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Analytical models can contribute a lot to a better understanding of the structural behaviour of smart structures. 
In the paper an enhanced analytical model of a cantilever beam is presented. The beam is attached with 
piezoelectric patches that are used as sensors and actuators in a collocated and a non-collocated manner. In the 
analysis of the bending vibrations, an Euler-Bernoulli model is combined with a model of the longitudinal 
vibrations. The mechanical coupling between actuators and collocated sensors is modelled analytically and 
included in the transfer function as feedthrough. Additionally the model incorporates the effective 
electromechanical coupling and considers the modelling error due to model truncation. The analytical 
frequency response functions (FRFs) are verified and compared with experimental data in the frequency range 
up to 5 kHz including the first 10 bending modes and the first longitudinal mode. The observed differences 
between the simulated and the measured eigenfrequencies are less than 0.5% except for the first bending and 
longitudinal mode. The average amplitude modelling error is about 1dB for collocated and about 2dB for non-
collocated patch combinations in the frequency range up to 3 kHz. 
 
 
1 Introduction 
 
In the recent years there has been a growing demand for active vibration control (Gabbert, 2002). In part, this is 
due to the need for thin and light mechanical structures which, unfortunately, result in undesired vibro-acoustics 
phenomena. Passive methods for increasing the structural damping are often inadequate, especially in the lower 
frequency range, and the performance goals can be met only by active vibration control based on distributed 
piezoelectric actuator and sensor systems. In order to improve the understanding and the modelling of the 
electromechanical coupling between the piezoelectric patches and the base structure an extensive research has 
been performed. 
 
Crawley and de Luis (1987) proposed a uniform strain model for surface mounted piezoelectric patches both for 
longitudinal and bending vibrations. The model incorporated the shear effect of the bonding layer between the 
patches and the base substrate. Crawley and Anderson (1990) presented an Euler-Bernoulli model for the induced 
strain assuming consistent Euler-Bernoulli strain over the entire cross-section of the laminate structure. 
Exact closed form solutions of the FRF between actuating and sensing piezoelectric patches describing the 
dynamical behaviour of an Euler-Bernoulli beam were subject of many studies, see e.g. Alberts et. al. (1995), 
Pota and Alberts (1995), Preumont (2002) and Stöbener (2002). In general this analytical approach is applied 
only to simple models that are valid just for low frequency ranges and low modal orders. Usually complex 
models for higher frequency ranges are implemented using the finite element (FE) modelling, see e.g. 
Kusculuoglu et. al. (2004) and Nguyen and Pietrzko (2004).  
Maxwell and Asokanthan (2004) investigated the effect of surface mounted piezoelectric patches on the modal 
characteristics of a cantilever Timoshenko beam. The effect of model reduction errors, termed residual mode, on 
the modelling of FRFs was discussed by Gao and Randall (1996). Similar to the residual mode is the influence of 
the mechanical coupling between actuating and collocated sensing piezoelectric patches on the FRFs. Alvarez-
Salazar and Iliff (1999) determined the coupling by measurement and included it in the transfer function (TF) as 
an additional constant, called feedthrough. 
 
In the present work the traditional closed form solutions for the bending vibrations of an Euler-Bernoulli beam 
with surface mounted piezoelectric patches are revised and combined with a model for the longitudinal 
vibrations. A novel methodology is introduced to model analytically the mechanical coupling between actuating 
and collocated sensing patches based on the strain and stress distributions of the active and passive beam layers. 
Furthermore the effective electromechanical coupling and the modelling error due to model truncation are 
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discussed. A new enhanced analytical beam model is proposed in modal form. Additionally, the analytically 
calculated FRFs are verified and compared with numerically simulated and experimentally measured ones in a 
frequency range extended to higher frequencies and modal orders. 
 
 
2 Assumptions 
 
A thin, rectangular and isotropic cantilever beam as shown in Figure 1 is considered. Four identical piezoelectric 
patches are supposed to be perfectly and symmetrically surface mounted in a collocated and non-collocated 
manner on both sides of the beam. The patches can be used as actuators or sensors. In the following the super- or 
subscript b  denotes the beam and the super- or subscript p  the patches. 

 

 

Figure 1.  Geometry and layout of the cantilever beam with surface mounted piezoelectric patches 

 
The beam is made of steel type St05Z and the piezoelectric patches are made of Lead-Zirkonate-Titanate (PZT) 
ceramic type Sonox P53. The principal characteristics of both materials are listed in Table 1. The positioning of 
the patches is based on the results of (BMBF, 1998), where the placement for the active vibration control of 
beams is discussed. 
 

 steel St05Z Sonox P53 
hbl     ××  [10-3 m] 300 x 30 x 2 50 x 25 x 0.2 

pρ  [kg/m3] 7850 7830 

E  [109 N/m2]  198 67 

13ν , 23ν  0.33 0.34 

31d , 32d  [10-12 m/V] --- -233 

31e , 32e  [N/Vm]  --- -15.3 

rε  --- 1630 

Table 1. Characteristics of steel St05Z and Sonox P53 (BMBF, 1998) 

 
The origin of the coordinate system is located in the middle at the fixed end of the beam, see Figure 1. Due to the 
symmetry of the beam and the piezoelectric patches the longitudinal displacement ),( txu  and the bending 

displacement ),( txw  are uncoupled and can be analysed separately (Edery-Azulay and Abramovich, accepted). 

 

side view 
patch 1 patch 3 

patch 2 patch 4 

fixed support 

2mm, bh  

30mm, bb  

z

x  

x

y

50mm 300mm, bl  

60mm 

50mm 50mm 

25mm; pb  

top view 

130mm 



 
 

46

It is assumed that the mass and the stiffness of the piezoelectric patches can be neglected in comparison with the 
mass and the bending stiffness of the beam (Maxwell and Asokanthan, 2004). Because of the length to the 
thickness ratio of the patches the edge effects of the patches can be ignored. In the analysis the bonding layer is 
supposed to be plane and thin such that it has not to be considered (Crawley and de Luis, 1987). An Euler-
Bernoulli model is used, neglecting the rotary inertia and shear deformation of the beam. 
 
 
3 Longitudinal Vibration 
 
An element of the beam undergoing pure longitudinal displacements is shown in Figure 2. 
 

 

Figure 2.  Beam element in longitudinal motion 

 
3.1 Differential Equation of Motion 
 
Applying the condition of force equilibrium in the x  direction results in 
 

 
where ),( txNx  is the internal force, ),( txFx  is the external axial force, ),( txdm  is the element mass of the beam 

element while ),( txu  is the longitudinal displacement. Substituting the relation for the mass, 

dxxAxxdm bb ⋅⋅= )()()( ρ , and the internal force applying the Hook’s law, ),()()(),( txuxAxEtxN bbx ′⋅⋅= , into 

equation (1) one obtains the differential equation of motion as (Meyers, 2005) 
 

 
where )(xEb  is the Young’s modulus of the beam, )(xAb  is the cross section of the beam and )(xbρ  is the mass 

density. 
 
 
3.2 Solution of the Differential Equation of Motion 
 
The homogenous differential equation of motion is solved using separation of variables. The general solution 
considers both location and time dependency of the displacement ),( txu  and can be expressed as 

 

 
where )(xU  is the spatial mode shape function and )(tη  is the time dependency. By substitution of equation (3) 

into equation (2) and assuming constant values for the mass density bρ , the Young’s modulus bE  and the cross 

sectional area bA  one finds the homogenous spatial differential equation which can be written as 
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with the abbreviation 
 

 
The eigenvalues β⋅± j  of the equation (4) define the general solution of the mode shape )(xU  given by 

 

 

where 1Ĉ  and 2Ĉ  are constants. The cantilever beam is clamped at one end and free at the other end. With these 

assumptions the displacement )(xU  is constrained to zero at the fixed end 0=x  

 

 
and the internal force )(xNx  is constrained to zero at the free end blx =  

 

 
Applying equation (6) to equations (7) and (8) the characteristic equation is derived which results in 
 

 
The solutions of the characteristic equation are written in the form 
 

 
Introducing equation (10) into equation (6) and applying the boundary conditions (7) and (8) one can derive the 
mode shape )(xU i  as shown in Figure 3 and given by (Meyers, 2005) 

 

 
To ease further calculations the mode shape )(xU i  is normalised by an orthonormality condition. The condition 

is obtained by multiplying the differential equations of motion (4) for the eigenvalues iβ  and jβ  respectively 

with the mode shapes )(xU j  and )(xU i  respectively, subsequent subtraction of the equations and integration 

over the length bl . The orthonormality condition is given in the form 
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Figure 3.  Mode shapes of the longitudinal vibration 

 
 
4 Bending Vibration 
 
An element of the beam undergoing pure bending displacements is shown in Figure 4. 
 

 

Figure 4.  Beam element in transverse motion 

 
 
4.1 Differential Equation of Motion 
 
Balancing the forces in z  direction and the bending moments around the centre of the beam while neglecting the 
bending moments of higher order terms results in 
 

 
where ),( txq  is the external load force. Introducing the relation of the finite element mass, 

dxxAxxdm bb ⋅⋅= )()()( ρ , and of the bending moment, ),()()(),( txwxIxEtxM yyby ′′⋅⋅−= , into equations (13) 

and (14) we derive the differential equation of motion as (Meyers, 2005) 
 

 
where )(xI yy  is the moment of inertia. 
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4.2 Solution of the Differential Equation of Motion 
 
Following the previous approach of the section 3.2 the bending vibration ),( txw  is written as 

 

 
where )(xW  is the spatial mode shape function. Substituting equation (16) into equation (15) and assuming 

constant values for the mass density bρ , the Young’s modulus bE , the cross sectional area bA  and the moment 

of inertia )(xI yy  the homogenous spatial differential equation can be determined as 

 

 
with the abbreviation 
 

 
The general solution of the mode shape )(xW  

 

 
is combined with the boundary conditions at the clamped end 0=x  
 

 
and the boundary conditions at the free end blx =  
 

 
resulting in the characteristic equation which can be expressed by 
 

 
The characteristic values of the equation (22) are computed numerically as follows 
 

 
Substituting equation (23) into equation (19) and considering the boundary conditions (20) and (21) we can 
determine the mode shape )(xWi  as shown in Figure 5 and given by (Nguyen and Pietrzko, 2004) 
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As before the mode shape )(xWi  is normalised by the orthonormality condition that is given by 

 

 

 

Figure 5.  Mode shapes of the bending vibration 

 
 
5 Patch Actuator 
 
The patch consists of a piezoelectric layer made of PZT ceramic that is covered with thin Silver electrodes on the 
upper and lower side, see Figure 6. The PZT ceramic is polarised in z  direction. Applying voltage )(tV  across 

the actuating patch in direction of the polarisation P  induces a stress )(txσ  within the layer in x  direction. In 

case the displacement of the patch is constraint to zero the stress )(txσ can be written as 

 

 
where 31d  is the piezoelectric constant, pE  is the Young’s modulus of the patch while ph  is the height. 

 

 

Figure 6.  Geometry and layout of the patch 

 
Integrating the stress )(txσ  over the height ph  yields the resulting distributed force )(tFx  within the layer. 

 

 
where bh  is the height of the beam. The distributed force ),( txFx  acts only on the edges of the patch as 

illustrated in Figure 7. 
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where 0δ  is the delta function, 1δ  is the step function, 1x , 2x , 1y  and 2y  are the location coordinates of the 

patch. The point force )(tFx  in turn generates a bending moment )(tM y  about the neutral axis of the beam. 

 

 
Once again the bending moment ),( txM y  acts only on the edges of the patch (Fuller et. al., 1997). 

 

 

 

Figure 7.  Forces and bending moments of piezoelectric patch 

 

The modal input gain of the actuating patch is given by the generalised modal work ),(
~

txNi  carried out in the 

mode shapes (Preumont, 2002). For the longitudinal vibration the work ),(
~

txNu
i  is performed by the distributed 

force ),( txFx  in the mode shape )(xU i  and can be derived as 

 

 

where pb  is the width of the patch. Similarly, for the bending vibration the generalised modal work ),(
~

txN w
i  is 

produced by the bending moment ),( txM y  in the mode shape )(xWi  and is obtained as 

 

 
The same procedure can be applied for the y  direction which is not considered here. 

 
 
6 Patch Sensor 
 
Next, the voltage across the sensing patch is calculated. The strain ),( txu

xiε  of the pure longitudinal deformation 

is given by the first derivation of the mode shape ( )txui ,  as 
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In case of the pure bending deformation the strain ),( txw
xiε  is proportional to the curvature of the beam and the 

transverse coordinate z  and can be expressed as 
 

 
The electric displacement ),( txDi  is related to the strain ),( txxiε  and is given by 

 

 
where 31e  is the piezoelectric charge density. The modal output gain of the sensing patch is given by the 

generalised modal charge )(tQi  generated by the mode shapes (Preumont, 2002). Integration of the electric 

displacement ),( txDi  over the active area of the patch gives the modal charge )(tQi . For the longitudinal 

vibration this results in 
 

 
and for the bending vibration one obtains 
 

 
Assuming the patch is similar to an ideal electric parallel plate capacitor the resulting generalised modal voltage 

),( txV u
i  for the longitudinal vibration is given by 

 

 
where C  is the capacitance of the patch, 0ε  is the permittivity of free space, rε  is the relative permittivity of the 

piezoelectric layer and pl  is the length of the patch. Likewise the generalised modal voltage ),( txV w
i  for the 

bending vibration is calculated by 
 

 
 
7 Strains and Stresses 
 
A collocated patch configuration is shown in Figure 8. In the following the strain and stress distributions within 
the beam for an asymmetric excitation with the upper patch is derived. The approach is based on the work of 
Fuller et. al. (1997) but includes the additional layer of the collocated sensing patch. An important assumption is 
that the patch is thin and lightweight so that the inertia effects can be neglected. The bonding layer is ignored, 
which is valid if the layer is plane and thin. In the following analysis only the x  direction is considered but the 
results are valid also for the y  direction. The super- or subscripts pa denote the actuating patch while the super- 

or subscripts ps denote the sensing patch. 

Applying voltage )(tV  across the actuating patch causes the unconstrained patch to strain in x  direction by 
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Considering however a bonded patch this will try to expand but is constrained by the stiffness of the beam. Due 
to the asymmetric load the beam will both expand and bend producing an asymmetric strain distribution as shown 
in Figure 8. Based on the Euler-Bernoulli hypothesis we can assume a linear strain distribution in the xz plane 
that can be written as 
 

 
where )(tCx  is the slope and )(ˆ txε  is the point of interception with the z  axis. 

 

 

Figure 8.  Asymmetric strain distribution 

 
The stress distribution ),( tzpa

xσ  within the actuating patch is made up of the unconstrained patch strains )(tpa
xε  

and )(tpa
yε  and the assumed linear strain distributions ),( tzxε  and ),( tzyε . Using Hook’s law the stress 

distribution ),( tzpa
xσ  can be expressed as 
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The further analysis is simplified by the isotropic substrate properties of the patch. The identical piezoelectric 
constants 31d  and 32d  impose equal strains 
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in x  and y  direction. The substrate of the beam has nearly similar Young’s modules in both in-plane directions 

(BMBF, 1998). 
 

 
Together with the identical Young’s modules pxE and p

yE  of the patch this enforces equal stress and strain 

distributions 
 

 
in x  and y  direction. Furthermore the Poisson’s ratio pν  of the patches and bν  of the beam substrate is nearly 

the same 
 

 
such that the Poisson’s ratio ν  can be replaced in equations (43), (44) and (45) resulting in 
 

 
Employing the force equilibrium in x  direction results in the relation 
 

 
and the moment equilibrium about the centre of the beam gives the condition 
 

 
The equations (56) and (57) are integrated and solved for the unknowns )(tC  and )(ˆ tε . Finally, we obtain the 

slope )(tC  and the interception )(ˆ tε  of the Euler-Bernoulli strain which are expressed by 
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8 Actuator Sensor Coupling 
 
Following the strain distribution analysis we now derive an expression for the mechanical coupling DK , called 
feedthrough, between actuating and collocated sensing patch. In general the Euler-Bernoulli beam is considered 
to be a one dimensional system with bending and longitudinal displacements only in the xz plane and along the 
x  axis respectively (Fuller et. al., 1997). The discussion in the section 7 showed that this assumption is not valid 
in the close surrounding of the actuating patch. The electric displacement ),( txD  in the sensing patch caused by 

the strain ),( tzε  in the xz and yz  plane is given by 

 

 
where )(tVpa  is the voltage applied across to the actuating patch. Integrating the electric displacement ),( txD  

over the active area of the sensing patch one obtains the charge )(tQ  generated by the mechanical coupling 

which can be written as 
 

 
The resulting voltage )(tVps  of the sensing piezoelectric patch is given by 

 

 
 
9 Effective Coupling Factor 
 
The polarisation P  of a piezoelectric layer reduces gradually with time after polarisation resulting in a decreased 
piezoelectric constant 31d  and a degraded piezoelectric charge density 31e . Typically the coupling coefficient of 
low-voltage PZTs decreases by 0.5% to 2% per unit time decade while the coupling coefficient of high-voltage 
PZTs decreases by 1% to 4%, see (PI Ceramic GmbH, 2005a) and (CeramTec, 2006). Mishandling the element 
by exceeding its electrical, mechanical or thermal limitations accelerates the aging process. 
In addition the manufacturing tolerances of the type of patches used for the functional demonstrator are typically 
up to mm25.0±  regarding the length pl  and width pb of the patch (PI Ceramic GmbH, 2005b). Both the 

thickness ph  and the dielectric properties 31d  and 31e  of the patches are within %10±  of the specified values. 

 
The effective electromechanical properties are taken into account by an effective coupling factor effK . 

 

 
 
10 Analytical Frequency Response Function and Residual Mode 
 
The Euler-Bernoulli beam is theoretically a system of infinite modal order. The FRF of such a system is written 
in the pole-residue representation as follows 
 

 )(
)(

2),( 3131 tV
h

KzK
detzD pa

p

uw ⋅+⋅⋅⋅⋅=  (60) 

 )(
2

2 ),()( 3131 tV
h

bl
K

hh
KdedAtzDtQ pa

p

pp
u

pb
w

Ap

⋅
⋅

⋅






 +
+

⋅−⋅⋅⋅−=−= ∫  (61) 

 )(
2

1
2

)(
)( 3131

0

tVK
hh

Kde
C

tQ
tV pa

K

u
pb

w

r

ps

D

⋅






 +
+

⋅−⋅⋅⋅
⋅

⋅−==
44444444 344444444 21

εε
 

(62) 

 3131
dKd eff

eff ⋅=  (63) 

 3131 eKe eff
eff ⋅=  (64) 

 ∑
∞

=
∗−⋅⋅−⋅

=
1 )()(

)(
i pipi

i

sjsj

R
H

ωω
ω  (65) 



 
 

56

 
where iR  is the residue of the mode i  while pis  is the complex pole in the s  plane and *  means the complex 

conjugate. In principle the sum extends to all modes of the system. One obtains a reduced order model by 
truncation of the model above the frequency range of interest (Wang, 1998), (Randall and Gao, 1994) 
 

 
which can also be written in the form 
 

 
The out-of-band FRF )(ωoutH  is called residual mode. The anti-resonances of the reduced order model are the 

zeros of the FRF )(ωinH . In general they differ from the anti-resonances of the full order model )(ωH  

determined by the zeros of the sum )()( ωω inin HH + . 

Furthermore the residual mode influences the magnitude and phase of the FRF. The contribution of the residual 
mode to the FRF can be written as (Gao and Randall, 1996) 
 

 
where zis  and pis  are the complex zeros and poles of the transfer function )(ωoutH . The frequency dependency 

of )(ωRK  within the in-band range essentially depends on the ratio of the zeros and poles. At best the actuating 

and sensing patches are arranged in a collocated manner such that the resulting FRF has alternating zeros and 
poles. As a consequence of the interlacing pattern the contribution of a pole pis  is compensated for by the 

contribution of the subsequent zero zis  and )(ωRK  is nearly constant. 

The greater is the distance between the actuating and sensing patch the less is the number of FRF zeros (Gao and 
Randall, 1996) and the greater is the frequency dependency of )(ωRK . In the worst case with patches placed on 

the opposite sides of the beam there may be no zeros at all (Randall and Gao, 1994). 
 
 
11 Finite Element Formulation and Frequency Response Function 
 
The finite element model of a general flexible structure can be written in nodal degrees of freedom by a second 
order matrix differential equation (Gabbert et. al., 2000), (Görnandt and Gabbert, 2002) as 
 

 
where q , q&  and q&&  are the nodal displacement, velocity and acceleration vectors, M , D  and K  are the mass, 

damping and stiffness matrices, B̂  is the input matrix, Ĉ  is the output matrix and u  and y  are the input and 

output vector respectively. Introducing the variable mqΦq ⋅=  one obtains the model in modal coordinates 
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where Φ  is the matrix of mode shapes and mB̂  and mĈ  is the modal input and output matrix respectively. 

Assuming orthonormal mode shapes Φ  and proportional damping the modal mass mM , modal damping mD  

and modal stiffness matrix mK  of equation (71) simplify to 
 

 
where iω  is the eigenfrequency of the mode i  while ii ωξ ⋅  is the modal damping iδ . Performing a Laplace 

transformation of the equations (73) and (74) one obtains the transfer matrix )(ωH . 

 

 
By matrix inversion and multiplication the transfer matrix )(ωH  can be written as 

 

 

where m
iĉ  is the modal input vector of the mode i  while m

ib̂  is the modal output vector. For the beam problem 
with one actuating and one sensing patch equation (77) is reduces to 
 

 

where m
iĉ  and m

ib̂  correspond to the modal voltage ),( txVi  and the modal work ),(
~

txNi  respectively. Following 

the discussion of the previous sections 8, 9 and 10 the FRF of the simple beam model given by equation (78) can 
be enhanced by the feedthrough DK , the effective coupling factor effK  and the residual mode )(ωRK  which can 

be expressed as 
 

 
where pax  and psx  are the positions of the actuating and sensing patch respectively. 

 
 
12 Experimental Verification 
 
In the following the FRFs are verified using a cantilever beam as shown in Figure 1 and described in the section 
2. The experimental setup is given in Figure 9. The actuating patch is driven by white noise generated by the 
measurement hardware (HW) platform (Onosokki, DS-2000). The signal is amplified to 20Volt route mean 
square (Vrms) by an audio voltage amplifier (KME, SPA 3200MP) and a 50 Volt DC offset is added by a DC 
power supply (Gossen Konstanter, 14K60R). The voltage applied to the actuating patch is measured by a 
differential probe (Testec, SI-50) and is used as reference channel for the measurement HW platform. The 
generated piezoelectric voltages of the sensing patches are used as sensor signals. The FRFs are determined by 
averaging the response of 100 single measurements. 
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Figure 9.  Experimental setup 

 
 
12.1 Damping Ratio 
 
The damping ratio iξ  is calculated by a procedure based on the real part of the measured FRFs. It is described in 

detail in a companion paper (Dennerlein et. al., accepted). The influence of the limited frequency resolution 
meas

resf  of the experimental FRFs on the algorithm is investigated by means of error estimation. The experimental 

frequency resolution meas
resf  is determined such that the error estimation indicates a worst case error less than 2%. 

The values used for the different frequency ranges are listed in Table 2. 
 

frequency range <50Hz <400Hz <1600Hz <5000Hz 
meas

resf  [Hz] 0.0078 0.0625 0.25 0.78 

Table 2. Experimental frequency resolutions 

 
The computed damping ratio iξ , reported in Table 3, varies from 1.1‰ to 5.1‰. In particular the damping ratio 

iξ  of the first bending and longitudinal mode takes the large value 3.1‰ and 5.1‰ respectively whereas the 

damping ratio iξ  of the remaining modes takes values between 1.1‰ and 1.6‰. In general the structure is only 

lightly damped. 
 
 
12.2 Eigenfrequencies 
 
The eigenfrequencies if  of the beam are inferred from the measured FRFs. To do so the resonance frequencies 

mag
if  of the FRFs are identified by a search algorithm implemented in software (SW) (Matlab). Subsequently the 

eigenfrequencies if  are calculated based on the resonance frequencies mag
if  and the damping ratio iξ . 

Following the results of the vibration analysis in section 3.2 and 4.2 the analytical eigenfrequencies if  are 

computed. Moreover a FE model of the beam is developed based on 3-dimensional finite elements including the 
patches with their fully coupled electromechanical fields. The finite element software COSAR (see 
www.femcos.de) was used to carry out the simulations as well as the calculation of the FRFs. 
 
The experimental, analytical and numerical (FE model) eigenfrequencies if  are listed in Table 3. The three sets 

of eigenfrequencies match very well such that the error is less than 0.5% both for the analytical and FE model. 
The only exemptions with errors of -7.3% and -4.5% for the analytical model and of 3.53% and –5.24% for the 
FE model are the first bending and longitudinal mode respectively. 
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 experimental analytical model FE model 

mode if  [HZ] iξ  [‰] if  [Hz] error [%] if  [Hz] error [%] 

0. bending xz 19.4 3.1 18.0 -7.3 20.1 3.5 
1. bending xz 113.4 1.3 112.9 -0.5 113.5 0.1 
2. bending xz 314.8 1.3 316.2 0.4 314.0 -0.3 
3. bending xz 611.5 1.1 619.5 1.3 608.7 -0.5 
4. bending xz 1025.1 1.3 1024.1 -0.1 1021.0 -0.4 
5. bendingx z 1536.1 1.3 1529.9 -0.4 1530.9 -0.3 
6. bending xz 2135.1 1.3 2136.8 0.1 2129.9 -0.2 
7. bending xz 2857.8 1.5 2844.9 -0.5 2851.2 -0.2 
8. bending xz 3668.7 1.2 3654.1 -0.4 3658.3 -0.3 

0. longitudinal x 4380.3 5.1 4182.5 -4.5 4162.1 -5.2 
9. bending xz 4590.8 1.6 4564.4 -0.6 4584.8 -0.1 

Table 3. Eigenfrequencies, damping ratio and modelling error of eigenfrequencies 

 
These results correspond very well to the work of Maxwell and Asokanthan (2004), where the influence of 
distributed patch arrangements on the mode shapes and on the natural frequencies of a cantilever beam is 
investigated. They showed that the increase in the eigenfrequency if  of the first bending mode is several times 

larger than for the other modes compared to the bare beam. 
 
 
12.3 Feedthrough, Effective Coupling Factor and Residual Mode 
 
The values for the feedthrough DK , the effective coupling factor effK  and the residual mode RK  are listed in 

Table 4. The feedthrough DK  is calculated analytically, see section 8, while the effective coupling factor effK  

and the residual mode RK  are found by minimizing the mean absolute modelling error of the analytical FRFs 

anaH  with respect to the measured FRFs measH  in the range from 15Hz to 3 kHz. The error is calculated by 
 

 
patch combination 

 
1 to 2 3 to 4 1 to 3 2 to 4 

feedthrough DK  0.033 0.033 --- --- 

effective coupling factor effK  0.86 0.84 0.81 0.85 

residual mode RK  -0.0080 -0.0050 0.0009 0.0007 

Table 4.  Feedthrough DK , effective coupling factor effK  and residual mode RK  

 
The feedthrough is computed analytically to 0.033, see Table 4. A comparison of the FRF of a simple beam 
model considering only the modal input and output gains of the patches and of a beam model enhanced by the 
feedthrough DK  is presented in Figure 10. Looking at e.g. point 1 we can see that the feedthrough DK  increases 

the amplitude but does not change the position of the resonances. Moreover the feedthrough DK  strongly 
influences the general slope of the FRFs by shifting the position of the anti-resonances to lower frequencies, see 
Figure 10 e.g. point 2. Incorporating the feedthrough DK  thus considerably improves the correspondence of 
analytical and measured anti-resonances such that the average modelling error of the analytical FRFs is reduced 
from about 10.8dB to about 6dB, see Table 5. 
 
The model used for the induced strain analysis in section 7 considered only the pure piezoelectric layer 
neglecting the bonding layer, the electrodes and the embedding polymer matrix of the patches. Thus the 
feedthrough is slightly overestimated and the analytical anti-resonances are shifted too far to lower frequencies 
such that they are positioned to the left of the measured ones, see Figure 10 e.g. point 2. 
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modelling error [dB] for patch combination 
 

1 to 2 3 to 4 1 to 3 2 to 4 
simple model 10.4 11.1 5.1 4.2 

simple model with DK  6.5 5.4 --- --- 

simple model with DK  and effK  1.5 1.4 2.9 2.3 

simple model with DK , effK  and RK  0.9 1.3 2.5 2.0 

Table 5.  Modelling error of the analytical FRFs 

 

 

Figure 10.  Collocated FRFs of the stepwise enhanced analytical beam model 

 
The estimated effective coupling factor effK , given in Table 4, depends on the patch combination used and varies 

between 0.81 and 0.86 due to the individual mechanical, electrical or thermal aging and manufacturing tolerances 
of the single patches. This is within the range of deviation that can be expected by the above mentioned aging 
rates and manufacturing tolerances. 
The FRF of a beam model enhanced by the feedthrough DK  and the effective coupling factor effK  is shown in 

Figure 10. Including the effective coupling factor effK  in the beam model shifts the FRF by 

 

 
in the complete frequency range with respect to the beam model enhanced only by the feedthrough DK . The 
average modelling error of the analytical FRFs decreases to about 1.5dB for the collocated and to about 2.5dB 
for the non-collocated patch combinations, see Table 5. 
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Similar to the effective coupling factor effK  the deferred residual mode RK , listed in Table 4, depends on the 

patch combination. It extends over the range from -0.0080 to 0.0009 as a result of the different modal input and 
output gains of the truncated modes associated with the single patch locations. 
Finally the FRF of a beam model enhanced by the feedthrough DK , the effective coupling factor effK  and the 

residual mode RK  is shown in Figure 10. Like the feedthrough DK  the residual mode RK  contributes to the 

amplitude but does not change the position of the resonances, see Figure 10 e.g. point 1. The residual mode RK  
mainly affects the general slope of the FRFs improving the correspondence of the measured and the analytical 
anti-resonances, see Figure 10 e.g. point 2. Incorporating the residual mode RK  in the beam model minimizes 
the average modelling error of the analytical FRFs to about 1.2dB for the collocated and to about 2.2dB for the 
non-collocated patch combinations, see Table 5. 
 
 
12.4 Frequency Response Function 
 
The observed modelling error of the analytical FRFs, listed in Table 5, is greatly reduced by the improvement of 
the simple beam model with the feedthrough DK , the effective coupling factor effK  and the residual mode RK . 

The biggest reduction in the modelling error is achieved by the feedthrough DK  followed by the effective 

coupling factor effK . The residual mode RK  contributes only with a small decrease in modelling error. 

 
It is pointed out that the minimum modelling error of about 1.2dB for the collocated and 2.2dB for the non 
collocated patch combinations, listed in Table 5, is achieved only by means of combining all three additional 
modelling techniques. Though the cantilever beam is regarded to be just a simple one-dimensional structure high 
quality analytical FRFs are only obtained by the use of advanced modelling techniques requiring a thorough 
understanding of the main behaviour of smart structures. 
 
The FRFs obtained by measurement, analytical and numerical simulations are compared in Figure 10 and in 
Figure 11 for a collocated and a non-collocated patch combination respectively. The corresponding patch 
numbering is explained in Figure 1 and the experimental setup is described in Figure 9. 
 
The analytical FRFs nearly match the measured ones in the frequency range up to 3.6 kHz both for the collocated 
and the non-collocated patch combinations. Larger discrepancies are noted only in the presence of 
unintentionally excited torsional modes of the x axis and bending modes of the xy  plane, see e.g. Figure 10 e.g. 

point 3 and Figure 11 e.g. points 1 and 2. The torsional modes may be excited due to not symmetrically mounted 
patches, local inhomogeneities or manufacturing tolerances of the beam substrate or of the patches. 
 
The measured FRFs of the patch combinations 1 to 2 and 2 to 4 hardly contain any unintentionally excited modes 
such that the achieved modelling error is about 0.4dB smaller compared to the modelling error of the FRFs of the 
similar patch combinations 3 to 4 and 1 to 3, see Table 5. 
 
Comparing the analytical, numerical and experimental eigenfrequencies if  one can see that the eigenfrequencies 

of the FE model correspond better to the measured ones, see Table 3. With respect to the plots no difference can 
be noticed, see Figure 11. In general the slope of the numerical FRFs agrees less with the experimental data. This 
might be due to the residual mode that has not been included in the finite element model. 
 
The extremely low modelling error of the analytical FRFs and the excellent matching of the analytical and 
measured FRFs make the presented analytical beam model especially suited for further analysis like patch 
placement and compensator design or the development and test of advanced numerical analysis tools such as the 
finite element method and the controller design (Nestorovic-Trajkov et. al., 2005). 
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Figure 11.  Non-collocated FRFs of the COSAR and proposed analytical model 

 
 
13 Conclusion 
 
An enhanced analytical beam model has been proposed in the presented paper. The traditional analytical Euler-
Bernoulli model of the bending vibrations has been combined with a model of the longitudinal vibrations. The 
effects of mechanical coupling of actuators and collocated sensors, of effective piezoelectric coupling and of 
model truncation have been formulated analytically and have been incorporated in the model. Analytical and 
measured FRFs have been presented and show excellent agreement. The study not only offers an enhanced beam 
model but extends the verification of the theory up to highest modal orders. 
It has been concluded that the beam is sufficiently complex to develop a thorough understanding of smart 
structures. In addition, both analytical and numerical methods can be used for further investigations regarding 
patch placement and compensator development. 
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