
 67

TECHNISCHE MECHANIK, Band 27 , Heft 1, (2007), 67 - 76  
Manuskripteingang: 23. Oktober 2006  

 
 
 

Arbitrary Penetration of a Rigid Axially Symmetric Indenter into 
an Axially Heterogeneous Rigid-Perfectly-Plastic Half-Space 
 
A. Kravchuk, Z. Rymuza 
 
This paper is concerned with the axially symmetric plastic flow of an axially heterogeneous rigid-perfectly-
plastic nonhardening half-space. The directions of heterogeneity coincide with the axis of symmetry of indenter 
and the radial direction in cylindrical frame of references. The arbitrary depth of penetration of the rigid 
indenter is studied on the basis of the Haar and v. Karman hypothesis. The analytical distribution of contact 
stress is obtained. It allows for taking into account the local adhesion of an indenter surface and the surface of 
the half-space. The conical indenter is investigated as a particular case. The dependence between the applied 
force and the penetration depth of the conical indenter for several cases of heterogeneity is determined. 
 
1 Introduction 
 
Many numerical investigations of plastic flow of heterogeneous ideally plastic bodies have been made (Olszak 
W. et. al., 1962; Grigoriev O.D., 1969). The basic equations of axially symmetric plastic fields are well known. It 
has been shown that these equations are statically determined when the Haar and v. Karman hypothesis is 
satisfied (Grigoriev O.D., 1969; Ishlinsky A.J. et al., 2001). But the approach of analytical solution of axially 
symmetric contact problem has been applied only to initial plastic flow of homogeneous half-space (Kravchuk 
A.S. et. al., 2005).  
 
This paper deals with analytical solution of the contact problem for an arbitrary penetration of a rigid indenter 
into an axially symmetric heterogeneous half-space. We determine the analytical distribution of contact stress for 
an arbitrary axially symmetric rigid indenter taking into account the variation of the yield stress in the meridian 
plane. The conical indenter is considered as a particular case. The value of the Meyer hardness and the applied 
force are determined by the depth of penetration of a conical indenter. The influence of heterogeneity on the 
hardness and the value of applied force has been investigated  
 
2 Statement of the problem. Preliminary transformation of equations 
 
The contact problem can be conveniently studied with the help of cylindrical polar co-ordinates ( )zr ,,ϕ , where 
0z is the axis of symmetry of bodies (Figure 1). The surface of the half-space in the plain z0r after indenter 
penetration is determined by the equation (Kravchuk A.S. et. al., 2005) 
 

)rf(z =  
 
where )rf(  is an equation of hafl-space surface. It is a differentiable function for ),a()a,0[r +∞∪∈ ,  

0)( <′ rf  when )a,0[r ∈  and 0
dr

)r(df)r(f ==′  when ),a[r +∞∈ , a  is the radius of contact area (Figure 1). 

 
The stress distribution in the half-space involves the four stress components )z,r(σ r , ),(σ zrθ , )z,r(σ z , 

)z,r(τ rz . The circumferential stress ),(σ zrθ  is a principal stress. These components satisfy the equation of 
equilibrium (Shield R.T., 1955; Grigoriev O.D., 1969; Ishlinsky A.J. et al., 2001) 
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Figure 1. Plane section of contact of an axially symmetric indenter 

 
 
Let us use the conditions of “full plasticity” for a heterogeneous body at the form (Grigoriev O.D., 1969) 
 

),(2),(σ),(σ 31 zrKzrzr ⋅−= , ),(σ),(σ 32 zrzr =  
 
where )z,r(σ 3,1i,i ∈

 is a component of a principal stress, 2),(σ),( zrzrK s= , ),(σ zrs  is the yield stress. The 

following equations are valid (Olszak W. et. al., 1962; Grigoriev O.D., 1969) (Figure 1) 
 

( )),α(2sin),(),σ(),(σ zrzrKzrzrr ⋅⋅−= ,  ( )),α(2sin),(),σ(),(σ zrzrKzrzrz ⋅⋅+= , 
        (2) 

),(),σ(),(σ zrKzrzr +=θ ,   ( )),α(2cos),(),(τ zrzrKzrrz ⋅⋅= , 
 

where 4)z,r()z,rα( πϕ +=  (Shield R.T., 1955), ( ))z,r(σ)z,r(σ
2
1)z,rσ( 31 +=  (Grigoriev O.D., 1969; 

Ishlinsky A.J. et al., 2001), )z,r(ϕ  is the angle between a direction 0r and the first principle stress (Figure 1) 
(Shield R.T., 1955). 
 
Let us consider the function ),α( zr . It is defined on the contact surface by the boundary condition 
 

)r()r())rf(,rα( ωγ += ,            (3) 
 
where (Figure 1, 2) 
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( ))()( rfarctgr ′=γ  is the angle of the tangent slope to the surface of indenter (Figure 1), )r(f
dr
d)r(f =′ , 

]4,0[)r( πψ ∈  is a variable angle which is defined by the direction of plastic shear in the contact area. The 
variable angle )r(ψ  allows for taking into account the local adhesion of an indenter surface which contacts with 
a half-space surface. It is supposed that 0)r(f =′ , when ),a[ ∞ . 
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Figure 2. Orientation of principal stress on the free boundary (Shield R.T., 1955) 

 
 
Substituting (2) into (1), we obtain the following system 
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Having made some transformation in system (5) we get the equation 
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where 
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Taking into account (3) after some permutations we obtain the equation 
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The following equalities are valid 
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Taking into account the results of  Kravchuk et al., (2005), we can consider additional equation 
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Using (6), (7), we obtain that the function σ  satisfies the differential equation on the bound of half-space 
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Taking into account (3) and (4) after transformations we obtain the solution of (8) 
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where ( ))(, afaσ  is a constant. 
 
It is known that 0z =σ  when ),a[r ∞∈ . Therefore we obtain the boundary condition from (2) and (4) 
(Shield R.T., 1955; Ishlinsky A.J. et al., 2001) 
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Thus (3), (4), (9), in the area of contact we obtain the following equation 
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The applied force F is determined by the equation (Ishlinsky A.J. et. al., 2001)  
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Taking into account (10), (11), Meyers hardness (HM) is defined by the following equation 
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3 Conical Indenter 
 
The boundary of conical indenter is determined by equation: 
 

∆β +⋅= r)(tg)r(f .  
 
In this case )()( βtgrf =′ , where β  is the negative angle between the element of the cone and the direction r0  
(Figure 3). The penetration depth of indenter is determined by the condition 0=)a(f  (Figure 1, 3). It means 
that the depth of penetration ∆  is defined by equation (Figure 1, 3) 
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It is supposed that ψψ =)r( , where [ ]4,0 πψ ∈  is a constant. In this case equation (10) can be simplified 
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where 
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Figure 3. Conical indenter 

 
 
The hardness and diagram ∆/F  (force/(penetration depth)) have been determined in some cases of 
heterogeneity. The periodical variations of yield stress in direction 0z have been considered (Figure 4, 5, 6) 

 
))zsin(1(K2)z(K2)z,r(K2)z,r( zzzy ⋅⋅+⋅⋅=⋅=⋅= λµσ .       (14) 

 
The decreasing of yield stress in direction 0z has been investigated (Figure 7, 8, 9)  
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Figure 4. Periodic variation of the yield stress yσ  (14) ( 8
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Figure 5. Variation of hardness of surface (12) in the case of heterogeneity (14)  
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Figure 6. The diagram ∆/F  (force/(penetration depth)) in the case of heterogeneity (14)  
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Figure 7. The decreasing of yield stress in direction 0z (15) ( 8
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Figure 8. Variation of hardness of surface (12) in the case of heterogeneity (15)  
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Figure 9. The diagram ∆/F  (force/(penetration depth)) in the case of heterogeneity (15)  
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4 Conclusions 
 
An arbitrary penetration depth of a rigid indenter into a heterogeneous half space has been studied based on the 
Haar and v. Karman hypothesis. The analytical distribution of the contact stress has been obtained. It allows for 
taking into account the local adhesion between the indenter surface and the surface of half-space. The conical 
indenter has been investigated as a particular case. The dependence between the applied force and the penetration 
depth of the conical indenter for several cases of heterogeneity was determined. 
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