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The Generalized Theory of Thermo-Magnetoelectroelasticity

M. Aouadi

The governing equations for thermo-magnetoelectroelasticity are given for the heat-flux-dependent theory of Lebon.
First, we establish a reciprocal relation using a new method of proof, which involves two thermoelastic processes
at different instants. We show that this relation can be used to obtain reciprocity, uniqueness and continuous de-
pendence theorems. The reciprocal theorem avoids both the use of the Laplace transform and the incorporation
of initial conditions into the equations of motion. The uniqueness theorem is derived avoiding both the use of the
definiteness assumption on the thermoelastic coefficients and the restriction that the conductivity tensor is positive
definite. There are also no restrictions on the piezoelectric moduli, piezomagnetic moduli, and the thermal cou-
pling coefficients other than symmetry conditions. We prove also that the reciprocal relation leads to a continuous
dependence theorem studied on external body loads and heat supply, which ensures that the mathematical model
for the generalized problem is well posed.

1 Introduction

Recently, with increasing wide use of piezoelectric and piezomagnetic materials in the aerospace and automo-
tive industries, etc., the study of the mechanics and physics of magnetoelectroelastic solids has attracted much
attention. They are also extensively used as electric packaging, sensors and actuators, e.g., magnetic field probes,
acoustic/ultrasonic devices, hydrophones, and transducers with the responsibility of electromagnetomechanical
energy conversion (Wu and Huang, 2000; Zhou et al., 2005). Consequently, the magnetoelectroelastic materials
offer great opportunities to develop new sensing and actuating devices working in desired ways.

Actually, as is well known, the term generalized usually refers to thermodynamic theories based on hyperbolic
(wave-type) heat equations, so that a finite speed for propagation of thermal signals is admitted (the so-called sec-
ond sound effect). In this connection, several kinds of generalization have been performed, typically modifying
the entropy production inequality and/or the set of dependent and independent constitutive variables. As regards
in particular the heat conduction issue in elastic bodies, we can mention the papers of Lord and Shulman (1967),
Müller (1971), Green and Laws (1972) and Green and Lindsay (1972) for an exhaustive survey of methods and
results. In Hetnarski and Ignaczak (1999) historical outlines on the subject along with further remarks and ref-
erences can be found. More recently, Lebon (1980, 1982) has proposed a new approach towards a generalized
formulation. It is based upon the idea to consider the heat flux as a constitutive independent variable, and to add
a rate-type evolution equation for the heat flux to the system of constitutive equations. Application of the general
principles of continuum thermomechanics, among which the entropy inequality in the form proposed by Müller
(1971), then yields the thermodynamic restrictions on the constitutive relations. In the linear approximation, the
main equations become analogous to those previously considered by Lord and Shulman (1972); in particular, the
counterpart of the classical Fourier law for heat conduction, arising from the above evolution equation, is given by
an equation of Cattaneo-Maxwell-Vernotte type.

Apart from the admission of second sound effect, we emphasize that generalized theories resulting in hyperbolic
heat equations should be physically more suitable than the conventional ones in connection with problems involv-
ing very short intervals of time and/or very high heat fluxes.

The generalized approach by Lebon has been carried onto micropolar and piezoelectricity in an elastic context by
Chandrasekharaiah (1986, 1987, 1988), onto a porous thermoelastic context by Ciarletta and Scarpetta (1996), and
onto a porous micropolar context by Passarella (1996). The resulting theories appear to be similar to that empiri-
cally developed by Kaliski (1965 a, b), where the physical relevance for incorporation of second sound effects into
piezoelectricity is also stressed. Nowacki (1964, 1965) derived an extensive investigation on piezoelectricity for
thermoelastic bodies.
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To the author’s knowledge, no work has been done regarding the study of the qualitative properties of the solution
of the theory of thermo-magnetoelectroelasticity in the frame of a generalized theory, though similar research in
classical thermo-magnetoelectroelasticity (Li, 2003), in microstrech piezoelectricity (Iesan, 2006 a) and in clas-
sical microstrech thermopiezoelectricity (Iesan, 2006 b), has been popular in recent years. So, this paper aims to
fill up this vacancy. We are interested in reciprocity, uniqueness and continuous theorems. This should permit to
model the behaviour of several kinds of thermoelastic and thermopiezoelectric materials.

In the last years, various methods for the study of the qualitative properties of the solution in elasticity or ther-
moelasticity have been elaborated. A uniqueness theorem in thermoelastodynamics of homogeneous and isotropic
bodies has been derived by Weiner (1957). This result has been extended by Cazimir (1964) on the anisotropic
bodies. However, these uniqueness theorems rest on the positive definiteness assumption on the elasticity tensor.
Brun (1969) was the first to establish uniqueness without the definiteness assumption on the elastic coefficients.
Knops and Payne (1970) and Rionero and Chirita (1987) reached a similar conclusion, but their results are based
on the assumption that the conductivity tensor is positive definite. The latter assumption is not a consequence of the
second law of thermodynamics because that law implies that the conductivity tensor is only positive semi-definite.
Iesan (1989) was the first to establish a uniqueness theorem in classical thermoelasticity avoiding both the use
of the definiteness assumption on the elasticity tensor and the restriction that the conductivity tensor is positive
definite.

By using the method presented by Iesan (1989, 2006a, b) for different classical thermoelastic problems, we estab-
lish a reciprocal relation which involves two thermoelastic processes at different instants for a generalized problem
under Lebon’s model. This relation forms the basis of reciprocity, uniqueness and continuous dependence theo-
rems.

The new contributions of this paper compared to those cited previously are:

(i) Li (2003) and Iesan (1989, 2006a, b) established reciprocity and uniqueness theorems for classical thermoe-
lastic problems. However, in this paper both theorems are derived in the frame of a generalized theory, which is
considered physically more realistic that the classical one.

(ii) In this paper, the reciprocity and uniqueness theorems are established on the basis of results obtained from the
reciprocal relation. The uniqueness theorem is derived avoiding both the use of the definiteness assumption on the
thermoelastic coefficients and the restriction that the conductivity tensor is positive definite. The reciprocal theorem
avoids both the use of the Laplace transform and the incorporation of the initial conditions into the equations of
motion. However the same corresponding theorems are derived by Li (2003) as two independent problems by
incorporation of the Laplace transform and initial conditions into the field equations and with restrictions on the
conductivity tensor.

(iii) We have derived a continuous dependence theorem within a generalized thermoelastic theory on the basis of
results obtained from reciprocity and uniqueness. However, the same corresponding theorem has been derived by
Iesan (2006b) under a classical thermoelastic theory as an independent problem without implementing reciprocity
and uniqueness results in the study.

(iv) The method employed in this paper to derive the continuous dependence theorem is more general than that
used by Iesan (2006b). It is applicable to isotropic media as well as to anisotropic media regardless wether the
thermal effects are considered in the studied problem or not.

(v) The results of this paper, and in particular the continuous dependence theorem, prove that in the motion
following any sufficiently small change in the external system, the solution of the initial-boundary value problem
is everywhere arbitrary small in magnitude. Consequently, the mathematical model proposed for the generalized
thermo-magnetoelectroelastic problem under Lebon’s model is well posed.

2 Basic Equations and Preliminaries

We consider a body that at some instant occupies the region V of the Euclidean three-dimensional space and is
bounded by the piecewise smooth surface ∂V . The motion of the body is referred to the reference configuration
V and a fixed system of rectangular Cartesian axes Oxi (i = 1, 2, 3). We shall employ the usual summation and
differentiation conventions: Latin subscripts are understood to range over the integers (1, 2, 3), summation over
repeated subscripts is implied and subscripts preceded by a comma denote partial differentiation with respect to the
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corresponding Cartesian coordinate. In what follows we use a superposed dot to denote the partial differentiation
with respect to the time t.

We consider the generalized theory of thermo-magnetoelectroelasticity under Lebon’s model. The fundamental
system of field equations consists of the equations of motion (Li, 2003; Coleman and Dill; 1971, Amendola, 2000)

σji,j + Fi = ρüi (1)

the equations of the electric and magnetic fields

Di,i = % Bi,i = σ (2)

the energy equation

ρT0η̇ = qi,i + ρh (3)

the constitutive equations

σij = cijklekl + Fijkζk + λijkEk − aijT (4)

Dk = −λkijeij + αkiζi + γkiEi + pkT (5)

Bk = −Fkijeij + Akiζi + αkiEi + mkT (6)

ρη = aijeij + mkζk + pkEk + cT (7)

kijT,j = qi + τ0q̇i (8)

and the geometrical equations

eij =
1
2
(ui,j + uj,i), Ei = −ψ,i, ζi = −ϕ,i (9)

Here we have used the following notations: Fi, % and σ are the body force, electric charge density, and electric
current density, respectively; ρ is the mass density; h is the heat supply; ui, ψ and ϕ are the displacement vector,
the electric potential, and the magnetic potential, respectively. σij , Dk, Bk and η are stress tensor, the dielectric
displacement vector, the magnetic intensity, and the entropy density, respectively. eij , Ei, ζi and T are strain
tensor, electric field, magnetic field, and temperature change to a reference temperature T0, respectively. kij is the
conductivity tensor. The coefficients cijkl, γkj , Akj and c are constitutive moduli which directly connect similar
fields (for example, stress to strain). On the other hand λijk, Fijk, αkj , aij , pi and mi are coupling coefficients
connecting dissimilar fields (for example, stress to electric field).

We notice that other sets of constitutive equations can be obtained by choosing different sets of independent
variables. The constitutive parameters satisfy the following symmetry conditions :

cijkl = cklij = cjikl, λijk = λkij = λkji, Fijk = Fkij = Fkji

aij = aji, γij = γji, αij = αji, kij = kji, κij = κji (10)

Here κij are constitutive coefficients defined by (Chandrasekharaiah, 1886; 1987; 1988)

T0κijkjh = τ0δih (11)

The coefficients κij satisfy the inequality

1
τ0

κijqiqj ≥ 0 (12)

The main difference with the coupled model of the theory of thermo-magnetoelectroelasticity lies in the treatment
of equation (8). Instead of the classical (coupled) equation qi = kijT,j , we now must deal with the generalizing
ones (8), (11) and (12).
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As pointed out by Lebon (1982) and Chandrasekharaiah (1988), equation (8) appears as an anisotropic version of
the Maxwell- Cattaneo-Vernotte heat conduction law, postulated by Kaliski (1965a, b). The material coefficients
τ0 and kij should be interpreted as a thermal relaxation time and thermal conductivity tensor, respectively. Of
course, letting τ → 0 gives the equations of the coupled model of the theory of thermo-magnetoelectroelasticity.

The components of surface traction, the normal component of the electrical displacement, the normal component
of the magnetic intensity, and the heat flux at regular points of ∂V are given by

fi = σjinj , d = Dini, b = Bini, q = qini (13)

respectively. We denote by nj the outward unit normal of ∂V .

To the system of field equations we must add boundary conditions and initial conditions. Let Sm (m = 1, 2, ..., 8)
be subsets of ∂V so that S̄1 ∪ S2 = S̄3 ∪ S4 = S̄5 ∪ S6 = S̄7 ∪ S8 = ∂V, S1 ∩ S2 = S3 ∩ S4 = S5 ∩ S6 =
S7 ∩ S8 = ®.

We consider the following boundary conditions

ui = ũi on S̄1 × (0,∞), ψ = ψ̃ on S̄3 × (0,∞), ϕ = ϕ̃ on S̄5 × (0,∞), T = T̃ on S̄7 × (0,∞)

σjinj = f̃i on S2 × (0,∞), Djnj = d̃ on S4 × (0,∞), Bjnj = b̃ on S6 × (0,∞)

qjnj = q̃ on S8 × (0,∞) (14)

where ũi, ψ̃, ϕ̃, T̃ , f̃i, d̃, b̃ and q̃ are prescribed functions. The initial conditions are

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), η(x, 0) = η0(x), x ∈ V̄ (15)

where u0
i , v0

i , and η0 are given. We assume that

(i) Fi, h, % and σ are continuous on V̄ × (0,∞)

(ii) ρ, u0
i , v0

i and η0 are continuous on V̄

(iii) the constitutive coefficients satisfy the symmetry relations (10)

(iv) the constitutive coefficients are continuous differentiable on V̄

(v) ũi, ψ̃, ϕ̃ and T̃ are continuous on S̄1 × (0,∞), S̄3 × (0,∞), S̄5 × (0,∞) and S̄7 × (0,∞), respectively

(vi) f̃i, d̃, b̃ and q̃ are continuous in time and piecewise regular on S2 × (0,∞), S4 × (0,∞), S6 × (0,∞) and
S8 × (0,∞), respectively

Let M and N be non-negative integers. We say that f is of class CM,N on V × (0,∞) if f is continuous on
V × (0,∞) and the functions

∂m

∂xi∂xj · · · ∂xp
(
∂nf

∂tn
), m ∈ {1, 2, · · · ,M}, , n ∈ {1, 2, · · · , N}, m + n ≤ max{M, N}

exist and are continuous on V × (0,∞). We write CM for CM,M .

By an admissible process p = {ui, ψ, ϕ, T, eij , σij , ζi, Ei, Bi, Di, η, qi} we mean an ordered array of functions
ui, ψ, ϕ, T, eij , σij , ζi, Ei, Bi, Di, η, and qi defined on V̄ × [0,∞) with the following properties: (i) ui ∈ C2,
ψ, ϕ ∈ C2,0, T ∈ C2,1, η ∈ C0,1, qi ∈ C0,1, eij , ζi ∈ C1,0, σij ∈ C1,0, Ei, ζi ∈ C1,0 on V × (0,∞); (ii)
ui, u̇i, üi, ui,j , ϕ, ϕ,i, ψ, ψ,i, eij , σij , σij,i, Di, Di,i, Bi, Bi,i T, Ṫ , T,i, η, η̇, qi and qi,i, are continuous on
V̄ × [0,∞).

By a solution of the mixed problem we mean an admissible process which satisfies equations (1)-(9) on V ×(0,∞),
the boundary conditions (14), and the initial conditions (15).
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3 Reciprocal Theorem

In this section we establish a reciprocity relation which involves two processes at different instants. This relation
forms the basis of reciprocity, uniqueness, and continuous dependence theorems. The proof of the reciprocal
theorem avoids both the use of the Laplace transform and the incorporation of the initial conditions in the equations
of motion.

Let u and v be functions on V × (0,∞) that are continuous in time. In the following we use ∗ to indicate the time
convolution:

[u ∗ v](x, t) =
∫ t

0

u(x, t− τ)v(x, τ)dτ

Let ` be the function on [0,∞) defined by

`(t) = 1, t ∈ [0,∞) (16)

We introduce the notation f̄ for ` ∗ f , that is

f̄(x, t) =
∫ t

0

f(x, τ)dτ = [` ∗ f ](x, t), x ∈ V, t ∈ (0,∞) (17)

Following Iesan (1989, 2006a, b), equation (3) is equivalent to

ρT0η = q̄i,i + W, on V × [0,∞) (18)

where

W = ρh̄ + ρT0η
0 (19)

We consider two external data systems

£(α) = {F (α)
i , %(α), σ(α), h(α), ũi

(α), φ̃(α), ψ̃(α), T̃ (α), f̃i
(α)

, d̃(α), b̃(α), q̃(α), ui
0(α), vi

0(α), η0(α)}

(α = 1, 2). Let

p(α) = {u(α)
i , ψ(α), ϕ(α), T (α), e

(α)
ij , σ

(α)
ij , ζ

(α)
i , E

(α)
i , B

(α)
i , D

(α)
i , η(α), qi

(α)}

be a solution corresponding to £(α) (α = 1, 2). We denote

f
(α)
i = σ

(α)
ji nj , d(α) = D

(α)
i ni, b(α) = B

(α)
i ni

q(α) = q
(α)
i ni, W (α) = ρ` ∗ h(α) + ρT0η

0(α). (20)

Theorem 1 Suppose that the symmetry relations (10) hold. Let

Ωαβ(a, b) =
∫

V

[
F

(α)
i (a)u(β)

i (b)− %(α)(a)ψ(β)(b)− σ(α)(a)ϕ(β)(b)− 1
T0

W (α)(a)T (β)(b)
]
dV

−
∫

V

[
ρü

(α)
i (a)u(β)

i (b)− 1
T0

q̄
(α)
i (a)T (β)

,i (b)
]
dV

+
∫

∂V

[
f

(α)
i (a)u(β)

i (b) + d(α)(a)ψ(β)(b) + b(α)(a)ϕ(β)(b)− 1
T0

q̄(α)(a)T (β)(b)
]
dS (21)

for all a, b ∈ (0,∞). Then

Ωαβ(a, b) = Ωβα(b, a), α, β = 1, 2, for all a, b ∈ (0,∞) (22)

137



Proof. Let

Γαβ(a, b) = σ
(α)
ij (a)e(β)

ij (b)−D
(α)
k (a)E(β)

k (b)−B
(α)
k (a)ζ(β)

k (b)− ρη(α)(a)T (β)(b) (23)

where, for convenience, we have suppressed the argument x. In view of equations (5)-(8), from (23) we get

Γαβ(a, b) = cijkle
(α)
kl (a)e(β)

ij (b)− γkiE
(α)
i (a)E(β)

k (b)−Akiζ
(α)
i (a)ζ(β)

k (b)− cT (α)(a)T (β)(b)

+Fkij

(
ζ
(α)
k (a)e(β)

ij (b) + e
(α)
ij (a)ζ(β)

k (b)
)

+ λkij

(
E

(α)
k (a)e(β)

ij (b) + e
(α)
ij (a)E(β)

k (b)
)

−αki

(
ζ
(α)
i (a)E(β)

k (b) + E
(α)
i (a)ζ(β)

k (b)
)
− aij

(
T (α)(a)e(β)

ij (b) + e
(α)
ij (a)T (β)(b)

)

−pk

(
E

(α)
k (a)T (β)(b) + T (α)(a)E(β)

k (b)
)
−mk

(
ζ
(α)
k (a)T (β)(b) + T (α)(a)ζ(β)

k (b)
)

(24)

If we use the symmetry relation (10), then we find that

Γαβ(a, b) = Γβα(b, a), α, β = 1, 2, for all a, b ∈ (0,∞) (25)

On the other hand, in view of equations (1)-(3), (9) and (23), we obtain

Γαβ(a, b) = σ
(α)
ij (a)u(β)

j,i (b) + D
(α)
j (a)ψ(β)

,j (b) + B
(α)
j (a)ϕ(β)

,j (b)− 1
T0

(
q̄
(α)
i,i (a) + W (α)(a)

)
T (β)(b)

= [σ(α)
ji (a)u(β)

i (b) + D
(α)
j (a)ψ(β)(b) + B

(α)
j (a)ϕ(β)(b)− 1

T0
q̄
(α)
j (a)T (β)(b)],j

+F
(α)
i (a)u(β)

i (b)− %(α)(a)ψ(β)(b)− σ(α)(a)ϕ(β)(b)− 1
T0

W (α)(a)T (β)(b)

−ρü
(α)
i (a)u(β)

i (b) +
1
T0

q̄
(α)
i (a)T (β)

,i (b) (26)

By using the divergence theorem and equations (21), (24) and (26), we obtain
∫

V

Γαβ(a, b)dV = Ωαβ(a, b) (27)

In view of equation (25), we obtain the desired result.

Theorem 1 forms the basis of the following reciprocity theorem.

Theorem 2 Assume that the symmetry relations (10) hold. Let p(α) be a solution corresponding to the external
data system £(α), (α = 1, 2). Then we have

∫

V

[
Ψ(1)

i ∗ u
(2)
i − g ∗ %(2) ∗ ψ(1) − g ∗ σ(2) ∗ ϕ(1) − 1

T0
g ∗W (1) ∗ T (2) + g ∗ ` ∗ λijq

(1)
i ∗ q̇

(2)
j

]
dV

+
∫

∂V

g ∗
[
f

(1)
i ∗ u

(2)
i + d(1) ∗ ψ(2) + b(1) ∗ ϕ(2) − 1

T0
` ∗ q(1) ∗ T (2)

]
dS

=
∫

V

[
Ψ(2)

i ∗ u
(1)
i − g ∗ %(1) ∗ ψ(2) − g ∗ σ(1) ∗ ϕ(2) − 1

T0
g ∗W (2) ∗ T (1) + g ∗ ` ∗ λijq

(2)
i ∗ q̇

(1)
j

]
dV

+
∫

∂V

g ∗
[
f

(2)
i ∗ u

(1)
i + d(2) ∗ ψ(1) + b(2) ∗ ϕ(1) − 1

T0
` ∗ q(2) ∗ T (1)

]
dS (28)

where

Ψ(α)
i = g ∗ F

(α)
i + ρ(tv0(α)

i + u
0(α)
i ), g(t) = t, t ∈ [0,∞)
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Proof. We take in equation (22), a = τ and b = t− τ and integrate from 0 to t, we arrive with the aid of equation
(21) at

∫

V

[
F

(1)
i ∗ u

(2)
i − %(1) ∗ ψ(2) − σ(1) ∗ ϕ(2) − 1

T0
W (1) ∗ T (2)

]
dV

−
∫

V

ρü
(1)
i ∗ u

(2)
i dV +

1
T0

∫

V

` ∗ q
(1)
i ∗ T

(2)
,i dV

+
∫

∂V

[
f

(1)
i ∗ u

(2)
i + d(1) ∗ ψ(2) + b(1) ∗ ϕ(2) − 1

T0
` ∗ q(1) ∗ T (2)

]
dS

=
∫

V

[
F

(2)
i ∗ u

(1)
i − %(2) ∗ ψ(1) − σ(2) ∗ ϕ(1) − 1

T0
W (2) ∗ T (1)

]
dV

−
∫

V

ρü
(2)
i ∗ u

(1)
i dV +

1
T0

∫

V

` ∗ q
(2)
i ∗ T

(1)
,i dV

+
∫

∂V

[
f

(2)
i ∗ u

(1)
i + d(2) ∗ ψ(1) + b(2) ∗ ϕ(1) − 1

T0
` ∗ q(2) ∗ T (1)

]
dS (29)

If we take the convolution of equation (8) with κhiqh, and using equation (11), we get

1
T0

qi ∗ T,i = κijqi ∗ q̇j +
1
τ0

κijqi ∗ qj . (30)

Taking the convolution of the relation (30) with ` and substituting the resulting equation into (29), we obtain
∫

V

[
F

(1)
i ∗ u

(2)
i − %(1) ∗ ψ(2) − σ(1) ∗ ϕ(2) − 1

T0
W (1) ∗ T (2)

]
dV

−
∫

V

ρü
(1)
i ∗ u

(2)
i dV +

∫

V

` ∗ κijq
(1)
i ∗ q̇

(2)
j dV +

1
τ0

∫

V

` ∗ κijq
(1)
i ∗ q

(2)
j dV

+
∫

∂V

[
f

(1)
i ∗ u

(2)
i + d(1) ∗ ψ(2) + b(1) ∗ ϕ(2) − 1

T0
` ∗ q(1) ∗ T (2)

]
dS

=
∫

V

[
F

(2)
i ∗ u

(1)
i − %(2) ∗ ψ(1) − σ(2) ∗ ϕ(1) − 1

T0
W (2) ∗ T (1)

]
dV

−
∫

V

ρü
(2)
i ∗ u

(1)
i dV +

∫

V

` ∗ κijq
(2)
i ∗ q̇

(1)
j dV +

1
τ0

∫

V

` ∗ κijq
(2)
i ∗ q

(1)
j dV

+
∫

∂V

[
f

(2)
i ∗ u

(1)
i + d(2) ∗ ψ(1) + b(2) ∗ ϕ(1) − 1

T0
` ∗ q(2) ∗ T (1)

]
dS (31)

where

g ∗ ü
(α)
i = u

(α)
i − tv

(0α)
i − u

0(α)
i . (32)

Taking the convolution of the relation (31) with g, we conclude with the aid of relation (32), that (28) holds.

Corollary 1 Assume that the symmetry relations (10) hold. With homogeneous boundary conditions, the two sets
of causes and responses satisfy

∫

V

[
Ψ(1)

i ∗ u
(2)
i − g ∗ %(2) ∗ ψ(1) − g ∗ σ(2) ∗ ϕ(1) − 1

T0
g ∗W (1) ∗ T (2) + g ∗ ` ∗ λijq

(1)
i ∗ q̇

(2)
j

]
dV

=
∫

V

[
Ψ(2)

i ∗ u
(1)
i − g ∗ %(1) ∗ ψ(2) − g ∗ σ(1) ∗ ϕ(2) − 1

T0
g ∗W (2) ∗ T (1) + g ∗ ` ∗ λijq

(2)
i ∗ q̇

(1)
j

]
dV
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This result follows easily from Theorem 2 since the surface integrals vanish for homogeneous boundary conditions.

4 Uniqueness Theorem

In this section we prove that the reciprocity relation established in the last section leads to a uniqueness result
theorem. The uniqueness theorem is established avoiding both the use of the definiteness assumption on the
elasticity tensor and the restriction that the conductivity tensor is positive definite.

The following theorem is a consequence of Theorem 1.

Theorem 3 Suppose that the symmetry relations (10) hold. Let

p = {ui, ψ, ϕ, T eij , σij , ζi, Ei, Di, Bi, η, qi}

be a solution corresponding to the external data system

{Fi, %, σ, h, ũi, ψ̃, ϕ̃, T̃ , f̃i, d̃, b̃, q̃, ui
0, vi

0, η0}

and let

Λ(a, b) =
∫

∂V

[
fi(a)ui(b) + d(a)ψ(b) + b(a)ϕ(b)− 1

T0
q̄(a)T (b)

]
dS

+
∫

V

[
Fi(a)ui(b)− %(a)ψ(b)− σ(a)ϕ(b)− 1

T0
W (a)T (b)

]
dV (33)

for all a, b ∈ (0,∞). Then

d

dt

( ∫

V

[ρuiui + κijqjqi]dV +
1
τ0

∫ t

0

∫

∂V

κijqjqidtdV
)

=
∫ t

0

[Λ(t− τ, t + τ)− Λ(t + τ, t− τ)]dV

+
∫

V

(
ρ(u̇i(2t)ui(0) + u̇i(0)ui(2t)) +

1
τ0

κijqj(0)qi(2t) + κij [qj(2t)qi(0) + qj(0)qi(2t)]
)
dV (34)

Proof. In view of Eq. (22)

∫ t

0

Ω11(t + τ, t− τ)dτ =
∫ t

0

Ω11(t− τ, t + τ)dτ (35)

Let us apply this relation to the process p(1) = p. From equations (21), (30) and (33) we obtain

∫ t

0

Ω11(t + τ, t− τ)dτ =
∫ t

0

Λ(t + τ, t− τ)dτ −
∫ t

0

∫

V

ρüi(t + τ)ui(t− τ)dV dτ

+
1
τ0

∫ t

0

∫

V

κijqi(t + τ)q̇j(t− τ)dV dτ +
∫ t

0

∫

V

κijqi(t + τ)q̈j(t− τ)dV dτ (36)

Similarly

∫ t

0

Ω11(t− τ, t + τ)dτ =
∫ t

0

Λ(t− τ, t + τ)dτ −
∫ t

0

∫

V

ρüi(t− τ)ui(t + τ)dV dτ

+
1
τ0

∫ t

0

∫

V

κijqi(t− τ)q̇j(t + τ)dV dτ +
∫ t

0

∫

V

κijqi(t− τ)q̈j(t + τ)dV dτ (37)

If we use the relations
∫ t

0

f̈(t + τ)g(t− τ)dτ = ḟ(2t)g(0)− ḟ(t)g(t) +
∫ t

0

ḟ(t + τ)ġ(t− τ)dτ
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∫ t

0

g̈(t− τ)f(t + τ)dτ = ġ(t)f(t)− ġ(0)f(2t) +
∫ t

0

ġ(t− τ)ḟ(t + τ)dτ

∫ t

0

f(t + τ)ġ(t− τ)dτ = f(t)g(t)− g(0)f(2t) +
∫ t

0

ḟ(t + τ)g(t− τ)dτ

then the relations (36) and (37) can be written

∫ t

0

Ω11(t + τ, t− τ)dτ =
∫ t

0

Λ(t + τ, t− τ)dτ − ρ

∫

V

[u̇i(2t)ui(0)− u̇i(t)ui(t)]dV

−ρ

∫ t

0

∫

V

u̇i(t + τ)u̇i(t− τ)dV dτ

+
1
τ0

∫

V

κij

(
qj(t)qi(t)− qj(0)qi(2t)

)
dV +

1
τ0

∫ t

0

∫

V

κij q̇i(t + τ)qj(t− τ)dV dτ

+
∫

V

κij [q̇j(t)q̄i(t)− qj(0)q̄i(2t)]dV +
∫ t

0

∫

V

κij q̇i(t + τ)q̇j(t− τ)dV dτ (38)

∫ t

0

Ω11(t− τ, t + τ)dτ =
∫ t

0

Λ(t− τ, t + τ)dτ − ρ

∫

V

[u̇i(t)ui(t)− u̇i(0)ui(2t)]dV

−ρ

∫ t

0

∫

V

u̇i(t− τ)u̇i(t + τ)dV dτ +
1
τ0

∫ t

0

∫

V

κij q̇j(t + τ)qi(t− τ)dV dτ

+
∫

V

κij [qj(2t)q̄i(0)− q̇j(t)q̄i(t)]dV +
∫ t

0

∫

V

κij q̇i(t− τ)q̇j(t + τ)dV dτ (39)

In view of equations (39) and (38), the relation (35) reduces to (34).

Theorem 3 implies the following uniqueness theorem.

Theorem 4 Assume that

(i) the symmetry relations (10) hold,

(ii) ρ is strictly positive,

(iii) κij is positive semi-definite.

(iv) γij , αij and Aij are positive definite,

Let p∗ = {ui
∗, ψ∗, ϕ∗, e∗ij , σ∗ij , E∗

i , ζ∗i , D∗
k, B∗

k , T ∗, η∗, q∗i } be the difference of any two solutions of the
mixed problem. Then

u∗i = 0, T ∗ = 0, ψ∗ = const. and ϕ∗ = const., on V × (0, +∞) (40)

Moreover, if S3 and S5 are nonempty, then the mixed problem has at most one solution.

Proof. Clearly, the difference of any two solutions corresponds to null data. Thus, from equation (34) we conclude
that

d

dt

( ∫

V

[ρu∗i u
∗
i + κijq∗jq

∗
i]dV +

1
τ0

∫ t

0

∫

∂V

κijq∗jq
∗
idtdV

)
= 0 (41)
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Since u∗i vanish initially, the above relation implies that

∫

V

[ρu∗i u
∗
i + κijq∗jq

∗
i]dV +

1
τ0

∫ t

0

∫

∂V

κijq∗jq
∗
idtdV = 0 (42)

In view of hypotheses (i)− (iii), from equation (42) we get

u∗i = 0, q̄∗i = 0, on V × [0, +∞) (43)

Using equation (43)2, equation (8) may be written as

T ∗,i = 0 on V × (0, +∞) (44)

So that q∗i = 0 on V × (0,+∞). The energy equation (3) yields ρT0η
∗ = 0 and it follows that

η∗ = 0 (45)

On the other hand, from the constitutive equations (5)-(6), we have

D∗
j = αjiζ

∗
i + γjiE

∗
i + pjT

∗ (46)

B∗
j = Ajiζ

∗
i + αjiE

∗
i + mjT

∗ (47)

Moreover, by equation (2) and the null data

D∗
j,j = 0, and B∗

j,j = 0 (48)

By using equations (44) and (48), and the divergence theorem, we get
∫

V

D∗
j E∗

j dV = −
∫

∂V

D∗
j njψ

∗dS +
∫

V

D∗
j,jψ

∗dV (49)

∫

V

B∗
j ζ∗j dV = −

∫

∂V

B∗
j njϕ

∗dS +
∫

V

B∗
j,jϕ

∗dV (50)

With the help of equations (46)-(48) and the boundary conditions, from equations (49)-(50) we obtain
∫

V

αjiζ
∗
i E∗

j dV +
∫

V

γjiE
∗
i E∗

j dV = 0 (51)

∫

V

Ajiζ
∗
i ζ∗j +

∫

V

αjiE
∗
i ζ∗j dV dV = 0 (52)

In view of hypothesis (iv), we find that

E∗
i = ζ∗i = 0, on V × (0,+∞) (53)

so that ψ∗ = const. and ϕ∗ = const. on V × (0,+∞). Clearly, if S3 6= Ø and S5 6= Ø then we obtain ψ∗ = 0
and ϕ∗ = 0 on V × (0,+∞). It follows from equations (45) and (53) that T ∗ = 0 on V × (0,+∞). This complete
the proof.

5 Continuous Dependence Theorem

In this section we prove that the results established in the last sections lead to a continuous dependence theorem of
the solution of the mixed problem in the frame of a generalized theory on the external body loads and heat supply
{Fi, %, σ, h}. In this order, we employ a method suggested by the work of Rionero and Chirita (1987). Throughout
this section, we assume that the hypotheses of Theorem 3 are satisfied and that the time interval ℘ = [0, t1] is
finite, i.e. t1 < ∞.
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We consider two external data systems which differ only by the body loads and heat supply

£(α) = {F (α)
i , %(α), σ(α), h(α), ũi, ψ̃, ϕ̃, T̃ , f̃i, d̃, b̃, q̃, ui

0, vi
0, η0}

(α = 1, 2), and let p(α) be two solutions of the boundary-initial-value problem corresponding to £(α), respectively.
We denote by

Fi = F
(2)
i − F

(1)
i , % = %(2) − %(1), σ = σ(2) − σ(1), h = h(2) − h(1)

Then, the difference of the two solutions p = p(2) − p(1) represents a solution of the mixed problem for null
boundary and initial data and for the body loads and heat supply {Fi, %, σ, h}. By application of Theorem 3 for the
solution p we deduce

d

dt

( ∫

V

[ρuiui + λijqjqi]dV +
1
τ0

∫ t

0

∫

V

λijqjqidV dτ
)

=
∫ t

0

∫

V

[
Fi(t− τ)ui(t + τ)− Fi(t + τ)ui(t− τ) + ψ(t− τ)%(t + τ)− ψ(t + τ)%(t− τ)

+ϕ(t− τ)σ(t + τ)− ϕ(t + τ)σ(t− τ) +
ρ

T0
[T (t− τ)h̄(t + τ)− T (t + τ)h̄(t− τ)]

]
dV dτ (54)

for every t ∈ (0, t1/2). We shall use the identity (54) in order to prove the following continuous dependence
theorem.

Theorem 5 We suppose that there exist t∗ ∈ (0, t1) and some positive constants A, B such that

∫ t∗

0

∫

V

[ψ2 + ϕ2 +
ρ

T0
T 2]dV dτ ≤ A2,

∫ t∗

0

∫

V

uiuidV dτ ≤ B2 (55)

then, we have the inequality

∫

V

[ρuiui + λijqjqi]dV +
1
τ0

∫ t

0

∫

V

λijqjqidV dτ

≤ At∗
[ ∫ t∗

0

∫

V

(%2 + σ2 +
ρ

T0
h̄2)dV dτ

] 1
2

+ Bt∗
[ ∫ t∗

0

∫

V

FiFidV dτ
] 1

2
(56)

for every t ∈ [0, t∗/2].

Proof.

By the application the Cauchy-Schwartz inequality for the last terms of (54), we derive

∫ t

0

∫

V

[
ψ(t− τ)%(t + τ) + ϕ(t− τ)σ(t + τ) +

ρ

T0
T (t− τ)h̄(t + τ)

]
dV dτ

≤
[ ∫ t

0

∫

V

[ψ2(t− τ) + ϕ2(t− τ) +
ρ

T0
T 2(t− τ)]dV dτ

] 1
2
[ ∫ t

0

∫

V

[%2(t + τ) + σ2(t + τ)+

+
ρ

T0
h̄2(t + τ)]dV dτ

] 1
2 ≤ A

[ ∫ t∗

0

∫

V

(%2 + σ2 +
ρ

T0
h̄2)dV dτ

] 1
2
, ∀t ∈ [0, t∗/2]. (57)

In the same way, we find the inequality

−
∫ t

0

∫

V

[
ψ(t + τ)%(t− τ) + ϕ(t + τ)σ(t− τ) +

ρ

T0
T (t + τ)h̄(t− τ)

]
dV dτ
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≤ A
[ ∫ t∗

0

∫

V

(%2 + σ2 +
ρ

T0
h̄2)dV dτ

] 1
2
, ∀t ∈ [0, t∗/2] (58)

From the above relations we get

∫ t

0

∫

V

[
ψ(t− τ)%(t + τ)− ψ(t + τ)%(t− τ) + ϕ(t− τ)σ(t + τ)− ϕ(t + τ)σ(t− τ)

+
ρ

T0
[T (t−τ)h̄(t+τ)−T (t+τ)h̄(t−τ)]

]
dV dτ ≤ 2A

[ ∫ t∗

0

∫

V

(%2+σ2+
ρ

T0
h̄2)dV dτ

] 1
2
, ∀t ∈ [0, t∗/2](59)

By the application the Cauchy-Schwartz inequality for the first term of (54), we derive

∫ t

0

∫

V

[Fi(t− τ)ui(t + τ)− Fi(t + τ)ui(t− τ)]dV dτ

≤
[ ∫ t

0

∫

V

Fi(t− τ)Fi(t− τ)dV dτ
] 1

2 ×
[ ∫ t

0

∫

V

ui(t + τ)ui(t + τ)dV dτ
] 1

2

+
[ ∫ t

0

∫

V

Fi(t + τ)Fi(t + τ)dV dτ
] 1

2 ×
[ ∫ t

0

∫

V

ui(t− τ)ui(t− τ)dV dτ
] 1

2

≤ 2B
[ ∫ t∗

0

∫

V

FiFidV dτ
] 1

2
, ∀t ∈ [0, t∗/2] (60)

If we substitute the estimates given by (60) and (59) into the identity (54) and we integrate the relation thus obtained
with respect to the time variable from 0 to t, then we obtain that (56) holds, for every t ∈ [0, t∗/2]. The proof is
complete.

6 Conclusion

In this paper we have extended a new method of proof proposed by Iesan (1998, 2006a, b) for the classical
thermoelastic theory to obtain reciprocity, uniqueness, and continuous dependence theorems in the frame of a
generalized thermoelastic theory, which is considered physically more realistic that the classical one.

The advantages of this new method of proof compared to others dealing with thermoelastic problems under Lebon’s
approach (Chandrasekharaiah 1986, 1987, 1988; Ciarletta and Scarpetta, 1996; Passarella, 1996; Li, 2003) are :

(i) Reciprocity and uniqueness theorems are established in the above papers as two independent problems, while
the same corresponding theorems are derived in this paper on the basis of results obtained from the reciprocal
relation.

(ii) Uniqueness theorems in the above papers were derived under the definiteness assumptions on the thermoelastic
coefficients and on the conductivity tensor, while the same corresponding theorem is established in this paper
without recourse to these restrictions.

(iii) Reciprocity theorems in the above papers were derived by incorporation of the Laplace transform and initial
conditions into the field equations, while the same corresponding theorem in this paper is established directly in
the physical domain.

(iv) The continuous dependence theorem derived here and not considered in the above papers proves that in
the motion following any sufficiently small change in the external system, the solution of the initial-boundary
value problem is everywhere arbitrary small in magnitude. Consequently, the mathematical model proposed for a
generalized thermo-magnetoelectroelastic problem under Lebon’s model is well posed.

Finally, the obtained results are applicable for some special cases which can be deduced from our generalized
model, such as thermoelasticity and thermopiezoelectricity problems in the frame of coupled and generalized
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models. Moreover, the new method presented in this paper should prove useful for researchers working on the
qualitative properties of the solution in mechanics of solids and fluids.
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