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Generalizations of Maysel’s Formula to Micropolar Thermoviscoelasticity
with non-small Temperature Changes

M. Aouadi

Generalizations of Maysel’s formula to micropolar thermoviscoelasticity are given. The coupled term in general-
ized thermoelasticity formulation is modified with non-small temperature changes, where the absolute temperature
is not replaced by the temperature of the body in its undeformed state, and is expressed as a linear function of time.
The term including ((d/ds)ūi,i) in the Laplace transform domain is treated with an approximate method. The
new reciprocity theorem and fundamental solutions of the linear micropolar thermoviscoelasticity with non-small
temperature changes in the Laplace transform domain are also derived. To illustrate Maysel’s method, a mixed
boundary value problem is considered as an example.

1 Introduction

Generalized continuum theories for mechanical behavior developed over the last century admitted degrees of free-
dom which were not considered in the classical theory of elasticity. The micropolar elasticity theory takes into
consideration the granular character of the medium, and is intended to be applied to materials for which the ordi-
nary classical theory of elasticity fails owing to the microstructure of the material. Within such a theory, solids can
undergo macro-deformations and micro-rotations. The motion in this kind of solids is completely characterized by
the displacement vector u(x, t) and the rotation vector φ(x, t), while in the case of classical elasticity, the motion
is characterized by the displacement vector only. The general theory of linear micropolar thermoelasticity was
given by Eringen (1970) and Nowacki (1974).

Since the works of Maxwell, Boltzmann, Voigt, Kelvin, and others, the linear viscoelasticity has remained an
important area of research. Gross (1953) investigated the representations of mechanical models with linear vis-
coelastic behavior.

In recent years the micropolar thermoviscoelasticity has gained great importance due to the large-scale develop-
ment and utilization of composite, reinforced, and coarse-grained materials. The micropolar viscoelasticity theory
has been investigated by many authors (see Eringen (1967)).

Biot (1965) formulated the theory of coupled thermoelasticity to eliminate the paradox inherent in the classical un-
coupled theory, namely that elastic changes have no effect on the temperature. The heat equations for both theories
are of parabolic type predicting infinite speeds of propagation for heat waves contrary to physical observations. To
eliminate this paradox, many generalized thermoelasticity theories have been developed subsequently. Hetnarski
and Ignaczak (1999) in their survey article examined five generalizations of the coupled theory. Consequently,
the dynamic problem of generalized thermoelasticity must be formulated with mutual coupling of both the heat
conduction equation and the equation of motion. The effect of coupling is not small for some synthetic materials.
However, since the absolute temperature T in the coupled term T u̇i,i is not constant, the governing equations are
nonlinear. Atkinson (1991) derived the coupled thermoelasticity equations with a temperature term that does not
depend on (T − T0)/T (T0 is the temperature of body in its undeformed state) being small, and derived several
solutions limited to quite specialized loads and boundary conditions. We must point out that, however, only when
(T − T0)/T ¿ 1, the assumption of small temperature changes does not lead to a large error. In the situation with
large temperature changes, the problem is too complicated to solve (Zhong and Zhang, 2001).

The technique frequently used in isothermal elasticity, known as Betti’s method, has been extended to thermoelas-
ticity by Maysel (1951), who deduced a method of integration of the boundary value problem of thermoelasticity.
The Maysel formula to determine the displacement uj(x) in a body D, due to the action of a steady temperature
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field T (x), has the form uj(x) = a
∫

D
T (y)σ(j)

kk ((y,x))dV (y), where σ
(j)
kk is the sum of normal stresses at the

point y of the elastic body in the isothermal state (T = 0), due to the action of a concentrated unit force located at
the point x in the direction of the xj−axis.

The paper is devoted to a generalization of Maysel’s formula to a theory of thermovicoelasticity with non-small
temperature changes. In order to solve this kind of problems, several simplifying assumptions applicable to usual
applications are adopted in this paper. The topic of the numerical resolution will be treated by the author in a
future paper. One can refer to Ziegler and Irschik (1987, 1985) and Ziegler (2004) for the methods of solution in
thermoleasticity based on Maysel’s formula and its implementation in the direct boundary integral methods.

Nomenclature

ui components of displacement vector

σij components of force stress tensor

mij components of couple stress tensor

eij components of strain tensor

εij components of micro-strain tensor

δij Kronecker delta

εijk permutation tensor

e = ekk = εkk dilatation

ri components of rotation vector

φi components of micro-rotation vector (φ = φii = φi,i)

Mi mass couple vector

Fi mass force vector

ρ density

j micro-inertia coefficient

a coefficient of linear thermal expansion

λ, µ, k, α, β, γ elastic coefficients

T absolute temperature

T0 reference temperature

θ = T − T0

K thermal conductivity

Q intensity of applied heat source per unit mass

cE specific heat at constant strain

2 The Mathematical Problem

Assume that a linear micropolar thermoviscoelastic material occupies a regular region D with a smooth boundary
surface B in the three-dimensional Euclidian space. The material is assumed to be microisotropic and isotropic.
Through this paper a rectangular coordinate system (x1, x2, x3) is employed. x is the position vector and t the
time. All the functions are considered to be functions of (x, t) defined on D̄(= D ∪ B) × [0,∞). A superposed
dot denotes differentiation with respect to time, while a comma denotes partial differentiation with respect to the
space variables xi. The summation notation is used. Following Eringen (1967), the system of governing equations
of a linear micropolar thermoviscoelasticity consists of
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(i) Equations of motion (on D × [0,∞))

σji,j + ρFi = ρüi, εijpσjp + mji,j + ρMi = jρφ̈i (1)

(ii) Kinematic relations (on D × [0,∞))

εij = eij − εijp(rp − φp), eij =
1
2
(ui,j + uj,i), ri =

1
2
εipquq,p, φ = φi,i (2)

(iii) Constitutive laws (on D̄ × [0,∞))

σij = λR̆λ(e)δij + (2µR̆µ + kR̆k)(eij) + kR̆k(εijp(rp − φp))− a(3λR̆λ + 2µR̆µ + kR̆k)(θ)δij (3)

mij = αR̆α(φ)δij + βR̆β(φi,j) + γR̆γ(φj,i) (4)

where the operator R̆ξ(f), (ξ = λ, µ, k, α, β, γ) is defined for any function f(x, t) of class C1, as

R̆ξ(f) = R̆ξ(f(x, t)) =
∫ t

0

Rξ(t− τ)
∂f(x, t)

∂τ
dτ

where Rξ(t) are six relaxation functions.

Using the kinematic relations, equation (3) takes the form

σji = λR̆λ(up,p)δij + (µR̆µ + kR̆k)(ui,j) + µR̆µ(uj,i) + kR̆k(εijpφp)− a(3λR̆λ + 2µR̆µ + kR̆k)(θ)δij (5)

Substituting the last two equations into the equations of motion (1) we get

(λR̆λ + µR̆µ)(uj,ji) + (µR̆µ + kR̆k)(ui,jj) + kR̆k(εijpφp,j)− a(3λR̆λ + 2µR̆µ + kR̆k)(θ,i) = ρ(üi − Fi) (6)

(αR̆α + βR̆β)(φj,ji) + γR̆γ(φi,jj) + kR̆k(εijpup,j)− 2kR̆k(φi) = ρ(jφ̈i −Mi) (7)

(iv) The equation of heat conduction has the form (on D × [0,∞))

Kθ,ii = ρcE θ̇ + Ta(3λR̆λ + 2µR̆µ + kR̆k)(u̇i,i)−Q (8)

The T = T (x, t) in the coupling term in equation (8) and the heat conduction equation is non-linear. In order to
get a closed solution in generalized thermoelasticity (Fung, 1968), T = T0 was taken depending on the assumption
(T − T0)/T ¿ 1. Now in the situation of non-small temperature changes, we suppose T = T0 + Nt, where N is
suitably selected to stimulate the rate of the temperature change, i.e., temperature change is linear with respect to
time, then we are able to solve the coupled and non-linear equations (6)-(8).

These equations are the field equations (on D × (0,∞)) of linear micropolar thermoviscoelasticity, applicable to
several special cases as follows

1. The equations of linear micropolar thermoviscoelasticity of a Kelvin-Voigt model can be obtained from the
above equations by replacing the operator R̆ξ(f) by

R̆
(v)
ξ (f) = (1 + λv

∂

∂t
)f(x, t)

where λv > 0 is the retardation period of the Kelvin-Voigt model (Alfrey and Gurnee, 1956).

2. The equations of linear micropolar thermoelasticity can be obtained from equations (6)-(8) by replacing the
operator R̆ξ(f) by the function f(x, t).

3. The equations of linear thermoviscoelasticity can be obtained from equations (6)-(8) by setting k = 0, φi = 0,
and Mi = 0.

4. The equations of linear thermoelasticity can be obtained from equations (6)-(8) by replacing the operator R̆ξ(f)
by f , and setting k = 0, φi = 0, and Mi = 0.
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The system of equations (6)-(8) is completed by the initial and boundary conditions. The initial conditions will be
assumed homogeneous

ui(x, t) = 0; φi(x, t) = 0; θ(x, t) = 0; x ∈ D̄; t ≤ 0 (9)

∂nui(x, t)
∂tn

= 0,
∂nφi(x, t)

∂tn
= 0,

∂nθ(x, t)
∂tn

= 0; x ∈ D̄; t ≤ 0 (10)

The boundary conditions

σjinj = fi(x, t) on Bσ × (0,∞), ui = gi(x, t) on Bu × (0,∞) (11)

mjinj = Ωi(x, t) on Bm × (0,∞), φi = Ξi(x, t) on Bφ × (0,∞) (12)

θ = Φ(x, t) on B1 × (0,∞), θ,n = G(x, t) on B2 × (0,∞) (13)

where the functions fi, gi, Ωi, Ξi, Φ, and G are equal to zero when t ≤ 0. (Bu; Bσ), (B1; B2) and (Bφ; Bm)
are three partitions of the boundary surface B such that B = Bu ∪ Bσ = Bφ ∪ Bm = B1 ∪ B2, Bu ∩ Bσ =
Bφ ∩ Bm = B1 ∩ B2 = Ø and ni = ni(x) are the components of the outward-pointing normal vector on the
surface at x ∈ B.

3 The Formulation of the Problem in the Laplace Transform Domain

Performing the Laplace transform defined as

f̄(x, s) =
∫ ∞

0

f(x, t)e−stdt (14)

over equations (1), (4) and (5), with homogeneous initial conditions, we obtain

σ̄ji,j + ρF̄i = ρs2ūi, εijpσ̄jp + m̄ji,j + ρM̄i = jρs2φ̄i (15)

σ̄ji = λ1ūp,pδij + (µ1 + k1)ūi,j + µ1ūj,i + k1εijpφ̄p − a(3λ1 + 2µ1 + k1)θ̄δij (16)

m̄ij = α1φ̄δij + β1φ̄i,j + γ1φ̄j,i (17)

The field equations (6)-(8) in the Laplace transform domain take the form

(λ1 + µ1)ūj,ji + (µ1 + k1)ūi,jj + k1εijpφ̄p,j − a(3λ1 + 2µ1 + k1)θ̄,i = ρ(s2ūi − F̄i), (18)
(α1 + β1)φ̄j,ji + γ1φ̄i,jj + k1εijpūp,j − 2k1φ̄i = ρ(js2φ̄i − M̄i), (19)

ρcEsθ̄ + a(3λ1 + 2µ1 + k1)(T0s−N −Ns
d

ds
)ūi,i − Q̄ = Kθ̄,ii (20)

where

ξ1 = sξRξ(s), ξ = λ, µ, k, α, β, γ

Rξ(s) is the Laplace transform of the relaxation functions Rξ(t). (ξ1 = ξ(1 + λvs)) for the Kelvin-Voigt model
and ξ1 = ξ for the generalized linear micropolar thermoelasticity).

Equations (20) form a set of equations with variable coefficient containing ((d/ds)ūi,i) which represents the strain
ēii differentiation with respect to the transformation parameter s, and this term is difficult to treat numerically.
The further study indicates that the term containing ((d/ds)ūi,i) can be simplified after a suitable mathematical
treatment. ui(x, t) is supposed to be an odd function with respect to time. Then using a Fourier expansion of
the function ui(x, t), i.e., ui(x, t) =

∑∞
n=1 Ain(x) sin nωt, the first-order derivative of which with respect to the

coordinate is ui,i(x, t) =
∑∞

n=1 Ain,i(x) sin nωt, we obtain

ūi,i =
∫ ∞

0

ui,ie
−stdt =

∞∑
n=1

Ain,i(x)
nω

s2 + n2ω2
, and

d

ds
ūi,i = −

∞∑
n=1

Ain,i(x)
2nωs

(s2 + n2ω2)2
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Hence

d

ds
ūi,i = −

∞∑
n=1

2s

s2 + n2ω2
ūi,i

So, equation (20) may be written as

Kθ̄,ii = ρcEsθ̄ + a(3λ1 + 2µ1 + k1)(T0s + Nf(s, ω))ūi,i − Q̄ (21)

where f(s, ω) = −1+
∑∞

n=1
2s2

s2+n2ω2 . Now as long as we select a suitable sine frequency ω according to specific
boundary conditions, we can simulate the law of the displacement ui change with time well.

In the Laplace transform domain, the boundary conditions (11)-(13) are

σ̄ji(x, s)nj(x, s) = f̄i, x ∈ Bσ, ūi(x, s) = ḡi, x ∈ Bu, m̄jinj(x, s) = Ω̄i, x ∈ Bm (22)

φ̄i(x, s) = Ξ̄i, x ∈ Bφ, θ̄(x, s) = Φ̄, x ∈ B1, θ,n(x, s) = Ḡ, x ∈ B2 (23)

and the homogeneous initial conditions (9)-(10) are given by

ūi(x, s) = 0, φ̄i(x, s) = 0, θ(x, s) = 0, x ∈ D̄ (24)

4 Reciprocity Theorem

We assume the system of equations (18)-(20) to be given with the boundary conditions (22)-(23) and the homo-
geneous initial conditions (24). Consider two problems where applied mass forces, mass couples, heat sources,
surface tractions, surface couple-stresses, assigned surface displacements, assigned surface microrotations, surface
temperature, and the normal derivative θ,n on the surface are specified differently under zero initial conditions.
The action starts at t = 0+ and produces in the body displacement microrotations φi and a temperature increment
θ. Let the variables involved in these two problems be distinguished by superscripts in parentheses. Thus, we
have u

(1)
i , φ

(1)
i , m

(1)
ij , e(1), σ

(1)
ij , θ(1), · · · for the first problem and u

(2)
i , φ

(2)
i , m

(2)
ij , e(2), σ

(2)
ij , θ(2), · · · for the

second problem. Each set of variables satisfies the system of equations (18)-(24).

Using the divergence theorem and equations (15)1, (22)-(23), we get (omitting the bars)

∫

D

(σ(1)
ij u

(2)
i,j − σ

(2)
ji u

(1)
i,j )dV =

∫

Bσ

(f (1)
i u

(2)
i − f

(2)
i u

(1)
i )dA +

∫

Bu

(σ(1)
ji njg

(2)
i − σ

(2)
ji njg

(1)
i )dA

+ρ

∫

D

(F (1)
i u

(2)
i − F

(2)
i u

(1)
i )dV (25)

Using equation (16) and taking into consideration that u
(2)
i,j u

(1)
j,i − u

(1)
i,j u

(2)
j,i = 0, we obtain

∫

D

(σ(1)
ji u

(2)
i,j − σ

(2)
ji u

(1)
i,j )dV = 2k1

∫

D

(r(1)
i φ

(2)
i − r

(2)
i φ

(1)
i )dV

+(3λ1 + 2µ1 + k1)a
∫

D

(e(1)θ(2) − e(2)θ(1))dV (26)

From equations (25) and (26) we get
∫

Bσ

(f (1)
i u

(2)
i − f

(2)
i u

(1)
i )dA +

∫

Bu

(σ(1)
ji njg

(2)
i − σ

(2)
ji njg

(1)
i )dA + ρ

∫

D

(F (1)
i u

(2)
i − F

(2)
i u

(1)
i )dV

−2k1

∫

D

(r(1)
i φ

(2)
i − r

(2)
i φ

(1)
i )dV − (3λ1 + 2µ1 + k1)a

∫

D

(e(1)θ(2) − e(2)θ(1))dV = 0 (27)
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Using the divergence theorem, equations (15)2, (16) and (22)-(23), we get
∫

D

(m(1)
ji φ

(2)
i,j −m

(2)
ji φ

(1)
i,j )dV =

∫

Bm

(Ω(1)
i φ

(2)
i − Ω(2)

i φ
(1)
i )dA +

∫

Bφ

(m(1)
ji njΞ

(2)
i −m

(2)
ji njΞ

(1)
i )dA

+ρ

∫

D

(M (1)
i φ

(2)
i −M

(2)
i φ

(1)
i )dV + 2k1

∫

D

(r(1)
i φ

(2)
i − r

(2)
i φ

(1)
i )dV (28)

Using equation (17) and taking into consideration that φ
(2)
i,j φ

(1)
j,i −φ

(1)
i,j φ

(2)
j,i = 0, we find that the integral in the left-

hand side of equation (28) is equal to zero, therefore equation (27) with (28) leads to the first part of the reciprocity
theorem in the Laplace transform domain

∫

Bσ

f
(1)
i u

(2)
i dA +

∫

Bu

σ
(1)
ji njg

(2)
i dA + ρ

∫

D

F
(1)
i u

(2)
i dV + (3λ1 + 2µ1 + k1)a

∫

D

e(2)θ(1)dV

+ρ

∫

D

M
(1)
i φ

(2)
i dV +

∫

Bm

Ω(1)
i φ

(2)
i dA +

∫

Bφ

m
(1)
ji njΞ

(2)
i dA = S12

21 (29)

which contains the mechanical causes of motion Fi, fi, Mi and Ωi, the prescribed displacements and the surface
microrotations gi et Ξi. S12

21 indicates the same expression as on the left-hand side except that the superscripts (1)
and (2) are interchanged.

To derive the second part we multiply θ(2) by the corresponding equation (21) for the first problem, θ(1) by the
analogous equation for the second problem, subtracting and integrating over D, we get

K

∫

D

(θ(2)θ
(1)
,ii − θ(1)θ

(2)
,ii )dV − (3λ1 + 2µ1 + k1)a(T0s + Nf(s, ω))

∫

D

(θ(2)e(1) − θ(1)e(2))dV

+
∫

D

(Q(1)θ(2) −Q(2)θ(1))dV = 0 (30)

Since θ(2)θ
(1)
,ii = (θ(2)θ

(1)
,i ),i − θ

(1)
,i θ

(2)
,i , and θ(1)θ

(2)
,ii = (θ(1)θ

(2)
,i ),i − θ

(2)
,i θ

(1)
,i , using the divergence theorem,

equations (22)-(23), the left-hand side of equation (30) takes the form

∫

D

(θ(2)θ
(1)
,ii − θ(1)θ

(2)
,ii )dV =

∫

B1

(θ(1)
,n Φ(2) − θ(2)

,n Φ(1))dA +
∫

B2

(θ(2)G(1) − θ(1)G(2))dA (31)

Equations (30) and (31) lead to

K

∫

B1

θ(1)
,n Φ(2)dA + K

∫

B2

θ(2)G(1)dA + (3λ1 + 2µ1 + k1)a(T0s + Nf(s, ω))
∫

D

θ(1)e(2)dV

+
∫

D

Q(1)θ(2)dV = S12
21 (32)

Equation (32) constitutes the second part of the reciprocity theorem which contains the thermal causes of motion Φ,
Q and G. Combining equations (28) and (32) we obtain the general reciprocity theorem in the Laplace transform
domain

(T0s + Nf(s, ω))
( ∫

Bσ

f
(1)
i u

(2)
i dA +

∫

Bu

σ
(1)
ji njg

(2)
i dA + ρ

∫

D

F
(1)
i u

(2)
i dV + ρ

∫

D

M
(1)
i φ

(2)
i dV

+
∫

Bm

Ω(1)
i φ

(2)
i dA +

∫

Bφ

m
(1)
ji njΞ

(2)
i dA

)
−K

∫

B1

θ(1)
,n Φ(2)dA

−K

∫

B2

θ(2)G(1)dA−
∫

D

Q(1)θ(2)dV = S12
21 (33)
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5 Generalizations of Maysel’s Formula

The problem to be solved will consist of the determination of ui(x, t), φi(x, t) and θ(x, t), x ∈ D, t > 0, i.e. the
solution of the system of equations (6)-(8), subjected to the homogeneous initial conditions (9) and (10), and the
boundary conditions

ui(x, t) = gi(x, t), φi(x, t) = Ξi(x, t), θ,n(x, t) = G(x, t), x ∈ B2 = Bu = Bφ (34)

σij(x, t)nj(x) = fi(x, t), mij(x, t)nj(x) = Ωi(x, t), θ(x, t) = Φ(x, t), x ∈ B1 = Bσ = Bm (35)

where gi(x, t), Ξi(x, t), Φ(x, t), fi(x, t), Ωi(x, t) and G(x, t) are functions. Consider now the three cases.

Case 1. We assume that Fi = 0, Mi = 0, and that an instantaneous source of heat located at xi = yi where
y ∈ (D ∪ B), is acting upon a linear micropolar viscoelastic body, i.e., we assume Q = Q0δ(r)δ(t), Fi = 0,
Mi = 0, where Q0 > 0 is constant, r =

√
(xi − yi)(xi − yi) and δ(...) is a Dirac delta function. Thus in the

Laplace transform domain (omitting the bars) we have

Q = Q0δ(r), Fi = 0, Mi = 0 (36)

The corresponding fundamental solutions of the system of equations (18)-(20) are

u
(1)
i , φ

(1)
i , θ(1) (37)

Case 2. We assume now that Q = 0, Mi = 0, and an instantaneous concentrated body force Fi = F
(j)
i =

F0δ(x− y)δ(t)δij is acting at the point xi = yi, where y ∈ (D ∪ B), in the direction of the xj−axis, where
F0 > 0 is constant. Taking the Laplace transform domain of Fi (omitting the bars) we have

Q = 0, Fi = F
(j)
i = F0δ(r)δij , Mi = 0 (38)

The corresponding fundamental solutions are

u
(j)
i , φ

(j)
i , θ(j) (39)

Case 3. We assume now that Q = 0, Fi = 0, and an instantaneous concentrated body couple force Mi = M
(q)
i =

M0δ(x− y)δ(t)δiq is acting at the point xi = yi where y ∈ (D ∪ B), in the direction of the xq−axis, where
M0 > 0 is constant. The Laplace transform domain of Mi is

Q = 0, Fi = 0, M
(q)
i = M0δ(r)δiq (40)

The corresponding fundamental solutions are

u
(q)
i , φ

(q)
i , θ(q) (41)

Assuming the boundary conditions to be satisfied by the fundamental solutions (37), (39), and (41) in the form

g
(l)
i (x, s) = Ξ(l)

i (x, s) = G(l)(x, s), x ∈ B2 = Bu = Bφ (42)

f
(l)
i (x, s) = Ω(l)

i (x, s) = Φ(l)(x, s), x ∈ B1 = Bσ = Bm (43)

where l = 1, j, q. Substituting from (34)-(35) into the reciprocity relation (33), one obtains the generalizations of
Maysel’s formula in the Laplace transform domain of the micropolar thermoviscoelasticity theory with non-small
temperature changes

Q0θ(x, s) =
∫

D

Qθ(1)dV − (T0s + Nf(s, ω))
(
ρ

∫

D

Fiu
(1)
i dV −

∫

B2

giσ
(1)
ji njdA +

∫

B1

fiu
(1)
i dA

)

+K
( ∫

B2

Gθ(1)dA−
∫

B1

Φθ(1)
,n dA

)
(44)
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F0ρ(T0s + Nf(s, ω))uj(x, s) = −
∫

D

Qθ(j)dV + (T0s + Nf(s, ω))

(
ρ

∫

D

Fiu
(j)
i dV + ρ

∫

D

Miφ
(j)
i dV +

∫

B1

fiu
(j)
i dA−

∫

B2

giσ
(j)
ki nkdA +

∫

B1

Ωiφ
(j)
i dA−

∫

B2

Ξim
(j)
ki nkdA

)

−K
( ∫

B2

Gθ(j)dA−
∫

B1

Φθ(j)
,n dA

)
(45)

ρM0φq(x, s) = ρ

∫

D

Fiu
(q)
i dV + ρ

∫

D

Miφ
(q)
i dV −

∫

B2

giσ
(q)
ki nkdA +

∫

B1

fiu
(q)
i dA

−
∫

B2

Ξim
(q)
ki nkdA +

∫

B1

Ωiφ
(q)
i dA (46)

6 Fundamental Solutions in the Laplace Transform Domain

According to the Helmholtz theorem (Nowacki, 1962), the displacement and the body forces can be expressed in
the form

ui = ϕ,i + εijkΨk,j , Ψi,i = 0, Fi = X,i + εijkYk,j , Yi,i = 0 (47)

φi = Ω,i + χi, χi,i = 0, Mi = j(Z,i + Ni), Ni,i = 0 (48)

where ϕ,X, Ω, Z are the scalar potentials and Ψk, Yk, χk, Nk are the vector potentials of the vector fields
ui, Fi, φi and Mi, respectively. Equations (47)-(48) with (18)-(20) lead to

(∇2 − P 2
1 )ϕ− b1θ = − X

C2
1

(49)

(∇2 − P 2
2 )Ψi + b2χi = − Yi

C2
2

(50)

(∇2 − a2
3)Ω = − Z

C2
3

(51)

(∇2 − a2
4)χi − b4∇2Ψi = −Ni

C2
4

(52)

(∇2 − P 2)θ − b∇2ϕ = −Q/K (53)

where

C2
1 =

λ1 + 2µ1 + k1

ρ
, C2

2 =
µ1 + k1

ρ
, C2

3 =
α1 + β1 + γ1

ρj
, C2

4 =
γ1

ρj
, P 2 =

ρcEs

K

Pn =
s

Cn
(n = 1, 2, 3, 4), b1 =

(3λ1 + 2µ1 + k1)a
ρC2

1

, b2 =
k1

µ1 + k1
, b3 =

2k1

α1 + β1 + γ1

b =
(3λ1 + 2µ1 + k1)a(T0s + Nf(s, ω))

K
, b4 =

k1

γ1
, a2

3 = P 2
3 + b3, a2

4 = P 2
4 + 2b4

To obtain the fundamental solutions u
(1)
i , φ

(1)
i , θ

(1)
i in the Laplace transform domain, we substitute equations (37)

into the governing equations (49)-(53) and use the following modified Helmholtz equation (Nowacki, 1962)

1
∇2 −m2

n

[δ(r)] = − 1
4πr

e−mnr (54)
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we obtain for an infinite region (Nowacki, 1962), taking into consideration the homogeneous initial conditions (24)

Ω(1) = 0, Ψ(1)
i = 0, χ

(1)
i = 0, φ

(1)
i = 0, r

(1)
i = 0, mij = mji = 0

ϕ(1) =
AQ0b1

Kr

2∑
n=1

ℵn, u
(1)
i = −AQ0b1r,i

Kr

2∑
n=1

℘n, θ(1) = −AQ0

Kr

2∑
n=1

(m2
n − P 2

1 )ℵn

where

A =
1

4π(m2
1 −m2

2)
, ℵn = (−1)n−1e−mnr, ℘n = (

1
r

+ mn)ℵn, $n = ℘n + rm2
nℵn

m2
1, m2

2 are the roots of the characteristic equation

m4 − (P 2
1 + b1b + P 2)m2 + P 2

1 P 2 = 0

The fundamental solutions u
(j)
i , φ

(j)
i , θ

(j)
i are obtained by substituting equations (5.6) into the governing equations

(49)-(53). Taking into consideration that εijkY
(j)
k,li = 0 and εiqpX

(j)
,iq = 0, using equation (54) with mn = 0 and

equation (47)2, we obtain

X(j) = −F0

4π
(
δij

r
),i, Y

(j)
k =

F0

4π
εijk(

δqj

r
),i

The governing equations (49)-(53) now lead to

ϕ(j) =
F0r,iδij

4πs2r2
− AF0r,iδij

r

2∑
n=1

(m2
n − P 2)
C2

1m2
n

℘n, θ(j) = −bAF0r,iδij

C2
1r

2∑
n=1

℘n

χ
(j)
i = φ

(j)
i = εijk

(
b4B

r,i

r

4∑
n=3

℘n

)
, Ψ(j)

i = εijkr,k

( F0

4πr2s2
−

4∑
n=3

B(m2
n − a2

4)
m2

n

℘n

)

u
(j)
i =

~1δij

r2
− ~2r,ir,j

r2
, φ

(j)
i,i = 0

~1 = −AF0

2∑
n=1

(m2
n − P 2)
C2

1m2
n

℘n + B

4∑
n=3

(m2
n − a2

4)
m2

n

$n

~2 = F0

(
B

4∑
n=3

(m2
n − a2

4)
m2

n

−A

2∑
n=1

(m2
n − P 2)
C2

1m2
n

)
(2℘n + $n), B =

F0

4πC2
2 (m2

3 −m2
4)

where m2
3, m2

4 are the roots of the characteristic equation

m4 − (P 2
2 − b2b4 + a2

4)m
2 + P 2

2 a2
4 = 0.

To obtain the fundamental solutions u
(q)
i , φ

(q)
i , θ

(q)
i , we substitute equations (39) into the governing equations

(49)-(53), and we obtain for an infinite region (Nowacki, 1962), taking into consideration homogeneous initial
conditions ϕ(q) = e(q) = θ(q) = 0. From equations (39) and (48) we get

Z(q) =
M0δiqr,i

4πjr2
, N

(q)
i =

M0

j

(
δiqδ(r) +

1
4π

(
1
r
),iq

)
, Ω(q) =

Cδiqr,i

r2

(
1− (1 + a3r)e−a3r

)

Ω(q)
,i = −C(3r,ir,q − δiq)

r3

(
1− (1 + a3r)e−a3r

)
+

Ca2
3r,ir,q

r
e−a3r

Ψ(q)
i =

~3(3r,ir,q − δiq)
r3

− 2
`δiq

3r

4∑
n=3

ℵn, χ
(q)
i = −~4(3r,ir,q − δiq)

b2r3
+ 2

`δiq

3rb2

4∑
n=3

(m2
n − P 2

2 )ℵn
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u
(q)
i = εijk

(
`
r,l

r

4∑
n=3

℘n

)
, φ

(q)
i = Ω(q)

,i + χ
(q)
i

where

~3 = `
(m2

3 −m2
4

m2
3m

2
4

+
r

3

4∑
n=3

℘n

m2
n

)
, C =

M0

4πC2
3ja2

3

, ` =
M0b2

4πC2
4j(m2

3 −m2
4)

~4 = `
(
− m2

3 −m2
4

m2
3m

2
4

P 2
2 +

r

3

4∑
n=3

m2
n − P 2

2

m2
n

℘n

)

7 Example

In this section, the mixed boundary conditions are considered to illustrate Maysel’s method. Let the problem to be
determine ui(x, t), φi(x, t) and θ(x, t), x ∈ D, t > 0 the solution of the field equations (6)-(8), subjected to the
homogeneous initial conditions (9)-(10) and the following boundary conditions

ui(x, t) = gi = 0, φi(x, t) = Ξi = 0, θ,n(x, t) = G = 0; x ∈ B2 = Bu = Bφ (55)

σji(x, t)nj(x) = fi(x, t), mji(x, t)nj(x) = Γi(x, t), θ(x, t) = Φ(x, t), x ∈ B1 = Bσ = Bm (56)

Here fi(x, t), Γi(x, t) and Φ(x, t) are given functions on B1(= Bσ = Bm). It is important to notice that the trac-
tion vectors fi(x, t) = σki(x, t)nk(x); Γi(x, t) = mki(x, t)nk(x) and the surface temperature Φ(x, t) = θ(x, t)
are unknown functions on the part B2(= Bu = Bφ) of the surface. The fundamental solutions u

(l)
i , φ

(l)
i , θ(l) (l =

1, j, q) satisfy the conditions

f
(1)
i (x, t) = f

(j)
i (x, t) = f

(q)
i (x, t) = 0, Φ(1)(x, t) = Φ(j)(x, t) = 0,

Γ(j)
i (x, t) = Γ(q)

i (x, t) = 0, x ∈ B1 = Bσ = Bm (57)

and since φ
(1)
i = θ(q) = 0, we have

Φ(q)(x, t) = Ξ(1)
i (x, t) = Γ(1)

i (x, t) = 0, x ∈ B1 = Bσ = Bm (58)

Equations (44)-(46) with (55)-(58) lead to the relations

Q0θ(x, s) = θ0(x, s)−K

∫

B2

θ(y, s)G(1)(y,x, s)dA(y)

−(T0s + Nf(s, ω))
∫

B2

fi(y, s)g(1)
i (y,x, s)dA(y) (59)

F0ρ(T0s + Nf(s, ω))uj(x, s) = u0
j (x, s) + K

∫

B2

θ(y, s)G(j)(y,x, s)dA(y)

+(T0s + Nf(s, ω))
(∫

B2

fi(y, s)g(j)
i (y,x, s)dA(y) +

∫

B2

Γi(y, s)Ξ(j)
i (y,x, s)dA(y)

)
(60)

M0ρφq(x, s) = φ0
q(x, s) +

∫

B2

fi(y, s)g(q)
i (y,x, s)dA(y) +

∫

B2

Γi(y, s)Ξ(q)
i (y,x, s)dA(y) (61)

where θ0(x, s), u0
j (x, s), φ0

q(x, s) are known functions, given in terms of the fundamental solutions on the part
B1 = Bσ = Bm of the surface, functions Φ(x, s), fi(x, s), Γi(x, s), the mass force, the mass-couple force and
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the heat source

θ0(x, s) =
∫

D

Q(y, s)θ(1)(y,x, s)dA(y)−K

∫

B1

Φ(y, s)θ(1)
,n (y,x, s)dA(y)

−(T0s + Nf(s, ω))
(
ρ

∫

D

Fi(y, s)u(1)
i (y,x, s)dA(y) +

∫

B1

fi(y, s)u(1)
i (y,x, s)dA(y)

)
(62)

u0
j (x, s) = (T0s + Nf(s, ω))

(
ρ

∫

D

Fi(y, s)u(j)
i (y,x, s)dA(y) + ρ

∫

D

Mi(y, s)φ(j)
i (y,x, s)dA(y)

+
∫

B1

fi(y, s)u(j)
i (y,x, s)dA(y) +

∫

B1

Γi(y, s)φ(j)
i (y,x, s)dA(y)

)
−

∫

D

Q(y, s)θ(j)(y,x, s)dA(y)

+K

∫

B1

Φ(y, s)θ(j)
,n (y,x, s)dA(y) (63)

φ0
q(x, s) = ρ

∫

D

Fi(y, s)u(q)
i (y,x, s)dA(y) + ρ

∫

D

Mi(y, s)φ(q)
i (y,x, s)dA(y)

+
∫

B1

fi(y, s)u(q)
i (y,x, s)dA(y) +

∫

B1

Γi(y, s)φ(q)
i (y,x, s)dA(y). (64)

To find the solution given by equations (59)-(61) it is necessary to determine the three unknown functions fi(x, t) =
σki(x, t)nk(x), Γi(x, t) = mki(x, t)nk(x) and θ(x, t) = Φ(x, t) on the part B2(= Bu = Bφ) of the surface B.
In equations (59)-(61) letting x → ξ ∈ B2 and substituting (55), we get the following system of three singular
Fredholm integral equations in the three unknown functions

0 =
∂θ0(ξ, s)
∂n′(ξ)

−K

∫

B2

θ(y, s)
∂G(1)(y, ξ, s)

∂n′(ξ)
dA(y)

−(T0s + Nf(s, ω))
∫

Bu

fi(y, s)
∂g

(1)
i (y, ξ, s)
∂n′(ξ)

dA(y) (65)

0 = u
(0)
j (ξ, s) + (T0s + Nf(s, ω))

( ∫

B2

fi(y, s)g(j)
i (y, ξ, s)dA(y) +

∫

B2

Γi(y, s)Ξ(j)
i (y, ξ, s)dA(y)

)

+K

∫

B2

θ(y, s)G(j)(y, ξ, s)dA(y) (66)

0 = φ(0)
q (ξ, s) +

∫

B2

fi(y, s)g(q)
i (y, ξ, s)dA(y) +

∫

B2

Γi(y, s)Ξ(q)
i (y, ξ, s)dA(y) (67)

where n′(ξ) is the outward-pointed normal vector on B2. For general boundary shapes the system of equations
(59)-(61) does not seem to have analytical solutions, which makes it necessary to recur to numerical techniques.
The integrals have to be discretized and the problem reduces to finding the solution of a system of linear algebraic
equations.

8 Conclusions

1. The coupled term in generalized thermoelasticity formulations is modified with no-small temperature changes,
and the non-linear term in heat conduction equation is considered. Instead of T = T0 for the small temperature
change situation, we suppose that T = T0 + Nt, which can approximately simulate the temperature change
in certain conditions usually met in thermo-mechanical problems, such as a finite body which is subjected to
a sudden heating shock, for instance heat-treatment and laser processing. The term containing ((d/ds)ūi,i) is
treated approximately depending on the assumption that ui(x, t) is supposed to be an odd function with respect to
time.
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2. The direct formulation (applying the new Betti-reciprocical theorem) of Maysel’s formula in the Laplace trans-
form domain is given for linear micropolar thermoviscoelasticity with non-small temperature changes. The new
fundamental solutions for the corresponding differential equations are also obtained.

3. For the mixed boundary value problem, a system of three Fredholm integral equations in three unknown func-
tions on a part of the boundary is obtained, and the necessity of recurring to numerical methods is shown. For
any smooth enough boundary shape, the integrals involved in the system of the integral equations have to be dis-
cretized. The problem is then reduced to finding the solution of a system of linear algebraic equations in the Laplace
transform domain. Using numerical inversion methods, the solutions in the physical domain can be obtained.

4. The rapid development of computer science and the boundary element applications reveal the importance of
searching for a reciprocity theorem, which is the theoretical basis of the boundary element method and techniques
based on Maysel’s formula. The present work provides a more complete theoretical basis for modern numerical
techniques such as boundary element and finite volume methods. The topic of the numerical resolution is being
treated by the author and will be reported in a future paper. One can refer to Ziegler and Irschik (1987, 1985) and
Ziegler (2004) for the methods of solution in thermoleasticity based on Maysel’s formula and its implementation
in the direct boundary integral methods.
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