )i
i

u p A p iη η
∞

=

= ∑ ,   
1

( , ) ( )sin( )i
i

v p D p iξ η
∞

=

= ∑ . (22) 

 
After substitution of expressions (22) into the system (21) and splitting it with respect to trigonometric functions, 
one obtains for the coefficients iA , iD  an infinite system of coupled linear algebraic equations 
 

 
( )3 12

2 2
3 2

( ) ( )i i
b pi

D p A p
b p b i

ν+
=

+
, (23) 

 
1

1 1 1
0 1

2 2cos cos
n

j
k j

k kA Q A j C
n n
π π− ∞

= =

   + = −   
   ∑ ∑ , (24) 

 
1

0 1

2 2cos cos 0
n

i i j
k j

k kA Q i A j
n n
π π− ∞

= =

   + =   
   ∑ ∑ ,   2,3,4, ...i = , (25) 

 
where 
 



 32

 
( )

( ){ }
2 2 2

1 3 2

24 2 2 2 4
2 3 3 2 12 3 3

i

p b b p b i
Q

b b i i p b b b b pπ ν

+
=

 + + + + +
 

, (26) 

 
( )

( ){ }
2 2 2

1 3 2 0
1 24 2 2 2 4

2 3 3 2 12 3 3

p b b p b i T
C

b b i i p b b b b pν

+
=

 + + + + +
 

. 

 
Due the symmetry the infinite system (24), (25) can be solved exactly 
 

 1
1 1 1

1 1
1

2 dn
d

nCA C Q

n Q Q
∞

±
=

= −
 

+ +  
 

∑
, (27) 

 1
1 1

1 1
1

2
dn dn

dn
d

nCA Q

n Q Q
± ± ∞

=

= −
 

+ +  
 

∑ ∓

, (28) 

 0iA = ,   1i dn≠ ± ,   1, 2,3, ...d =  . (29) 
 
Now let us pass to the case of the matrix-strip. For the strip it is possible to use the finite integral transforms 
(Tranter, 1971) 
 

 
0

( , ) ( , ) cos( )
h

u p u p h dη ξ η π ξ ξ= ∫ ,   
0

( , ) ( , )sin( )
h

v p v p h dη ξ η π ξ ξ= ∫ . (30) 

 
Using for the functions ( , )u p η and ( , )v p η expressions (22), we can derive 
 

 
( )( )

( )
3 12

2 2
3 2

/

/
i i

b p h i
D A

b p h b i

+
=

+

ν π

π
 (31) 

 
and come to an infinite algebraic system, which is similar to the system (24), (25) and, thus, possesses the exact 
solution in the form (27)–(29), where 
 

 
( ) ( )

( ) ( ) ( ){ }
2 2 2

1 3 2

22 44 2 2
2 3 3 2 12 3 3

/ /

/ /
i

p h b b p h b i
Q

b b i i p h b b b b p h

π π

π π ν π

 + =
 + + + + + 

, (32) 

 1
1 11 0 1 ( 1) pC C T + = + −  ,   

( ) ( )

( ) ( ){ }
2 2 2

1 3 2
11 2 44 2 2 2

2 3 3 2 12 3 3

/ /

/

p h b b p h b i
C

b b i i p b b b b p h

π π

ν π

 + =
 + + + + + 

. 

 
Applying now the inverse transforms (Tranter, 1971) 
 

 
1

2( , ) ( , ) cos( / )
p

u u p p h
h

ξ η η π ξ
∞

=

= ∑ ,   
1

2( , ) ( , ) sin( / )
p

v v p p h
h

ξ η η π ξ
∞

=

= ∑  (33) 

 
to the expressions (27)–(29), (31), and (32), we obtain 
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 0 11
1 11 1

1,3,5,...
1 1

1

4
( ) cos( )

2p
dn

d

T nCA C Q p h
h

n Q Q
∞

=
±

=

 
 
 

= −   + +      

∑
∑

ξ π ξ , (34) 

 0 11
1 1

1,3,5,...
1 1

1

4 cos( / )
( )

2
dn dn

p
dn

d

T nC p hA Q
h

n Q Q
± ± ∞

=

=

= −
 

+ +  
 

∑
∑ ∓

π ξ
ξ , (35) 

 0iA = ,   1i dn≠ ± ,   1, 2,3, ...d =  . (36) 

 
( )3 12

2 2
3 21,3,5...

( )
( ) sin( / )i

i
p

pi b A p
D p h

b p b i=

+
=

+∑ ν
ξ π ξ . (37) 

 
 
5 Homogenized Solution for the Half-Plane 
 
The homogenization approach is widely used in the theory of composite materials (Bakhvalov and Panasenko, 
1989; Bensoussan et al., 1978). Here we have a rare possibility to compare a homogenized solution with 
correctors based on the exact solution of the 2D problem. In this section we  derive the homogenized solution for 
the half-plane from the solution (23), (27), (28). Let us define a natural small parameter ε  characterizing the rate 

of heterogeneity of the composite structure, 1 nε = , and assume 1ε = . The sums 11 dnd
Q

∞
±=∑  are of the order 

2ε . Expanding expressions (23), (27), and (28) in powers of ε , applying the inverse transforms 
 

 
0

1( , ) ( , ) cos( )
2

u u p p dξ η η ξ ξ
π

∞

= ∫ ,   
0

1( , ) ( , )sin( )
2

v v p p dξ η η ξ ξ
π

∞

= ∫  (38) 

 
and keeping terms of the order 0ε  we obtain the homogenized solution 
 

 
2 2

(0)
1 e e cosu T βξ γξγ β

η
β γ

− − 
= −  

 
, (39) 

 ( )(0)
1 e e sinv T βξ γξ η− −= − , (40) 

 

where 2
1 1 2 2 12 1 /T λ λ λ λ= − + − , ( )2 2

1 2 11 1γ λ λ λ= − − , ( )2 2
2 2 11 1β λ λ λ= + − , 

( ) ( )2
1 3 11 2 12 3 11 2( ) 2b b b b b bλ ν = + − +

  , 2
2 3 11 2b b bλ = , ( )11 111 fb E F B b= + . 

 
Keeping terms of the orders 0ε , 2ε  for u and of the orders 0ε , 3ε  for v , one derives the following correctors to 
the homogenized solution 
 

 ( ) ( )(1) 2
11 1 2

1

cos /
e e cos

m

i

j
u b T

j
βξ γξ η ε

ε βγ γ β η
∗

− −

=

= − ∑ , (41) 

 

 ( ) ( )2 2
(1) 3 1

11 2 3
2 1

sin /
e e cos

m

i

jTv b
j

γξ βξ η εβ γ
ε η

λ

∗

− −

=

= − ∑ . (42) 

 
From expressions (3), (33)–(36) we obtain the following estimations for the displacements 
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2

(0) (1)1

11

E F bu u
B b L

 
 
 

∼ ,   
2 3

(0) (1)1

11

E F bv v
B b L

   
   

  
∼  (43) 

 
and homogenized stresses 
 

 
2

(0) (1)1

11
i i

E F bN N
B b L

 
 
 

∼ ,   (0) (1)1
12 12

11

E F bN N
B b L

 
 
 

∼ ,   1, 2i = . (44) 

 
Expressions (43), (44) give a possibility to estimate the accuracy of the homogenized solution. We can observe 
that the main error of the homogenization approach arises in calculation of the shear stresses. 
 
If from the very beginning we had the boundary conditions (14), (15) instead of the boundary conditions (11), 
(12), then in expressions (41), (42) we should take m∗ = ∞ . In this case evaluating the asymptotic series by means 
of formulae 5.4.2.12, 5.4.2.13 of Prudnikov et al. (1986) one obtains 
 

 ( ) [ ](1)
11 1 1

1 e e cos ( )
12

u b T βξ γξβγ γ β ηψ η− −= −  (45) 

 ( ) [ ]
2 2

(1) 1
11 22

2

e e cos ( )
12

Tv b γξ βξβ γ
ηψ η

λ
− −= −  (46) 

 
where 2 2 2

1( ) 3 6 2ψ η η πεη ε π= − + , ( )2 2 2
2 ( ) 3 3 2ψ η η η πεη ε π= − +  for π ε η π ε− ≤ ≤ . For other values of 

ε  the functions 1 ( )ψ η , 2 ( )ψ η  continue periodically. 
 
 
6 Fibres with Weak Interface 
 
When the fibre is glued to the matrix by an adhesive, a jump in displacements proportional to the transmission 
stress is observed although the continuity of the tensions is maintained for equilibrium. A natural way to model 
such a situation is to assume that the transmission stress τ  depends linearly on the jump of the displacements 
(Lenci, 2000) 
 
 ( )fk u uτ = −  (47) 
 
The parameter k summarizes the mechanical characteristics of the interface, and it can be computed from the 
elastic moduli of the interface (Geymonat et al., 1999). Condition (47) replaces condition (1). Then the governing 
relations can be written as follows 
 

 ( )11 33 12 33 2 ( , ) ( )xx yy xy
j

B u B u B B v x bj y jbτ δ
∞

=−∞

+ + + = −∑ , (48) 

 ( )22 33 21 33 0yy xx xyB v B v B B u+ + + = , (49) 

 ( , ) ( ) ( , )fx bj k u x u x bjτ  = −  ,   0, 1, 2,...j = ± ± , (50) 

 ( )
,2 ( , ) j

f f xxx bj E Fuτ = . (51) 
 
Let us consider the problem for the half-plane. Applying to the BVP (48)–(51) integral transforms (20) and using 
representations (22) with the above described analytical technique, one obtains the solution in the form (22)–
(24), where 
 

 
( )

( ) ( ){ }
2 2 2

1 3 2

22 4 2 2 2 4
1 2 3 3 2 12 3 31

i

p b b p b i
Q

k p b b i i p b b b b pπ ν

+
=

 + + + + + +
 

 (52) 
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( )

( ) ( ){ }
2 2 2

1 3 2 0
1 22 4 2 2 2 4

1 2 3 3 2 12 3 31

p b b p b i T
C

k p b b i i p b b b b pν

+
=

 + + + + + +
 

,   1 2

4 fE F
k

kL

π
= . (53) 

 
The solution for the strip can be derived in the form (23), (27)–(29), where  
 

 
( ) ( )

( ) ( ) ( ){ }
2 2 2

1 3 2

22 42 4 2 2
1 2 3 3 2 12 3 3

/ /

(1 ( / ) ) / /
i

p h b b p h b i
Q

k p h b b i i p h b b b b p h

π π

π π π ν π

 + =
 + + + + + +
 

, (54) 

 
( ) ( )

( ) ( ){ }
2 2 2

1 3 2
11 2 42 4 2 2 2

1 2 3 3 2 12 3 3

/ /

(1 ( / ) ) /

p h b b p h b i
C

k p h b b i i p b b b b p h

π π

π ν π

 + =
 + + + + + +
 

. (55) 

 
Comparison of the obtained results for the perfect and weak interface reveals that in the last case the influence of 
the higher order harmonics on the final solution is essentially smaller (i.e., the weak interface cuts off the higher 
harmonics). Therefore, for the weak interface the proposed asymptotic simplification of governing boundary 
conditions is more accurate than for the perfect one. 
 
 
7 Conclusions 
 
In the present paper an asymptotic approach for a problem of load-transfer to an orthotropic fibre-reinforced 
composite strip via an elastic element is proposed. Asymptotic simplifications of the boundary conditions give a 
possibility to use integral transforms and to obtain the exact solution of the simplified problem. This solution is 
generalised for a weak interface problem. We also analyse the area of applicability of the homogenized solution. 
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