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Integrated Motion Measurement for Flexible Structures

T. Örtel, J.F. Wagner

Integrated navigation, as an example of integrated motion measurement systems, is typically based on inertial
sensors (accelerometers, gyros) and GPS and is commonly used for vehicle guidance. Traditionally, the vehicle of
integrated navigation systems is assumed to be a rigid body. However, extending these integrated systems to elas-
tic structures is possible. The considered continuum, in particular a flexible beam, is an attempt to obtain motion
measurements of an aerofoil of a flying aircraft with large structural dimensions. Integrated systems considered
here in general are fusing different measuring methods by using their benefits and blinding out their disadvan-
tages. For instance, gyros and accelerometers are used to obtain reliable signals with a good time resolution. On
the other hand, aiding sensors like radar units and strain gauges are known to be long-term accurate. The kernel
of the integrated systems presented in this article consists, however, of an continuous-discrete extended Kalman
filter estimating the motion state of the structure. Besides the sensor signals to be amalgamated, the filter requires
a kinematical model of the vehicle motion considered, which has to be developed individually. This kinematical
model describes the standardised dynamics of the vehicle by means of specific forces, i.e. accelerations, and of
rotational velocities. Thus, there are no dynamometers or mass and stiffness properties needed in this approach.
Diverse kinematical models of the beam were developed and evaluated, using model reduction in regard of the
natural modes. Based on simulation the paper shows this approach, appropriate sensor sets, and estimated motion
results of a flexible beam.

1 Introduction

Integrated navigation devices for vehicle guidance are the most common example of an integrated motion mea-
surement system combining the signals from an inertial measurement unit (three accelerometers, three gyros) and
a GPS receiver with a single antenna. Traditionally, for these systems the vehicle is assumed to be a single rigid
body with six motional degrees of freedom to be determined (Farrell and Barth (1999)). During periods of low
vehicle dynamics the common integrated navigation systems show stability problems due to a loss of observability
(see section 2.3). Nevertheless, the stability of the system can be guaranteed by distributing additional sensors over
the vehicle structure. However, in this case the rigid body assumption has to be expanded to take the distributed
sensors and the flexibility of the structure into account. Integrated systems using distributed sensors and consider-
ing consequently the flexibility of the structure are not state of the art (Quinn et al. (2005)) and will be investigated
in this article.
Integrated systems in general are fusing different measuring signals by combining their advantages and blinding
out their disadvantages. For instance, gyros and accelerometers are used to obtain reliable signals with a good time
resolution. On the other hand, aiding sensors like radar units and strain gauges are known to be long-term accurate.
Furthermore, the kernel of the integrated systems consists of an extended Kalman filter that estimates the motion
state of the structure (see section 2.2). Besides the sensor signals, the basis for the filter is an additional kinemat-
ical model of the structure which has to be developed individually. The example of the motion of an elastic beam
being considered here is meant to be an approach to obtain motion measurements of a wing of a large airplane
during flight. This investigation aims not only on an extensive motion control but also on system identification and
structural monitoring.
In the following chapter 2 the basics of integrated measurement systems are explained. Chapter 3 generalises the
theory of integrated navigation systems for flexible structures. It includes an example of a kinematical model of a
flexible beam. Chapter 4 will focus on the model reduction of the considered beam and will explain in more detail
the concept of the modal approach. The quality of the filter estimation results depends decisevely on the position
of the sensors. Therefore, sensor positioning was adapted using the information of the mode shapes which is also
explained in chapter 4. Chapter 5 shows the estimated motion results of the beam, and an outlook of the future
topics to be investigated is given in chapter 6.
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2 Integrated Navigation and Motion Measurement Systems

Utilising integrated navigation systems was generally thought to be expensive and difficult to handle due to sophis-
ticated gyro technology and numerically error-proneness. Nowadays, the meaning of classical inertial platforms is
decreasing in favour of micromechanical and optical sensors. The combination of different sensors is handled with
mathematical algorithms, usually an extended Kalman filter, implemented on efficient micro-processors. The sig-
nal fusion helps to reduce numerical error-proneness of the system, which makes the use of worse but cost-saving
inertial sensors possible.
Integrated navigation systems are no longer exclusively used for military and aviation purposes, as can be seen on
the common commercial car navigation systems. The most typical layout of an integrated navigation system is
a combination of an Inertial Measurement Unit (IMU), that includes three accelerometers and gyros respectively,
and a single GPS receiver. The vehicle is assumed to be a rigid body with six mechanical degrees of freedom to be
determined. These typical systems show stability problems during phases of weak vehicle dynamics (i.e. almost
constant translative velocity or low angular rate), which is due to the loss of system observability. Multiple spa-
ciously distributed GPS antennas enhance the system accuracy. Additionally, filter stability is increased effectively
(Wagner (2003)). However, integrated navigation systems in large vehicles with structural deformations infringe
the assumption of a rigid body. Therefore, methods will be presented to take the flexure effects into account.
Section 2.1 will concentrate on the observer principle which is the basis for integrated measurement systems. A
typical realisation of the observer principle is the extended Kalman filter. The theory and algorithm of the Kalman
filter will be presented in section 2.2. Afterwards, the condition of observability of the state vector is shown in the
following subsection. Chapter 2 is finished giving an example of a rigid mulitbody system.

2.1 Principle of Integrated Motion Measurement

The idea of integrated navigation systems consists of combining complementary motion measuring principles
and utilising their specific advantages: Inertial sensors like classical or modern micro-electromechanical gyros
and accelerometers are used to obtain reliable signals allowing a high resolution with time. On the other hand,
less dependable sensors (often with relevant signal delays) like GPS receivers and radar units are used due to
their good long-term accuracy. The kernel of integrated navigation systems is an observer (typically realised by
an extended Kalman filter (Gelb (1989), Wagner (2003))) blending the sensor signals and estimating the relevant
vehicle motion (Farrell and Barth (1999)). Therefore, integrated navigation systems are strictly speaking integrated
motion measurement systems.
Besides the sensor combination employed, the theoretical basis for the filter requires a kinematical model of the
vehicle motion considered, which has to be set up individually (nevertheless, well established models exist (Wagner
and Wieneke (2003))). This model describes the standardised dynamics of the vehicle, mostly by means of specific
forces, i.e. accelerations, and of angular rates. Hence, there are no dynamometers or mass and stiffness properties
needed in this approach.
There are different system integration variants of such navigation systems (Wagner and Wieneke (2003)). However,
they all have the observer principle in common with the signal flow depicted in Figure 1: Reliable sensors like
accelerometers and gyros provide the input signal vector u generating the vehicle motion considered (state vector
x). Based on x and u, so-called aiding sensors (being mostly attached to the vehicle) like a GPS receiver or a radar
altimeter provide the measurement vector y. Furthermore, there is a parallelism between the performance of the
real moving structure and its aiding equipment on one side and a motion and aiding simulation on the other side
which leads to estimates x̂ and ŷ of x and y.

Figure 1: Observer Principle.
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Due to sensor, modelling and initialisation errors, the estimates show inaccuracies, which increase usually with
time t and which require therefore a correction: The feedback of the difference between y and ŷ serves as input
of a compensation device adjusting the estimate x̂ by K(y − ŷ). The correction matrix K(t) is typically part of
the algorithm of an extended Kalman filter, however sometimes alternatives like particle filters are used as well (Yi
and Grejner-Brzezinska (2006)).

2.2 Extended Kalman Filter

As already mentioned above, the observer principle is typically realised by an extended Kalman filter. The latter
one uses noisy signals as input u and calculates a smooth estimate x̂ of the state vector x. The basis for the
extended Kalman filter are two models describing the motion considered. The first one, the motion model, is a set
of ordinary nonlinear differential equations (being solved numerically), the second one, the aiding model, is a set
of algebraic equations.

ẋ(t) = f (x(t),u(t)) + G (x(t),u(t)) ·w(t) , ˙̂x(t) = f (x̂(t),u(t)) , (1)
y(t) = h (x(t)) + v(t) , ŷ(t) = h (x̂(t),u(t)) . (2)

Vector v can be interpreted as the measurement noise of the aiding. The term G · w is the compensation of the
noise of the input u. It has to be assumed that the following stochastic relations of w, v and x(0) apply, with t and
τ being different points in time.

E [w(t)] ≡ 0 , E [v(t)] ≡ 0 , (3)

E [x(0)] = x0 , (4)

E
[
w(t) · vT (τ)

] ≡ 0 , E
[
w(t) · xT (0)

] ≡ 0 , E
[
v(t) · xT (0)

] ≡ 0 . (5)

Furthermore, the theory of the Kalman Filter requires, that v and w are made up of white noise, which causes the
appearance of the Dirac δ-function.

E
[
w(t) ·wT (τ)

]
= Q(t) δ(t− τ) , (6)

E
[
v(t) · vT (τ)

]
= R(t) δ(t− τ) , (7)

E
[
(x(t)− x̂(t)) (x(t)− x̂(t))T

]
= P(t) , (8)

E
[
(x(0)− x0) (x(0)− x0)

T
]

= P0 . (9)

Q, R and P shall be symmetric and positive definite matrices. The matrix Q is diagonal. Since the measurement
devices are sample units, the following equations are also given in intervals. The depiction tk−1 and tk describes
the time between two consecutive measuring points. The notation t|tk−1 means, that the considered time t lies in
the interval tk−1 and tk. The filter equations are composed of three parts. The first one initialises the algorithm.

x̂(0|0) = x0 , (10)
P(0|0) = P0 . (11)

The second part of the filter equations estimates x̂ and P in an interval tk−1 and tk without using an update of the
aiding system. The integration of the following equations is realised for example with a Runge-Kutta method of
the fourth order. In the following, matrix F and H represent the Jacobians of f and h.

˙̂x(t|tk−1) = f (x̂(t|tk−1),u(t|tk−1)) , (12)
Ṗ(t|tk−1) = F (x̂(t|tk−1),u(t|tk−1)) ·P(t|tk−1) (13)

+ P(t|tk−1) · FT (x̂(t|tk−1),u(t|tk−1))
+ G (x̂(t|tk−1),u(t|tk−1)) ·Q(t|tk−1) ·GT (x̂(t|tk−1),u(t|tk−1)) .

The third part of the filter equations is due to the update of the aiding equipment. Furthermore, the aiding signals
will be processed sequentially, that helps to avoid a time-consuming matrix inversion. Shall ny aiding signals
be available at time tk, thus there are ι = 1, . . . , ny single steps to be carried out. K(tk,ι) is the filter matrix
for each step ι. Furthermore Hι shall be the ιth row of H and Rι shall be the ιth diagonal element of R. With
tk|tk,0 = tk|tk−1 and I symbolising the unit matrix, the estimate x̂ after including an aiding signal can be derived
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as the following.

x̂(tk|tk,ι) = x̂(tk|tk,ι−1) + K(tk,ι) · (yι(tk)− hι (x̂ (tk|tk,ι−1))) , (14)

K(tk,ι) =
P(tk|tk,ι−1) ·HT

ι (x̂(tk|tk,ι−1))
Hι(x̂(tk|tk,ι−1)) ·P(tk|tk,ι−1) ·HT

ι (x̂(tk|tk,ι−1)) + Rι(tk)
, (15)

P(tk|tk,ι) = K(tk,ι) ·Rι(tk) ·KT (tk,ι) (16)

+ (I−K(tk,ι) ·Hι(x̂(tk|tk,ι−1))) ·P(tk|tk,ι−1) · (I−K(tk,ι) ·Hι(x̂(tk|tk,ι−1)))
T .

After the last correction step ι = ny of the third part tk|tk,ny = tk|tk has to be applied to start a new interval. For
a more sophisticated insight in the theory of the presented continuous-discrete extended Kalman filter see Gelb
(1989).

2.3 Observability

Independently from the observer type, the system stability requires that the state vector x is completely observable.
This means that the correction K(y − ŷ) acts appropriately on all components of x̂. Reflecting the type and
geometrical array of the sensors used, the content of f and h determines this property. The observability is ensured
if the matrix

Ξ =
[

HT FT ·HT . . .
(
FT

)nx−1 ·HT
]

(17)

employing the Jacobians F(x(t),u(t)) and H(x(t)) of f and h has full rank nx (Gelb (1989)), with nx being the
number of state variables in x. As F and H vary with time, it is possible that phases of complete observability
alternate with phases of reduced observability. During reduced observability periods the error of estimates x̂ − x
and the elements of P increase causing possibly an unstable system. This applies especially for the classical
combination of inertial sensors with a single antenna GPS receiver during periods of steady vehicle motion.

2.4 Example of a Rigid Multibody System

To illustrate the statements given above Figure 2 shows an example of a multibody system. Two stiff rods (length
l1, l2) are pivoted to each other. The end A of the upper rod is freely swivelling and slides additionally on a rail.
Furthermore, point A is connected to a wall with a spring. The transverse distance q1 and the angular positions
q2, q3 are the generalised coordinates of the structure. The system is equipped with two accelerometers attached
at the lower joint (u1, u2) and two gyros (u3, u4) at each rod. The aiding equipment consists of three radar
units measuring the distances ρ1, ρ2, ρ3. The following relations below describe the kinematical behaviour of the
structure. The state vector x is the following:

x = [ q1 q2 q3 q̇1 ]T = [ x1 x2 x3 x4 ]T . (18)

The directly measurable quantities q̇2 and q̇3 are omitted in x, they are found instead in the input vector u.:

u =
[

u1 u2 u3 u4 u̇3

]T . (19)

The additional time derivative of u3 is needed, which is due to fictitious forces at the accelerometer attachment
point. This is new compared to classical inertial navigation systems. The additional signal u3 can be generated by
numerically differentiating the angular velocity signals or by new sensors (STM (2004)). The function f reads:

f(x,u) =




x4

u3

u4

(u1 − l1u̇3) cos x2 − (u2 − l1u
2
3) sin x2


 . (20)

Regarding the fourth row of f , the effect of angular acceleration and the centripetal acceleration can be seen.
However, the displacing influence of gravity g cancels out.
The aiding vector y consists of three distance measurements:

y = [ ρ1 ρ2 ρ3 ]T = [ y1 y2 y3 ]T . (21)

The aiding model can be directly derived from the geometry of Figure 2.

h(x) =




d− x1

d− x1 − l1 sin x2

d− x1 − l1 sin x2 − l2 sin x3


 (22)
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Figure 2: Double pendulum.

Prepared by simulated measurements the arrangement of Figure 2 was experimentally realised in order to test its
functionality and performance. Exemplarily, Figure 3 compares the aiding signal ρ1 and the estimated transverse
distance q̂1 for the pendulum being at rest. All of the sensors used were products designed for mass markets with
an accuracy of 0.05 m/s2 (accelerometers), 0.2 ◦/s (gyros), 0.02 m (radar noise), and 2 m (radar jamming). Never-
theless, the remaining noise of the estimate is remarkably low. More information about the modelling prodedure
and detailed results can be found in Wagner (2004).

3 Flexible Structures

Using integrated measurement systems for structures with large dimensions and distributed sensors, the flexure
cannot be neglected anymore. The varying shape of the structure has to be taken into account and must be included
in the kinematical model. The following sections will present a method that describes the flexible character of
a structure with means of deformation variables. An example of a kinematical model of a beam structure is
shown idealising a wing of an aircraft during flight. But first, the procedure for creating kinematical models using
accelerometers, gyros, and aiding devices as peripheral sensors will be explained in detail. Section 3.1 will focus
on accelerometers as peripheral sensors, the following subsection on gyros as peripheral sensors. Examples of
integrated motion measurement systems for a flexible beam are presented in sections 3.4 to 3.6.
Figure 4 represents the exemplary initial point of the corresponding theory for flexible structures. It shows an
aircraft fuselage with an exaggeratedly distorted wing half attached, the original wing shape being indicated by
the dashed line. A body-fixed coordinate system b with origin B serves for describing the time-variant structural
geometry. An IMU is located at B measuring the inertial (derivation system index i) acceleration ir̈B and the

Figure 3: Comparison of the estimate q̂1 and of ρ1 for the pendulum of Figure 2 being at rest.

98



Figure 4: Aircraft fuselage cross section with distorted wing half and peripheral sensors aj and Ωj .

inertial angular rate ωbi. Furthermore, additional accelerometers ja = 1, . . . , νa and further gyros jΩ = 1, . . . , νΩ

are placed on the wing measuring the acceleration aj and the angular rate Ωj in the sensor frames.

3.1 Accelerometers as Peripheral Sensors

Having Figure 4 in mind, the accelerometer attachment points are subject to the acceleration

ir̈ja = ir̈B + b῭
ja + 2(ωbi × b ˙̀

ja) + iω̇bi × `ja + ωbi × (ωbi × `ja) . (23)

In this equation, rB is an inertial position vector, and `ja denotes the actual lever arm between the IMU and any
peripheral sensor. Again, the superscript on the left side indicates the coordinate system, in which the differentia-
tion takes place. The angular rate ωbi describes (as already indicated) the angular velocity between the body and
the inertial frames b and i. As mentioned, the change of angular rate iω̇bi can be achieved by differentiating the
signal of the angular rate or by new sensors types that measure directly the angular rate.
Assuming furthermore small distortions of the structure (a presumption being largely adequate for flexible vehi-
cles), the actual lever arm `ja and its body oriented time derivatives can be approximated by a finite series reflecting
e.g. the main vibration modes:

`ja(t) = r̄ja + ∆`ja(t) ≈ r̄ja +
Γa∑

χ=1

bχ(t) sχ(r̄ja) , (24)

b ˙̀
ja(t) = b∆˙̀

ja(t) ≈
Γa∑

χ=1

ḃχ(t) sχ(r̄ja) , (25)

b῭
ja(t) = b∆῭

ja(t) ≈
Γa∑

χ=1

b̈χ(t) sχ(r̄ja) . (26)

All time dependent amplitudes bχ(t) represent extra degrees of freedom, all sχ(r̄ja) are the vectorial descriptions
of Γa deformation modes selected for describing the structural distortions. Besides, every of these functions of the
structural position r̄ja is defined to have at least at one point the displacement value 1. Thus, the additional degree
of freedom bχ(t) is the resultant position shift of this point if only the respective mode of the unit deformation sχ

is excited (Figure 5).
It has to be taken into account that accelerometer signals include the negative gravity g. Therefore, the following
compensation equations have to be considered. The subscript on the left indicates the coordinate systems in which
the measurement takes place. The matrices jaeT and beT describe the transformation between the earth fixed
system e, here the inertial system i, and the sensor and body system respectively.

jaaja = i
ja

r̈ja − jaeT eg , (27)

baB = i
br̈B − beT eg . (28)
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Figure 5: Concept of unit deformations and additional degrees of freedom.

Introducing equations (24) - (28) into (23) for all νa accelerometers and using the abbreviation for sχ(r̄ja
) = sχ,ja

yields the following:

i
ja

r̈ja
= ja

aja
+ jaeT eg = jabT

{
baB + beT eg +

Γa∑
χ=1

b̈χ(t) bsχ,ja
(29)

+ 2

(
bωbi ×

Γa∑
χ=1

ḃχ(t) bsχ,ja

)
+ i

bω̇bi ×
(

br̄ja
+

Γa∑
χ=1

bχ(t) bsχ,ja

)

+ bωbi ×
(

bωbi ×
(

br̄ja
+

Γa∑
χ=1

bχ(t) bsχ,ja

))}
.

After rearranging equation (29) can be written as a set of linear function with respect to b̈χ.

jaaja − jabT baB − jabT
(
i
bω̇bi × br̄ja + bωbi × (bωbi × br̄ja)

)
= (30)

jabT ·
Γa∑

χ=1

{
b̈χ bsχ,ja + 2 ḃχ (bωbi × bsχ,ja) + bχ(i

bω̇bi × bsχ,ja + bωbi × (bωbi × bsχ,ja))
}

If νa = Γa holds and the sensors are placed appropriately, solving this set of equations for each single b̈χ is
possible (if νa > Γa holds, the employment of a Least Squares procedure is viable, compare equation (44) below).
Composing now the state vector x of all bχ and their first time derivatives, the composition of f(x,u) (see equation
(1)) follows directly. However, a completion of f by the classical equations of an inertial navigation system is
also necessary (Wagner (2003)). Then, the input vector u contains all signals of the IMU and of the peripheral
accelerometers. Taking the component of the vector equation (30) describing the measurement direction of the
accelerometer and solving for b̈χ yields:

b̈χ =
νa∑

ja=1

f∗ja

(
jaaja , baB , jabT, bωbi, bω̇bi, br̄ja , ḃχ̄, bχ̄, bsχ̄,j̄a

)
with





χ = 1, ..., Γa

χ̄ = 1, ..., Γa

j̄a = 1, ..., νa

. (31)

3.2 Gyros as Peripheral Sensors

Instead of accelerometers, the use of gyros as input sensors is also feasible. Figure 4 shows besides the accelerom-
eter also a gyro jΩ, that is subject to the angular velocity

ωjΩi = ωbi +
1
2

d
dt

(curl∆`jΩ) . (32)

The lever arm ∆`jΩ(t) is again approximated by a series using different functions sχ with χ = Γa+1, . . . , Γa+ΓΩ:

∆`jΩ(t) =
Γa+ΓΩ∑

χ=1+Γa

bχ(t) sχ(r̄jΩ) . (33)

Putting equation (32) and (33) together and writing the result with respect to the sensor system jΩ, which is
indicated again with the subscript on the left side, yields the following with sχ(r̄jΩ) = sχ,jΩ .

jΩbT ·
Γa+ΓΩ∑

χ=1+Γa

ḃχ(t) curl bsχ,jΩ = 2 (jΩωjΩi − jΩbT bωbi) (34)
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Equation (34) is now linear with respect to ḃχ(t). For νΩ ≥ ΓΩ and well positioned gyros, solving for ḃχ is
possible taking the rotational component of equation (34).

ḃχ =
νΩ∑

jΩ=1

f∗jΩ
(
jΩbT, jΩωjΩi, bωbi, curl bsχ̄,j̄Ω

)
with





χ = 1 + Γa, ..., Γa + ΓΩ

χ̄ = 1 + Γa, ..., Γa + ΓΩ

j̄Ω = 1, ..., νΩ

(35)

The state vector x of a model using peripheral gyros contains solely the additional variables bχ, however, x of
kinematical models utilising peripheral accelerometers contains bχ and ḃχ. Furthermore, it is also possible to use
mixed sensor sets out of accelerometers and gyros. This case requires some decoupling conditions to avoid that
some bχ would appear in equation (35) and in (31) leading to a duplicate in the state vector.

curl sχ (r̄jΩ) = 0 with χ = 1, . . . , Γa , (36)
sχ (r̄ja) = 0 with χ = 1 + Γa, . . . , Γa + ΓΩ . (37)

Additionally, the numbers Γa and ΓΩ as well as the determination of the deformation modes sχ depend on the
structure, the relevant motion excitation and on the accuracy to be achieved. Aspects of this statement will be
illustrated in the following.

3.3 Aiding Model

Satellite navigation antennas are typically used as aiding devices in integrated navigation systems. In general,
typical aiding principles use distance and velocity measurements to well-known points, not only radar, but also
e.g. laser and ultrasonic units. The kinematical models in this case are quite simple, just using the geometry of the
specific structure (see examples in section 3.4 and 3.6).
Apart from satellite navigation antennas or radar units, further structural sensors such as strain gauges, piezo
ceramics or fibre optics can represent signal sources, which specially detect structural distortions. In this case,
the aiding model is only a function of the additional degrees of freedom bχ (see examples in section 3.4 and 3.6).
The structural based, so called ”internal aiding”, is especially suitable to provide the observability of all additional
state variables. Additionally, strain gauges are very reliable and favourably priced sensors. Thus, an internal aiding
either can improve the performance of the integrated system on a low-cost basis or enables e.g. a reduction of the
necessary number of satellite navigation antennas without violating the conditions of observability.

3.4 Example of a Sensor Set with Three Peripheral Accelerometers

The theory of modelling flexible structures is demonstrated by the example mentioned above using three ac-
celerometers as peripheral sensors (Figure 6). The structure consists of a beam of length l and constant thickness
h. Like the rigid multibody example in section 2.4 one end slides on a rail and is connected to a wall with a spring.
Representing the IMU, two accelerometers and one gyro are fixed to the bar at the swivel joint and generate the
signals u1 , u2 (linear accelerations), u6 (angular rate), and u7 (angular acceleration). In addition, three peripheral
accelerometers (u3 , u4 , u5) supply input signals, and three unit deformations sχ, χ = 1, 2, 3 are considered to
describe the elastic displacement of the structure. The aiding consists of four radar units measuring the distances
ρ and velocities ρ̇ (using Doppler shifts). Furthermore, strain gauges provide three aiding strain signals ε. The
state x can be assembled into a 15 component vector containing the IMU motion components and the deformation
variables bχ. Furthermore x is extended by all biases ∆u of the input sensors. This expansion is a typical measure
to enhance the performance of integrated navigation systems (Farrell and Barth (1999)).

x =
[

d ḋ ψ b1 b2 b3 ḃ1 ḃ2 ḃ3 ∆u1 ∆u2 ∆u3 ∆u4 ∆u5 ∆u6

]T

=
[

x1 . . . x15

]T (38)

The input vector u contains the above mentioned seven components, that is five accelerometer inputs u1, . . . , u5

and one gyro measuring the angular velocity u6 and its time derivative u7 = u̇6.

u =
[

u1 u2 u3 u4 u5 u6 u7

]T (39)

The actual component ui can be modelled as a function of the measurement reading ũi, bias ∆ui, and noise wui .
The bias ∆u6 shall be a constant value, thus ∆u7 of the angular acceleration can be assumed to be zero. Therefore,
the quantity ∆u7 does not appear in the state vector x.

ui = ũi + ∆ui + wui (40)
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Figure 6: Elastic pendulum with three peripheral accelerometers.

Using moreover especially equations of section 3.1, the kinematical model of the beam (see equation (1)) can be
written as the following:

f(x,u) =




x2

(ũ1 + x10) sin x3 + (ũ2 + x11) cos x3

ũ6 + x15

x7

x8

x9

b̈1 (x4, . . . , x15)
b̈2 (x4, . . . , x15)
b̈3 (x4, . . . , x15)

{0}6×1




. (41)

The abbreviated expressions of b̈1 = ẋ7, b̈2 = ẋ8, and b̈3 = ẋ9 are formulated using equation (30)). Equation (40)
has to be used to substitute the components ui, which include also components of the state vector (x10, . . . , x15).
The matrix jabT (see equation (30) and (31)) is the transformation between the body fixed and the sensor fixed
coordinate system and is needed to arrange the expressions b̈χ. The first column belongs to the η component, the
second to the χ component and the third one describes the rotational component.

jabT =




cos (arctan (αja)) − sin (arctan (αja)) 0
sin (arctan (αja)) cos (arctan (αja)) 0

0 0 1


 =




1q
1+α2

ja

−αjaq
1+α2

ja

0
αjaq
1+α2

ja

1q
1+α2

ja

0

0 0 1


 (42)

With αja containing the state variables x4, x5, x6:

αja = −
(

x4 · ∂ s1

∂bη

∣∣∣∣
bη=lja

+ x5 · ∂ s2

∂bη

∣∣∣∣
bη=lja

+ x6 · ∂ s3

∂bη

∣∣∣∣
bη=lja

)
. (43)
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The following expression is directly obtained solving equation (30) for b̈χ (using the χ component of the vector
equation):




b̈1

b̈2

b̈3


 =




s1,1a
s2,1a

s3,1a

s1,2a
s2,2a

s3,2a

s1,3a s2,3a s3,3a



−1

(44)

·




−α1a

(
2 (ũ6 + x15)

3∑
χ=1

ḃχsχ,1a
+ ũ7

3∑
χ=1

bχsχ,1a
+ (ũ6 + x15)2 l1a

− (ũ1 + x10)

)

+(ũ6 + x15)2
3∑

χ=1
bχsχ,1a − ũ7 l1a − (ũ2 + x11) + (ũ3 + x12) ·

√
1 + α2

1a

− α2a

(
2 (ũ6 + x15)

3∑
χ=1

ḃχsχ,2a
+ ũ7

3∑
χ=1

bχsχ,2a
+ (ũ6 + x15)2 l2a

− (ũ1 + x10)

)

+(ũ6 + x15)2
3∑

χ=1
bχsχ,2a

− ũ7 l2a
− (ũ2 + x11) + (ũ4 + x13) ·

√
1 + α2

2a

− α3a

(
2 (ũ6 + x15)

3∑
χ=1

ḃχsχ,3a
+ ũ7

3∑
χ=1

bχsχ,3a
+ (ũ6 + x15)2 l3a

− (ũ1 + x10)

)

+(ũ6 + x15)2
3∑

χ=1
bχsχ,3a − ũ7 l3a − (ũ2 + x11) + (ũ5 + x14) ·

√
1 + α2

3a




.

The inversion of the matrix formed solely by the unit deformations sχ,ja is assumed to be constant and has just to
be calculated once before the Kalman filter initialisation. Chapter 4 will focus on the quantities sχ,ja in detail. In
this case, the matrix composed solely of the unit deformations is quadratic because νa = Γa = 3. (If νa > Γa,
this matrix is not quadratic anymore. Here, the pseudo-inverse of the rectangular matrix can be used following the
Least Squares method.)
In order to complete the motion model, the compensation of the noise of the input u must be considered. Vector w
includes therefore noise terms wui describing the noise of u and additional terms w∆u̇i representing the noise of
the time derivative of the bias ∆ui. Since ∆u7 is omitted in the state model, there is no need to introduce w∆u̇7 .

w =
[

wu1 wu2 wu3 wu4 wu5 wu6 wu7 w∆u̇1 w∆u̇2 w∆u̇3 w∆u̇4 w∆u̇5 w∆u̇6

]T

=
[

w1 . . . w13

]T (45)

The quadratic term (ũ6 + ∆u6 + wu6)
2 has to be linearised with respect to wu6 in order to obtain the desired form

of G · w. This approximation is acceptable, because |wu6 | is typically small compared to the maximum of |u6|.
Accordingly, the 15× 13 matrix G(x,u) can be arranged as follows.

G =




0 0 0 0 0 0 0
sin(x3) cos(x3) 0 0 0 0 0

0 0 0 0 0 1 0
{0}3×6

{0}3×7 {0}3×6






s1,1a s2,1a s3,1a

s1,2a s2,2a s3,2a

s1,3a s2,3a s3,3a



−1

· L





3×7

{0}3×6

{0}6×7 {I}6×6




(46)

The L matrix is introduced as an intermediate step to gather G

L =




α1a −1
√

1 + α2
1a

0 0 κ1 (α1a ·
3∑

χ=1
bχsχ,1a − l1a)

α2a −1 0
√

1 + α2
2a

0 κ2 (α2a ·
3∑

χ=1
bχsχ,2a − l2a)

α3a −1 0 0
√

1 + α2
3a

κ3 (α3a ·
3∑

χ=1
bχsχ,3a − l3a)




(47)

with j = 1, 2, 3 the expression for κj can be added to L.

κj = −αja

(
2

3∑
χ=1

ḃχsχ,ja + 2 (ũ6 + x15) lja

)
+ 2 (ũ6 + x15)

3∑
χ=1

bχsχ,ja (48)
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Turning to the aiding signal, it consists of eleven signals as shown in Figure (6).

y =
[

ρ0 ρ̇0 ρ1 ρ̇1 ρ2 ρ̇2 ρ3 ρ̇3 ε1 ε2 ε3

]T

=
[

y1 . . . y11

]T
(49)

The next steps will show the assembling of the vector h using the results from section 3.3. The theory of bending
elastic beams is needed to process the measured strain ε (Roark and Young (1986)). The relation between the
strain ε and flexure w̄ is the following with W being the bending section modulus and I the geometrical moment
of inertia.

d2 w̄(bη)
dbη2

= −W

I
· ε(bη) (50)

Furthermore, the introduction of auxiliary functions νk, ν̇k with k = 0, 1, 2, 3 and the unit bending curvature s′′χ
with respect to the structural coordinate bη is suitable.

νk = x4 · s1(lkρ
) + x5 · s2(lkρ

) + x6 · s3(lkρ
) , (51)

ν̇k = x7 · s1(lkρ
) + x8 · s2(lkρ

) + x9 · s3(lkρ
) , (52)

s′′χ (lmε
) =

d2 sχ

dbη2

∣∣∣∣
bη=lmε

, m = 1, 2, 3 . (53)

The aiding model can now be written for a rectangular beam section with h being the thickness of the beam:

h(x,u) =




x1

x2

x1 + l1ρ sin (x3) + ν1 cos (x3)
x2 + (ũ6 + x15) ·

(
l1ρ sin (x3) + ν1 cos (x3)

)
+ ν̇1 cos (x3)

x1 + l2ρ sin (x3) + ν2 cos (x3)
x2 + (ũ6 + x15) ·

(
l2ρ sin (x3) + ν2 cos (x3)

)
+ ν̇2 cos (x3)

x1 + l3ρ sin (x3) + ν3 cos (x3)
x2 + (ũ6 + x15) ·

(
l3ρ sin (x3) + ν3 cos (x3)

)
+ ν̇3 cos (x3)

− h
2 (x4 · s′′1 (l1ε) + x5 · s′′2 (l1ε) + x6 · s′′3 (l1ε))

− h
2 (x4 · s′′1 (l2ε) + x5 · s′′2 (l2ε) + x6 · s′′3 (l2ε))

− h
2 (x4 · s′′1 (l3ε) + x5 · s′′2 (l3ε) + x6 · s′′3 (l3ε))




. (54)

Like the aiding model in section 2.4 the vector h is a function of the input u which contravenes the Kalman filter
theory. However, this fact is commonly accepted in practice. The same is true for the circumstance, that the sensor
noise, i.e. w1 to w13, v1 to v11 is not white (equations (6), (7), Farrell and Barth (1999), Wagner (2003)).
The choice of sensors and their positioning (lja , lkρ , lmε ) along the beam is significant for the filter performance.
Section 4.3 will treat the appropriate positioning and optimisation of sensors.
Using equation (17), the aspect of observability was investigated (compare Wagner (2003)). The presented model
shows not observable state variables in particular ∆u1. Nevertheless, the model can be easily changed into a
completely observable system as shown in section 3.5. The additional naming ”completely observable” shall
clarify that the system guarantees the observability without considering the type of dynamic excitation. In contrast
to this property a ”weakly observalble” system (Dambeck (1995)) can become unobservable if it is not sufficiently
excited by u. This type typically occurs for integrating an inertial navigation system with a single antenna GPS
receiver.

3.5 Further Models using Accelerometers as Peripheral Sensors

The previous example of modelling flexible continuum is meant to be an example to explain the procedure in
general. The aspect of observability shows that models have to be developed that fulfill the requirement of section
2.3 to maintain the stability of the filter algorithm.
Expanding the state vector of equation (38) with the vertical distance of the slide dv = x16 and its vertical velocity
ḋv = x17 yields a completely observable system.

ḋv = x17 , (55)
d̈v = (ũ1 + x10) cos x3 − (ũ2 + x11) sin x3 + g . (56)
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Obviously, the new quantities are equal to zero because of the vertical fixation of the slide. These two informations
are used in the aiding model.

y12 = ḋv + v12 = 0 , h12 = x16 , (57)
y13 = d̈v + v13 = 0 , h13 = x17 . (58)

The term G ·w must be extended as well as f , h, and the Jacobians F, H by two lines.
A second possibility forgoes the accelerometer u1. The motion model differs from the model in section 3.4 in the
following

ẋ3 = ḋ =
ũ2 + x11

cosx3
(59)

and additionally the terms b̈χ, G · w, and F are different, too. The disadvantage of this model is the numerical
problem for |ψ| ≈ 90◦. Again, all the kinematical models presented in this chapter are completely observable and
show better stability performance compared to the model of section 3.4.
Models including two, three and four additional degrees of freedom bχ have been developed and compared. How-
ever, beforehand the device of the function sχ has to be explained. The results will be presented later on in chapter
5 utilising the extensions of equations (55) to (58) for the models with peripheral accelerometers.

3.6 Example of a Sensor Set with Three Peripheral Gyros

This section will show the kinematical model of Figure 7 using three gyros as peripheral sensors. The structure
consists like the example above of a beam of length l and constant thickness h. The restraints of this model are the
same as in the example of section 3.4. Representing the IMU, two accelerometers and one gyro are fixed to the bar
at the swivel joint and generate the signals u1 , u2 (linear accelerations), u3 (angular rate). Three peripheral gyros
(u4, u5, u6) supply input signals, and three unit deformations sχ, χ = 1, 2, 3 are considered to describe the elastic
displacement of the structure. The aiding consists of four radar units measuring the distances ρ. Finally, strain
gauges provide three internal aiding signals ε. The state x can be assembled into a 12 component vector which is
again expanded with the bias ∆u of all input sensors:

x =
[

d ḋ ψ b1 b2 b3 ∆u1 ∆u2 ∆u3 ∆u4 ∆u5 ∆u6

]T

=
[

x1 . . . x12

]T . (60)

The input u contains in this case six components, because the time derivative of the angular velocity is of no need:

u =
[

u1 u2 u3 u4 u5 u6

]T . (61)

Following equation of section 3.2, the kinematical model of the beam can be assembled as follows.

f(x,u) =




x2

(ũ1 + x7) sin x3 + (ũ2 + x8) cos x3

ũ3 + x9

ḃ1(x9, x10, x11, x12)
ḃ2(x9, x10, x11, x12)
ḃ3(x9, x10, x11, x12)

{0}6×1




(62)

In this case, the transformation matrix is jΩbT = jabT (see equation (42)). The abbreviated expressions of ḃ1 = ẋ4,
ḃ2 = ẋ5, and ḃ3 = ẋ6 follow equation (34) to (35), just using the third component of this vector equation. Here,
the transformation matrix has no effect on the rotational component of the vector equation which simplifies the
model significantly compared to the models using accelerometers as peripheral sensors.




ḃ1

ḃ2

ḃ3


 = −




s′1,1Ω
s′2,1Ω

s′3,1Ω

s′1,2Ω
s′2,2Ω

s′3,2Ω

s′1,3Ω
s′2,3Ω

s′3,3Ω



−1

︸ ︷︷ ︸
S∗Ω

·



(ũ4 + x10)− (ũ3 + x9)
(ũ5 + x11)− (ũ3 + x9)
(ũ6 + x12)− (ũ3 + x9)


 with s′χ,jΩ =

∂ sχ

∂bη

∣∣∣∣
bη=ljΩ

(63)

In this case, vector w is composed out of 12 components that compensate the noise of the input u:

w =
[

wu1 wu2 wu3 wu4 wu5 wu6 w∆u̇1 w∆u̇2 w∆u̇3 w∆u̇4 w∆u̇5 w∆u̇6

]T

=
[

w1 . . . w12

]T . (64)
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Figure 7: Elastic pendulum with three peripheral gyros.

Accordingly, the 12× 12 matrix G(x,u) can be arranged as follows.

G =




0 0
sin(x3) cos(x3)

0 0

0 0 0 0
0 0 0 0
1 0 0 0

{0}3×9

{0}3×2



S∗Ω



−(ũ3 + x9) ũ4 + x10 0 0
−(ũ3 + x9) 0 ũ5 + x11 0
−(ũ3 + x9) 0 0 ũ6 + x12








3×4

{0}3×6

{0}6×6 {I}6×6




(65)
The aiding signals are four distance measurements ρ0 to ρ3, velocity ρ̇0, and three strain measurements ε1 to ε3:

y =
[

ρ0 ρ̇0 ρ1 ρ2 ρ3 ε1 ε2 ε3

]T

=
[

y1 . . . y8

]T
. (66)

The resulting aiding model is in this case just a function of x which fulfills the Kalman filter prerequisites:

h(x) =




x1

x2

x1 + l1ρ sin (x3) +
(
x4 · s1(l1ρ) + x5 · s2(l1ρ) + x6 · s3(l1ρ)

)
cos (x3)

x1 + l2ρ sin (x3) +
(
x4 · s1(l2ρ) + x5 · s2(l2ρ) + x6 · s3(l2ρ)

)
cos (x3)

x1 + l3ρ sin (x3) +
(
x4 · s1(l3ρ) + x5 · s2(l3ρ) + x6 · s3(l3ρ)

)
cos (x3)

− h
2 (x4 · s′′1 (l1ε) + x5 · s′′2 (l1ε) + x6 · s′′3 (l1ε))

− h
2 (x4 · s′′1 (l2ε) + x5 · s′′2 (l2ε) + x6 · s′′3 (l2ε))

− h
2 (x4 · s′′1 (l3ε) + x5 · s′′2 (l3ε) + x6 · s′′3 (l3ε))




. (67)

4 Model Reduction

The dimensions of the beam in Figure 8 were chosen to fit approximately the first natural frequency of a wing
of a large aircraft. In order to describe the real structure with the kinematical model presented above we need to
simplify a detailed structural model. There are several methods available to do this, like Balanced Realisation and
Krylov subspace method just to name a few (Lohmann and Salimbahrami (2004)).
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Figure 8: Model reduction of the beam structure.

In this article the modal approach will be discussed considering the most important vibration modes. First, two di-
mensional Finite Euler-Bernoulli beam elements have been chosen to describe the real structure and an additional
lumped mass has been used to describe e.g. the mass of the slide (Figure 8 on the right), other masses can be
added if necessary. The Euler-Bernoulli beam elements employed use cubic interpolation functions, which make
them reasonably accurate for cases involving distributed loading along the beam. Therefore, they are well suited
for dynamic vibration studies, where the d’Alembert forces provide such distributed loading. These elements are
intended for small-strain, large-rotation analysis using a consistent mass formulation.
There are three reasons for using the model: the first is to obtain detailed simulated motion data of the vibrating
structure including the measurements u and y. Furthermore, the simulation described in section 4.2 is meant to
prepare the real experiment on the real beam structure, which will be realised in the near future. The third purpose
is to obtain the important eigenmodes of the system which will partially be used as unit deformations sχ,ja .

4.1 Modal Analysis

In the following a linear modal analysis is performed with the system in Figure 8 to obtain its natural frequencies
and the natural modes. The left picture of Figure 9 shows the first four elastic modes and the rigid body mode
which is due to the pivoted upper end (1. node) of the beam. As expected, the first elastic eigenmode shows
one zero-crossing, the second elastic eigenmode two zero-crossings and so on. These normalised eigenmodes are
obtained with respect to the inertial coordinate system index i. However, due to the theory given above the obtained
eigenmodes have first to be transformed into the body coordinate system. The transformed normalised eigenmodes
are shown on the right side of Figure 9.
The first and second transformed eigenmode, however, look similar. The first, third, and fourth eigenmodes are
clearly to distinguish. Using these transformed eigenmodes as sources of sχ,ja leads to bad estimation results and
possibly to an unstable system. This is due to the similar shapes of the first and second transformed eigenmode.
The filter is hardly able to distinguish between the first and second eigenform. Therefore the modes are combined
in a so-called mixed mode, that is the average displacement value of both eigenmodes.
For instance, in section 3.4 a three deformation variable model was presented. In this case the mixed, third, and
fourth eigenmodes are used as unit deformations. Exemplarily, the value of s1,3a can be determined regarding
χ = 1 that means the first unit deformation, being here the mixed eigenmode. The next information ja = 3a

indicates that the third peripheral accelerometer is considered, which is placed at the lowest point (node 31) at
l = 4 m. This yields using Figure 9 at the right side a value s1,3a = 1. Furthermore, the values of ∂sχ

∂bη and d2 sχ

dbη2

are obtained by differentiating the transformed eigenmode shapes (Figure 10).
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Figure 9: Eigenmodes and transformed elastic mode shapes.

Figure 10: Inclination and flexion.

4.2 Data Simulation

The data for u and y as well as for the x-reference were generated by a geometrically nonlinear simulation using
Rayleigh Damping and gravity. Data sets from 1000 to 1500s were produced with different kinds of excitation:
The first one was an impulse-type excitation each hundred seconds which could be realised with strokes against
the structure. Additionally, a second set of a sinusoidal excitation, for instance realised with a shaker, at the upper
end of the beam was superimposed to the impulse-type excitation. The chosen forms of excitation are idealisations
of an excited airplane during flight due to gusts. Having extracted the data out of the Finite Element model, the
obtained data were falsified to simulate a real measurement device. First, to simulate an offset of the measurement
device a constant bias was added to the signals of the accelerometers and gyros. Secondly, in order to simulate
measurement noise, normal distributed random numbers with adjustable standard deviation were added to the
obtained signals (signals of accelerometers, gyros, radar units and strain gauges).

4.3 Sensor Positioning

Sensor positioning is significant for filter performance because it determines the observability of the system. Plac-
ing for example three peripheral accelerometer of the example in section 3.4 tight together, would lead to similar
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measurement results at the sensors. The distinction of the different eigenforms would be difficult, what could
eventually cause a loss of observability. Even if the sensors are distributed along the structure they could still be
placed at nodal points with no significant movement at all. The estimates of the deformation variables would be
corrupt. In order to avoid the mentioned negative effects concerning filter stability, the peripheral accelerometers,
peripheral gyros, radar units and strain gauges used in the examples of section 3.4 to 3.6 were positioned using the
information of the eigenmodes of Figure 9 and Figure 10.
The peripheral accelerometers of the two mode model were positioned at node 15 and 24 (that is l ≈ 1.87 m and
3.07 m). The additional accelerometer of the three mode model was located at l = 4.0 m (node 31). The four mode
model had an additional accelerometer at l ≈ 1.33 m (node 11). This positioning makes it possible to distinguish
the deformation modes. The additional gyros of the three mode model of example 3.6 were placed at node 15, 20,
and 31 (that is l ≈ 1.87 m and 2.53 m, 4.0 m) using the information of maximal inclination.
The radar units were placed on the same nodes like the peripheral accelerometers and peripheral gyros respectively
which is not coercively necessary. The three strain gauges were placed using the information of the maximal cur-
vature of sχ (Figure 10 on the right side). Thus, strain gauges of the two mode model were positioned at node 9
and 16 (that is l ≈ 1.07 m and 2 m). The three mode models (using peripheral accelerometers and gyros) had an
additional strain gauge at node 25 (l = 3.2 m). And finally, the four mode model had an additional strain gauge at
node 5 (l ≈ 0.53 m).

5 Simulated System Test

This chapter presents the simulation results of different kinematical models presented in section 3.4 to 3.6: In the
following, the number of additional degrees of freedom bχ will be discussed, as well as the estimates of the state
vector x and their errors. Furthermore, a comparison between kinematical models using peripheral acclerometers
and peripheral gyros is shown. As mentioned the reference values used for comparison were generated by simula-
tion.
At first, a comparison of four different kinematical models is shown. The first model contains two additional de-
grees of freedom b1, b2, three additional degrees of freedom b1, b2, b3 and the third one four additional degrees b1

to b4 using accelerometers as peripheral sensors. The kinematical model is of the same structure as the presented
example of section 3.4 just to be adjusted by the specific number of bχ. The fourth model uses three additional
variables b1 to b3 utilising three gyros as peripheral sensors (see section 3.6).
Figure 11 shows the error of elastic deformation at the end of beam of the four models described above. The upper
plot belongs to the first model including b1, b2 and so on. For this, it has to be noted additionally, that the vibrating
beam showed in each case a maximum elastic deformation of almost 50 cm at the end of the beam which reaches
the upper bound of the linear theory of the elastic modes.
The first three subplots show an abrupt rise of the error each hundred seconds. This is due to the impulse type
excitation which takes place at these time steps. At these points, the excitation exceeds the linear theory of eigen-
modes causing the worst estimation of motion. Moreover, the error of elastic deformation for a two mode model is
higher than the error of the three mode model. The additional variable b3 improves the estimates from an average
error of 8 cm to about 6 cm. However, the fourth model using gyros as peripheral sensors shows much better esti-
mation results. Indeed, the filter performance needs a few hundred seconds to reach a steady state behaviour, but
the estimation error is about 2 cm which is significantly smaller than the models using peripheral accelerometers.
A possible explanation of this effect is the fact that the additional variables bχ using peripheral gyros have just to
be integrated once. However, the models using accelerometers include two integration steps from b̈χ to bχ. This
causes a tremendous increase of inaccuracy.
The third model using four accelerometers of Figure 11 does not show a better performance the three mode model.
In this case, the estimation result of the error of elastic deformation shows an offset. The fourth elastic unit defor-
mation is barely excited which causes a loss of observability of b4.
A passing remark is given on the reference values of bχ that have to be gained by an intermediate step using the
information of position (η and χ component) of the considered node from the Finite Element program. The quan-
tities bχ of the presented modal approach imply that the motion of the beam is described using the linear theory
of the eigenmodes. However, the simulation of the measurement signals were gained using a nonlinear analysis
described in section 4.2. That means, the reference values of bχ represent just a simplification of the nonlinear
behaviour of the beam. Furthermore, the reference values of bχ differ slightly depending on the nodes used to
calculate bχ. Nonetheless, the reference values of bχ were checked at the same nodes like the position of the
peripheral accelerometers to make the quantities bχ comparable and meaningful.
The following plots use the kinematical model of the example in section 3.4 expanded with equations (55)-(58).
This expansion of the example yields the best results of the presented further models of section 3.5 and will there-
fore be shown in the succeeding plots using a typical time sequence. Figure 12 displays the state variable d and its
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Figure 11: Estimation error of the elastic displacement
∑

b̂χsχ(l) at the end of the beam (l = 4 m) for different
models including two, three and four deformation variables bχ using two, three, four peripheral accelerometers or
three peripheral gyros.

error. The maximal amplitude of the distance d to the nearby wall is approximately 25 cm and its average error is
about 1 cm.
The angle ψ is displayed in Figure 13 with a maximum deflection of 12◦ and an average error of 0.3◦.
Focusing on the deformation variables bχ at Figure 14 the different frequencies of the oscillation are clearly to
distinguish. These frequencies are due to the vibration generator frequencies of the sinusoidal excitation which
in this specific case where chosen to fit approximately the eigenfrequencies of the system. This Figure shows
the reference and estimate sampled at 100 Hz and the aiding measurements sampled at 10 Hz. Furthermore, the
absolute errors of all bχ are approximately of the same magnitude, however, the relative errors rise with increasing
number of bχ since |b1| > |b2| > |b3|.
Finally, the biases ∆u1, . . . , ∆u6 are plotted in Figure 15. The estimates of ∆u6,∆u1, ∆u2 (bias of the input
of the gyro and the accelerometers of the IMU) adapt quickly to the predefined offset. However, the biases of
the peripheral accelerometers ∆u3, ∆u4,∆u5 show a different behaviour; the convergence of the reference and
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Figure 12: Distance d, estimate d̂ and the error of distance d − d̂ of the three mode model using three peripheral
accelerometers.

Figure 13: Angle ψ, estimate ψ̂ and the error of angle ψ − ψ̂ of the three mode model using three peripheral
accelerometers.

the estimate cannot be shown within the first 1000 seconds of the simulation. But, the mismatch of the estimates
among each other correspond. Additionally, the estimates of the bias tend towards their individual references.

6 Conlusions and Future Work

The principle of integrated navigation systems can be expanded to flexible vehicles with large structural dimen-
sions in order to measure the flexure. The main role for the measurement system is a suitable kinematical model of
the considered structure. Including deformation variables into this model, it is possible to describe the motion of
flexible structures using acceleration, velocity, position, and strain. The filter algorithm produces smooth estimates
of the desired motion and blends the noisy signals of the different measurement devices. This opens a new class
of possibility for motion control of large structures and for structural monitoring (applications are gust alleviation,
minimising structural loads of wings, and sound reduction of helicopter blades etc.).
The simulated system test in chapter 5 is meant to prepare the experimental verification of the presented measure-
ment system. Moreover, more kinematical models including peripheral gyros and a combination of both peripheral
sensor types (gyros and accelerometers) have to be developed and compared with models including solely periph-
eral accelerometers.
Besides the modal approach, including the mixed mode approximation, new methods to describe the flexibility of
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Figure 14: Deformation variables b1, b2 and b3 using three peripheral accelerometers.

a structure have to be considered. The Krylov subspace method is such an approach that allows reducing very high
order models with several ten thousands of state variables.
Sensor optimisation has to be investigated in detail including more parameters to be optimised. This includes on
the one hand the choice of sensors, that means the question has to be investigated which sensors are favourable for
a specific structure. On the other hand the position of the sensors along the structure has to be further optimised. So
far, the information of the eigenmodes was used to position the sensors at points of maximal amplitude. Therefore,
the reduced model of the beam with 31 nodes, which is sufficient for a first investigation, should be expanded.
Filter tuning is also important for filter performance and can be improved with new methods including dynamically
tuned matrices (e.g. Q matrix). The use of several Kalman filters running in parallel using each different kinemat-
ical models has to be tested. These so-called cascadian filters (Sasiadek and Wang (2001)) could choose between
different kinematical models including more or less deformation variables. The idea of switching the filter can be
realised with an additional dynamic parameter. This paramater to be introduced judges the actual movement in
terms of dominant vibration modes. The appropriate model using the optimal number of deformation variables can
now be chosen to stabilise filter performance in different phases of excitation. This approach can furthermore be
used for high safety applications with system redundancy requirements.
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Figure 15: Bias ∆u1 to ∆u6 and their estimates ∆û1 to ∆û6 of the three mode model using three peripheral
accelerometers.
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