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The Stephenson - Kapitsa pendulum: Area of the Attraction of the Upper
Positions of the Balance

V. Vasilkov, A. Chubinsky, K. Yakimova

Here we consider the behavior of a pendulum with a vibrating axis of suspension which differs from the classical
one by the presence of an additional degree of freedom: the pendulum contains some mass, fixed on a spring,
which can be displaced with respect to the main mass in two mutually perpendicular directions. Experimental
investigations have been performed to determine the stable equilibrium positions of the pendulum. The results
of the experiment were in good agreement with those of the numerical solution of the complete equations of mo-
tions of the system. Both of them were in good agreement with the rough analytical solution, obtained before
by I.I. Blekhman and L. Sperling. It has been confirmed that the presence of the inner degree of freedom of the
additional mass in the “radial” direction results in an essential widening of the range of attraction of the upper
vertical quasi-equilibrium position of the pendulum.

1 Introduction

The history of the investigations begins with the classical problem of a rigid pendulum with a vibrating axis
of suspension (the upside-down pendulum). Stephenson (1908) proved that under the vibration of its axis the
pendulum can preserve its stable upper vertical position. Later Kapitsa (1951)gave quite independently the solution
of the same problem. He used a simple heuristic method which served as an impulse to the appearance of a new
section of the theory of nonlinear oscillations to vibrational mechanics by Blekhman (2000). Acheson and Mullin
(1993) found the conditions which are to be kept to provide the stability of the vertical position of the n-link upside-
down pendulum. These conditions depend on the number of the links, on their weight and size. Thus a chain of
three links (sticks) 0.19 m. long preserved its vertical position at the oscillation frequency of the support 40 Hz
and the amplitude 0.01 m. The stability was not broken at the deviation of the position of the chain of sticks from
the vertical at an angle equal to 45 degrees. The general statement of the problem and of the equation of motion
of the pendulum with inner degrees of freedom under the vibration of its axis of suspension are given in the work
of Blekhman and Sperling (2004a), Blekhman and Sperling (2004b). They have also determined analytically the
domains of the stability of the equilibrium positions of such pendulum (ibid).
The presentation contains the results of the experimental investigations for determining the domains of stability of
the equilibrium positions of the pendulum with a “radial” degree of freedom under a vertical harmonic vibration of
its axis of suspension. There is a comparison with the results of the numerical calculations, obtained when solving
the complete equations of motion of the pendulum (the precise solution) and the equations, based on the use of
the method of direct separation of motions into the fast and slow components (the approximate solution). For the
same purpose numerical solutions of complete equations were also made in the presence of the tangential degree
of freedom of the additional mass.

2 Equations of Motion of the Pendulum with the Inner Degrees of Freedom

The scheme under consideration in accordance with Blekhman and Sperling (2004a) is shown in Figure 1.
Equations of motion of this system can be presented in the form
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Figure 1. General scheme of the system.

[JA + m(r + ρ)2 + mσ2]ϕ̈ + kϕ̇ + m[(r + ρ)2 + σ2].ϕ̇− [SA + m(r + ρ)](ẍ cosϕ− ÿ sin ϕ)+
+ mσ(ẍ sin ϕ + ÿ cosϕ) + m[(r + ρ)σ̈ − σρ̈] + [SA + m(r + ρ)]g sinϕ + mgσ cos ϕ = 0, (1)

ρ̈ + 2δρρ̇ + ω2
ρρ = σϕ̈ + 2σ̇ϕ̇ + (r + ρ)ϕ̇2 + ẍ sin ϕ + (g + ÿ) cos ϕ, (2)

σ̈ + 2δσσ̇ + ω2
σσ = −(r + ρ)ϕ̈− 2ρ̇ϕ̇ + σϕ̇2 + (ẍ cos ϕ− (ÿ + g) sin ϕ). (3)

Here we have

JA = JC + m0l
2, SA = m0l, ω2

ρ = cρ/m, ω2
σ = cσ/m, 2δρ = hρ/m, 2δσ = hσ/m, (4)

g – is the free fall acceleration. For the case, corresponding to the vertical harmonic vibration of the axis of
suspension and the “radial” degree of freedom of the additional mass of the pendulum, it is sufficient to consider
just two first differential equations of the system (1-3) and assume that σ ≡ 0, x ≡ 0, y = A cosΩt, where A is
the amplitude, and Ω is the vibration frequency.
Then the system of equations is

[JA + m(r + ρ)2]ϕ̈ + kϕ̇ + 2m(r + ρ)ρ̇ϕ̇ + [SA + m(r + ρ)](g −AΩ2 cos Ωt) sin ϕ = 0 (5)

ρ̈ + 2δρρ̇ + ω2
ρρ = (r + ρ)ϕ̇2 + (g −AΩ2 cosΩt) cos ϕ. (6)

For the approximate solution of this problem the method of direct separation of motions by Blekhman (2000) is
used. Then the solution of the problem will be

ϕ = α(t) + ψ(t,Ωt), ρ = ε̃(t) + κ(t, Ωt),

where α and ε̃ – are the slow component, and ψ and κ – are the fast ones, 2π – periodical in “fast” time τ = Ωt,
while their average values by τ are equal to zero

〈ψ(t, τ)〉 = 0, 〈κ(t, τ)〉 = 0

(the angular brackets denote here the averaging by τ ).

As a result of using the method, the following equations of slow motions are obtained
(

J +
1
2
mA2η4V 2 cos2 α

)
α̈ + (k + 2mrε̇)α̇ + S

[
g

(
1− 1

4
µ2 sin2 α

)
+

µ

2
AΩ2 cos α

]
sin α+

+
[
1
2
(µg cos α + AΩ2)(1− η2)− 2µΩDηε̇

]
mAη2V 2 sin α cos α = 0, (7)
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ε̈ + 2δρε̇ + ω2
ρε = rα̇2 − 2µAΩDη3V 2 sinα cos α α̇ +

µ2

2
rΩ2 sin2 α− µ

2

(µ

2
g cosα + AΩ2

)
sin2 α. (8)

When deriving these equations it is used the same simplifying suppositions in the process of solving the equations
of fast motions,that had been used in the work by Blekhman and Sperling (2004b). As result of those suppositions,
the approximate equations of fast motions were accepted in the following form

Jψ̈ = SAΩ2 sin α cosΩt, (9)

κ̈ + 2βρκ̇ + ω2
ρκ = −AΩ2 cos α cosΩt, (10)

here and above it is denoted

J = JA + mr2, S = SA + mr, D =
δρ

ωρ
, η =

Ω
ωρ

, (11)

V =
1√

(1− η2)2 + 4D2η2
, µ =

SA

J
, ε̃ = ε +

mg cosα

cρ
. (12)

The ability to find, approximately, the fast motions, without any essential loss of accuracy in determining the slow
motions, is one of the greatest advantages of the method of direct separation of motions, see Blekhman (2000).

3 Experimental Investigation of the Model of the Pendulum on a Vibrational Stand

Load 2 in Figure 2, placed on rod 4, was used in the experiments as a pendulum. The mass of the load was
m = 0.027kg. The steel rod ®1.5mm was passed through the hole ®1.6mm passing through the center of gravity
of the load. Thus the load could slide freely along the rod. The rod was fixed firmly on the axis of bearing 6, placed
in rack 1. The load is linked to the rod by elastic elements 3 (springs) resting on the rings 5, fixed on the rod. The
distance from the center of gravity of the pendulum to the axis of suspension is l = r = 57.5mm. Experiments
were performed on the springs, operating, the general rigidity being equal to cρ = 904N/m.

Figure 2. Scheme of the experimental installation.
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The axis of suspension of the pendulum was established horizontally, creating its vertical oscillations with a per-

manent amplitude A = 6.5mm and its frequency f

(
f =

Ω
2π

)
, changing within range 5-30Hz.

Results of the experiments are given in Table 1.
The frequency range in the experiments for the nonrigid pendulum was chosen from the condition of the proximity
to the resonance frequency of the additional mass of the load ωρ = 183s−1(f ≈ 29Hz). The round numbers for
the deviation angles in Table 1 are explained by the error in their measuring (±50) while the axis of suspension of
the pendulum was under vibration.

Table 1. Domains of the attraction of the stable upper vertical position of the quasi-equilibrium of the pendulum

The allowed angle
of the deviation of the pendulum

N Vibration ϕ∗ = |1800 − ϕ|, degrees
Frequency, Experiment Calculation

Hz By general By approximate
equations equations

1 23.3 − 26.50 32.20

2 24.2 300 33.90 42.50

3 25.0 400 37.90 46.50

4 26.0 500 40.20 49.90

5 26.6 600 39.60 50.50

6 27.7 700 35.00 45.90

7 28.3 800 27.60 38.50

For the sake of comparison, experiments were made on a rigid pendulum which had the same mass (0.027kg) and
the same length (57.5mm) as the pendulum with an additional mass. With an oscillation amplitude of the axis of
the pendulum being 6.5mm, the stable upper vertical position of the rigid pendulum was observed at the minimal
frequency-30Hz. Then the greatest angle of the initial deviation of the pendulum, providing its return to the stable
upper vertical position, was approximately 1.50.
It should be noted that the classical condition AΩ >

√
2gl, which answers the stability of the upper vertical

position of the quasi-equilibrium of the pendulum in the case of a rigid pendulum, is fulfilled under the above
conditions

6.5 · 10−3 · 2π · 30 >
√

2 · 9.8 · 0.0575, i.e. 1.22 > 1.06.

In the case of the pendulum with the inner degree of freedom this condition is “softened”.
So for the minimal value of the oscillation frequency of the axis of the pendulum – 24.2Hz, providing the stability
of the upper position, that condition is not met.

6.5 · 10−3 · 2π · 24.2 <
√

2 · 9.8 · 0.0575, i.e. 0.987 < 1.06.

As is seen from the above inequalities, with the nonrigid pendulum the stability of the upper vertical position
of the quasi-equilibrium of the pendulum is achieved with the lesser values of the oscillation speed of the axis
AΩ = 0.987 than in case of the rigid pendulum when AΩ = 1.22.
As is seen from the table, the domain of attraction of the stable upper vertical position with respect to the initial
deviation of the nonrigid pendulum is then considerably widened. The greatest angle of the initial deviation of the
pendulum from the upper stable vertical position of the quasi-equilibrium at which it still can return to that stable
position made 800.

4 Numerical Experiment

The numerical solution of systems of equations (5), (6) and (7)-(10) was performed by the method of Runge-
Kutta of the eighth order with an equi-stepwise lattice. The values of the parameters in the equations of motion
correspond to the experimental ones and apart from those, mentioned above, were the following

JA = 0.974 · 10−4kg ·m2; SA = 0.0971 · 10−2kg ·m; δρ = 30s−1; ωρ = 183s−1.
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Calculations of the rigid pendulum have shown that the largest angle of the initial deviation of the pendulum,
providing its return to the upper stable vertical position was approximately 100.
The difference from the experiment (approximately 1.50) is probably connected with a certain asymmetry in the
experimental model of the pendulum. The asymmetry of the pendulum can be connected with the inaccuracy of
its production and inaccuracy of the reproduction of the purely vertical vibration.
The results of the numerical calculations by exact and approximate equations for the non-rigid pendulum are given
in Table 1.
The boundary of the angular deviation of the pendulum, below which there is a domain of attraction of the upper
stable vertical position of the quasi-equilibrium, is shown in Figure 3 (the circles indicate the experimental results,
the crosses show the calculation by the exact equations, the triangles indicate the calculation by the approximate
equations). Experiments 2-4 (see Table 1 and Fig.3) are in good agreement with the results of the numerical
calculations by both exact and approximate equations. The difference in the data of experiments 5-7 with the
results of the numerical calculations is caused by the limitation of the strake of the additional mass of the pendulum
in the experiment, and in experiment 1 - by the proximity of the boundary of stability.

Figure 3. Dependence of the greatest possible deviation by the angle ϕ∗, provid-
ing the return of the pendulum to the stable upper vertical position of
the quasi-equilibrium on the oscillation frequency of the axis of its sus-
pension.

Similar numerical calculations have been made for the exact equations (1), (3) with the tangential degree of free-
dom of the nonrigid pendulum (ρ ≡ 0, x ≡ 0, y = A cosΩt) with the same values of the parameters (the mass of
the load, the length of the pendulum, the rigidity of the springs). Calculation have shown that the presence of the
tangential degree of freedom of the load of the pendulum does not provide a stable upper vertical position of the
quasi-equilibrium at the preset amplitude value and frequency range.
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Conclusions

1. Numerical solutions of both exact and approximate equations of the motion of the pendulum under the vertical
harmonic vibration of the axis of its suspension and the possibility of the displacement of the additional mass in
the radial direction is in good agreement with the results of the experiments.
2. It has been shown that in the presence of the additional mass it is possible to stabilize the upper position of the
pendulum at a considerably smaller value of the amplitude of the oscillation speed of the axis of the pendulum.
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3. The presence of the additional degree of freedom of the load of the pendulum in the radial direction leads to
the widening of the domain of attraction of the upper vertical position of the quasi-equilibrium of the pendulum
(by the angular deviation from the vertical), and the presence of the tangential degree of freedom of the load in the
frequency range under consideration does not provide the acquisition of the stable upper position of the pendulum.
The results obtained can be used to facilitate the starting regimes of a number of vibrational machines.
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