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Improved Analytical Modelling of Smart Piezoelectric Beams and
its Experimental Verification

J. Dennerlein, U. Gabbert, H. Képpe, S. NunninlyerBechtold

Analytical models can contribute a lot to a bettederstanding of the structural behaviour of snsrtictures.

In the paper an enhanced analytical model of a itewdr beam is presented. The beam is attached with
piezoelectric patches that are used as sensorsaatthtors in a collocated and a non-collocated memin the
analysis of the bending vibrations, an Euler-Beitiomodel is combined with a model of the longinadi
vibrations. The mechanical coupling between actisaind collocated sensors is modelled analyticaihd
included in the transfer function as feedthroughddifionally the model incorporates the effective
electromechanical coupling and considers the matgllerror due to model truncation. The analytical
frequency response functions (FRFs) are verified emmpared with experimental data in the frequetange
up to 5 kHz including the first 10 bending modes #me first longitudinal mode. The observed diffees
between the simulated and the measured eigenfremaseare less than 0.5% except for the first begpdind
longitudinal mode. The average amplitude modelengr is about 1dB for collocated and about 2dB fam-
collocated patch combinations in the frequency mng to 3 kHz.

1 Introduction

In the recent years there has been a growing defoarattive vibration control (Gabbert, 2002). larp this is
due to the need for thin and light mechanical $tmaes which, unfortunately, result in undesiredreihacoustics
phenomena. Passive methods for increasing thetwtaliclamping are often inadequate, especiallyénlower
frequency range, and the performance goals candieonty by active vibration control based on disited
piezoelectric actuator and sensor systems. In ommémprove the understanding and the modellinghaf
electromechanical coupling between the piezoetegaitches and the base structure an extensiverchseas
been performed.

Crawley and de Luis (1987) proposed a uniform straddel for surface mounted piezoelectric patcluhk for
longitudinal and bending vibrations. The model marated the shear effect of the bonding layer betwthe
patches and the base substrate. Crawley and Amdér860) presented an Euler-Bernoulli model forititkiced
strain assuming consistent Euler-Bernoulli straiardhe entire cross-section of the laminate stinect

Exact closed form solutions of the FRF between aitig and sensing piezoelectric patches descritfieg
dynamical behaviour of an Euler-Bernoulli beam wesubject of many studies, see e.g. Alberts et(18195),
Pota and Alberts (1995), Preumont (2002) and S#&b&&002). In general this analytical approachppliad
only to simple models that are valid just for loveduency ranges and low modal orders. Usually cexnpl
models for higher frequency ranges are implemenisithg the finite element (FE) modelling, see e.qg.
Kusculuoglu et. al. (2004) and Nguyen and Pietr(ZaD4).

Maxwell and Asokanthan (2004) investigated theaftd surface mounted piezoelectric patches omibdal
characteristics of a cantilever Timoshenko beane &ffect of model reduction errors, termed residoadle, on
the modelling of FRFs was discussed by Gao and &fi®96). Similar to the residual mode is thduahce of
the mechanical coupling between actuating and caléxl sensing piezoelectric patches on the FRswréd-
Salazar and lliff (1999) determined the couplingniyasurement and included it in the transfer fonc{ir'F) as
an additional constant, called feedthrough.

In the present work the traditional closed formusiohs for the bending vibrations of an Euler-Besitidoeam
with surface mounted piezoelectric patches areseeviand combined with a model for the longitudinal
vibrations. A novel methodology is introduced todabanalytically the mechanical coupling betweetuaiing
and collocated sensing patches based on the amndistress distributions of the active and padsézm layers.
Furthermore the effective electromechanical cogplémd the modelling error due to model truncatioe a
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discussed. A new enhanced analytical beam modgtoposed in modal form. Additionally, the analytiga
calculated FRFs are verified and compared with migakdy simulated and experimentally measured dnes
frequency range extended to higher frequenciesrardhl orders.

2 Assumptions

A thin, rectangular and isotropic cantilever beaskown in Figura is considered. Four identical piezoelectric
patches are supposed to be perfectly and symmibstrexzrface mounted in a collocated and non-colieda
manner on both sides of the beam. The patchesecardul as actuators or sensors. In the followiagtiper- or
subscriptb denotes the beam and the super- or subsegrifite patches.
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Figurel. Geometry and layout of the cantilever beam wittie&ce mounted piezoelectric patches

The beam is made of steel type St05Z and the diezoie patches are made of Lead-Zirkonate-Tita@&T)
ceramic type Sonox P53. The principal charactesstf both materials are listed in TahleThe positioning of
the patches is based on the results of (BMBF, 198B¢re the placement for the active vibration ownof
beams is discussed.

steel St05Z Sonox P53

Ixbxh [10°m] | 300x30x2| 50x25x0.2
0, [kg/m’] 7850 7830

E [10° N/nY] 198 67

Viz, Vas 0.33 0.34
da, ds, [102 m/V] -233
€1, €5 [N/Vm] --- -15.3
& 1630

Tablel. Characteristics of steel St05Z and Sonox P53 (BMER8)

The origin of the coordinate system is locatechimmiddle at the fixed end of the beam, see FiguBae to the
symmetry of the beam and the piezoelectric pattheslongitudinal displacement(x,t) and the bending

displacementv(x,t) are uncoupled and can be analysed separatelyy®Baeatay and Abramovich, accepted).
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It is assumed that the mass and the stiffnesseogpittzoelectric patches can be neglected in coswariith the
mass and the bending stiffness of the beam (Maxarmdl Asokanthan, 2004). Because of the length ¢o th
thickness ratio of the patches the edge effecthepatches can be ignored. In the analysis thdibgnayer is
supposed to be plane and thin such that it hagonbe considered (Crawley and de Luis, 1987). AfelEu
Bernoulli model is used, neglecting the rotary fiaeand shear deformation of the beam.

3 Longitudinal Vibration

An element of the beam undergoing pure longitudiisplacements is shown in Figure

<« > P aN(x.t)
XU N(xt) dm() Wi(x, 1) Fu(x,1) N(xt) + ) g

Z,W |
< dx >

Figure2. Beam element in longitudinal motion

3.1 Differential Equation of Motion

Applying the condition of force equilibrium in the direction results in

wmﬂdn’(x) [i(x,t) = =F(xt) [dx v

where N, (x,t) is the internal forceF, (x,t) is the external axial forcelm(x,t) is the element mass of the beam
element while u(xt) is the longitudinal displacement. Substituting thelation for the mass,
dm(x) = p, (x) 0A, (X) [8Ix, and the internal force applying the Hook's la, (x,t) = E, (x) 0A, (X) [L'(X,t) , into
equation (1) one obtains the differential equatibmotion as (Meyers, 2005)

[E,() ()T (xE)] = a(X)A(X) D) = -Fy(x1) @

where E, (X) is the Young’s modulus of the beam, (x) is the cross section of the beam amdx) is the mass
density.

3.2 Solution of the Differential Equation of Motion

The homogenous differential equation of motiondtvad using separation of variables. The generhitiso
considers both location and time dependency oflifidacemenu(x,t) and can be expressed as

u(xt)=U(x)n(t) 3
where U (x) is the spatial mode shape function ay(tl) is the time dependency. By substitution of equa(R)
into equation (2) and assuming constant valuesi®mass density, , the Young’s modulu€, and the cross

sectional area, one finds the homogenous spatial differential Equavhich can be written as

U'(x)-B2(x)=0 (4)
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with the abbreviation

B? = p, | E, [ (5)
The eigenvalues j [ 8 of the equation (4) define the general solutiothefmode shap¥ (x) given by

U(x) =C, [os(B ) + C, Bin(BX) (6)

where él and éz are constants. The cantilever beam is clampedeataod and free at the other end. With these
assumptions the displacemah{x) is constrained to zero at the fixed exd 0

u@©=0 )
and the internal forcdN, (X) is constrained to zero at the free end |,

N.(ls) = A [E, BU(X)/0§ _ =0 (8)

=lp
Applying equation (6) to equations (7) and (8) tharacteristic equation is derived which results in
cos(B,) =0 9)

The solutions of the characteristic equation aréawrin the form

s
2,

G = [(RO-10, i=123... (10)

Introducing equation (10) into equation (6) andlgiogy the boundary conditions (7) and (8) one canwé the
mode shap&J; (x) as shown in Figurg and given by (Meyers, 2005)

U, (x) = -C¢ E‘sin( 27uTu

b

20 -1) D(j (11)

To ease further calculations the mode shdpgx) is normalised by an orthonormality condition. Tdwandition

is obtained by multiplying the differential equatfoof motion (4) for the eigenvalug® and f; respectively
with the mode shaped ;(x) and U;(x) respectively, subsequent subtraction of the egustand integration
over the length, . The orthonormality condition is given in the form

0 for i#]

1for i=] (12)

[0 TA W, () W, () dx=5;, & ={
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Figure3. Mode shapes of the longitudinal vibration

4 Bending Vibration

An element of the beam undergoing pure bendindatispents is shown in Figuse

lq(x,t)

M, (x.t
X,U M, (x1) T dm(x) DW(x, t) i My(X,t)*‘%mX

2,W T(x,t) ' T(x,t)+mmx

‘4 dx >I 0x

Figure4. Beam element in transverse motion

4.1 Differential Equation of Motion

Balancing the forces iz direction and the bending moments around the eeritthe beam while neglecting the
bending moments of higher order terms results in

% Cdx = dm(x) OW(x,t) — q(x,t) (13)

ML O gy = 7, 1) e (14)

where q(x,t) is the external load force. Introducing the relati of the finite element mass,
dm(x) = p, (x) OA, (x) [tix, and of the bending momer¥] , (x,t) = —E, (x) O ,, (x) W"(x,t) , into equations (13)

and (14) we derive the differential equation of imotas (Meyers, 2005)

[Ex (%) 00, () V' (X, 1)] " + 00 (X) DA (X) TH(X, 1) = (%, 1) (15)

where 1 ,,(x) is the moment of inertia.
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4.2  Solution of the Differential Equation of Motion
Following the previous approach of the sectiontBe2bending vibratiorw(x,t) is written as

w(x,t) =W(x) [5(t) (16)
where W(X) is the spatial mode shape function. Substitutiggation (16) into equation (15) and assuming

constant values for the mass density, the Young’s modulus, , the cross sectional are and the moment
of inertia | ,,(x) the homogenous spatial differential equation cadétermined as

W"(x)-B*W(x)=0 17)
with the abbreviation

B* =’ Dé% (18)
The general solution of the mode shaliéx)

W(x) =C, Bin(8X) + C, £os(8 ) + C, Binh(8 X) + C, [Eosh(@ X) (19)
is combined with the boundary conditions at thenglad endx = 0

iy W) _
W(x=1,)=0 and x 0 (20)

x=lp

and the boundary conditions at the free erwll,

AN(X W(X
My(lb)=—EbDWBw =0andT(l,)=-E,(x)0O,, 5 ) =0 (21)
ox? x=lp ox x=Ip
resulting in the characteristic equation which barexpressed by
1+cosBO,) [tosh@ d,) =0 (22)

The characteristic values of the equation (22)caraputed numerically as follows
G0, =18751 5,0, =46941 5,0, =7.8548 5 0, = QU-DTr/2, i>3 (23)

Substituting equation (23) into equation (19) amahsidering the boundary conditions (20) and (21)oaa
determine the mode shap¥(x) as shown in Figure 5 and given by (Nguyen and#iet 2004)

W, (X) = —éiw (cos(B; [X) — coshB (X)) + a [{sin(B k) —sinh(B5, [X))] (24)

where

_sin(B, [l,) —sinh(g, [1,)
a= cos(3 ) +cosh(s ) (25)
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As before the mode shap® (x) is normalised by the orthonormality condition tisagiven by

0 for i#]
[ 26 () DA (0 T () W, () dx=3;, 3 = . (26)
0 1for i=j
=
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Figure 5. Mode shapes of the bending vibration

5 Patch Actuator

The patch consists of a piezoelectric layer madeZadf ceramic that is covered with thin Silver eledes on the
upper and lower side, see Fig@eThe PZT ceramic is polarised in direction. Applying voltagé/(t) across

the actuating patch in direction of the polarisati® induces a stress, (t) within the layer inx direction. In
case the displacement of the patch is constraiméro the strese, (t) can be written as

0, (t) = E,, [, [—»him/(t) (27)

P

where ds; is the piezoelectric constart, is the Young’'s modulus of the patch whitg is the height.

v
__ hP
......................... PZT
Vv E,P,z
)4 H electrode

Figure6. Geometry and layout of the patch

Integrating the stresg, (t) over the height, yields the resulting distributed fordg (t) within the layer.

hp
—+h
2 P

F()= [o.(t)dz=E, @ V() (28)

2

where h, is the height of the beam. The distributed foggx,t) acts only on the edges of the patch as
illustrated in Figure.

Fo (1) = F (8 6, (x=%,) = 8, (x=3)] 3, (Y = y2) =4, (Y = ¥,)] (29)
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where J, is the delta functiong, is the step functiony,, x,, y, and y, are the location coordinates of the
patch. The point forcd, (t) in turn generates a bending moméhg(t) about the neutral axis of the beam.

ho
—+h
2 P

MO = [o,(0 2dz= [, [ Th, +h,) V() (30)
v

2

Once again the bending momewit, (x,t) acts only on the edges of the patch (Fuller t1807).

My (x,t) = My () [0 (X = Xz) = o (X = X)] DA (Y = Y1) = A (Y = V2)] (31)

substrate
X2

F()

<V

M, (t)

Figure7. Forces and bending moments of piezoelectric patch

The modal input gain of the actuating patch is gibg the generalised modal WON-Ii (x,t) carried out in the

mode shapes (Preumont, 2002). For the longitudilhahtion the Workﬂi“(x,t) is performed by the distributed
force F,(x,t) in the mode shapé; (x) and can be derived as

NE(x1) = [[U; () TR ()] dA= E, [, Ty U, (066) =U, ()] IV (1) (32)

where b, is the width of the patch. Similarly, for the bérgl vibration the generalised modal Woﬁgw(x,t) is
produced by the bending momeldt, (x,t) in the mode shap®/(x) and is obtained as

Q9 (% t) = -1 oW (%;) _ OWi ()
N, (x,t)—J;[(bi(x)ll/ly(x,t)]dA——EEEpBliglEth+hp)l])pEﬁ T }W(t) (33)

The same procedure can be applied foryhdirection which is not considered here.

6 Patch Sensor

Next, the voltage across the sensing patch is leddg The strairey (x,t) of the pure longitudinal deformation
is given by the first derivation of the mode shap(a<,t) as

ou, (x,t)

S)L:i (Xl t) = ax

(34)
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In case of the pure bending deformation the stigfifix,t) is proportional to the curvature of the beam dred t
transverse coordinate and can be expressed as

_hythy 92w (xt)

Ed(x,t) = 35
(xt) > 2 (35)
The electric displacemer; (x,t) is related to the straig,; (x,t) and is given by

Di(%,t) = ey [E,(X1) (36)

where e, is the piezoelectric charge density. The modapuaugain of the sensing patch is given by the
generalised modal charg®,(t) generated by the mode shapes (Preumont, 2002grétion of the electric
displacementD, (x,t) over the active area of the patch gives the matarge Q (t) . For the longitudinal
vibration this results in

Q'(x,t) = _I D! (x,1)dA= —&;; [, [u; (X.,t) = u; (X, t)] (37)

and for the bending vibration one obtains

wixt) = — [ D 1 oW (Xz,t) _ O (X4,t)
Q (x,t)——JpDi (x,t)dA—E&lﬂ)pE(hb+hp)[E ST } (38)

Assuming the patch is similar to an ideal elegbacallel plate capacitor the resulting generalisedial voltage
V! (x,t) for the longitudinal vibration is given by

1
& L&,

ViE(xt) = Qi“éx’t’ -1 e, dl"—ptuui (Xet) =t (%, 8)] (39)

where C is the capacitance of the pateh, is the permittivity of free space;, is the relative permittivity of the
piezoelectric layer and, is the length of the patch. Likewise the geneealisnodal voltage/;”(x,t) for the
bending vibration is calculated by

V=) J1n 1 o+ hy) Eﬁawi(xz,t) _ 6vvi(x1,t)} (40)

C 2 & L& [ o0x ox

7 Strainsand Stresses

A collocated patch configuration is shown in Figardn the following the strain and stress distribng within
the beam for an asymmetric excitation with the uppegtch is derived. The approach is based on th wb
Fuller et. al. (1997) but includes the additiorsldr of the collocated sensing patch. An imporgssumption is
that the patch is thin and lightweight so that ithertia effects can be neglected. The bonding l&yégnored,
which is valid if the layer is plane and thin. letfollowing analysis only thex direction is considered but the
results are valid also for thg direction. The super- or subscrippg denote the actuating patch while the super-
or subscriptsps denote the sensing patch.

Applying voltageV (t) across the actuating patch causes the unconstrpateh to strain inx direction by

£ (t) = doy E-»hl v (1) (41)

p
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Considering however a bonded patch this will tnekpand but is constrained by the stiffness ofttb@m. Due
to the asymmetric load the beam will both expardllzend producing an asymmetric strain distributisrshown
in Figure8. Based on the Euler-Bernoulli hypothesis we caume a linear strain distribution in the plane
that can be written as

£.(z2,t) =C, (1) 2+ £,.(t) (42)

where C, (t) is the slope and,(t) is the point of interception with the axis.

actuating patch—— e —» |
> e (t)
>
substrate e 7 >
sensing patch ——Le < |
2V
> | | : |
A OM (] & (t
; 9] > 4 (t) >
< X > X
| < | | > |
YA 4 2V

Figure8. Asymmetric strain distribution

The stress distributiowr?2(z,t) within the actuating patch is made up of the ust@ined patch strains?(t)
and &*(t) and the assumed linear strain distributiongz,t) and &£,(zt). Using Hook’s law the stress
distribution g2(z,t) can be expressed as

Eiz QC(O) T+ &x(t) +v, HCy (1) Tz + £, (1)) — (£22(1) + v, TP ()] (43)

P

oP(zt) =

where E} is the Young’s modulus of the patch whilg is the Poisson ratio. Respectively, the stredsitligion
o?(z,t) within the beam substrate is given by

E?

ox(zt) = 1 QC.(t) Cz+ & (1) +v, LC, (1) 2+ £, (V)] (44)

where E? is the Young's modulus of the beam substrate whijlds the Poisson ratio. The stress distribution
o5(z,t) within the sensing patch is written as

07 (21) = To 1C, () 2+ £,(0) +V, 1C, () [2+ &, () (45)

Yo
The further analysis is simplified by the isotrogigbstrate properties of the patch. The identigetqelectric

constantsd;; and d;, impose equal strains

Epa(t) = ££2(t) = £/7(1) (46)
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in x and y direction. The substrate of the beam has neariilasi Young’s modules in both in-plane directions
(BMBF, 1998).

Er/Eb=102= E, = E> = E® (47)

Together with the identical Young’'s moduldsfand E}? of the patch this enforces equal stress and strain
distributions

Tn(z1) = 0f*(2,1) = 0§°(21) (48)
oy (zt) = 03(z,t) = 03(21) (49)
Ou(zt) = 0f(z,1) = 0*(2,1) (50)
£(zt) = £(zt) = £,(2,1) (51)

in x and y direction. Furthermore the Poisson’s ratip of the patches and, of the beam substrate is nearly
the same

VoIV, =097= v =v, =V, (52)

such that the Poisson’s ratio can be replaced in equations (43), (44) and @&)lting in

Tpa(21) = 1E_'°V MC) Tz + &(t) = £0a(1)] (53)
ou(zt) = fv [C(t) Gz + £(1)] (54)
0u(2:) =52 10O 2+ 0] (55)

Employing the force equilibrium ix direction results in the relation

o +hb +m+hp

faps(z,t)dz+ fab(z,t)dz+ Zjapa(z,t)dz:o (56)
v hy

—hp—2 +-9
P2 2 2

and the moment equilibrium about the centre otib@m gives the condition

o +m +@+h
2 2 2. P
.[aps(z,t) (zdz+ J'ab(z,t) (zdz+ J'apa(z,t) (xdz=0 (57)
Y Ty LY
2 2 2

The equations (56) and (57) are integrated ancedadler the unknown<(t) and £(t) . Finally, we obtain the
slope C(t) and the interceptio&(t) of the Euler-Bernoulli strain which are expresbgd

. E, [h
E(t) = PP . (t) =K, EF.a(t
® 20E, h, + E, pa(t) pa(t) (58)

-

Ku
6[E, [h, ({h, +h

cty=—— E, I, U +1hy) G (t) = K (1)

E, (h? + 6 E, (h? [h, +12[E, [h, [h? +8[E, [h3 (59)

Kw
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8 Actuator Sensor Coupling

Following the strain distribution analysis we noerige an expression for the mechanical couplitg, called
feedthrough, between actuating and collocated sgrmtch. In general the Euler-Bernoulli beam issidered
to be a one dimensional system with bending anditodinal displacements only in the plane and along the
x axis respectively (Fuller et. al., 1997). The di&sion in the section 7 showed that this assumjgioot valid

in the close surrounding of the actuating patche &kectric displacemerd(x,t) in the sensing patch caused by

the straing(zt) in the xz and yz plane is given by
Kulz+K,
D(Z,t) = 2@31 |]j31 dhi) Wpa(t) (60)
P

where V, (t) is the voltage applied across to the actuatinghpahtegrating the electric displacemebgx,t)
over the active area of the sensing patch one robthie chargeQ(t) generated by the mechanical coupling
which can be written as

Q) = -J D(zt) dA= -2[&, [d,, Eﬁ— K, &> ;hp + Ku] d%wpa(t) (61)

The resulting voltag®/ s (t) of the sensing piezoelectric patch is given by

V()= 22 - za—teﬁmsltﬁ E—P—"+Kj Vi) )

9 Effective Coupling Factor

The polarisationP of a piezoelectric layer reduces gradually withetiafter polarisation resulting in a decreased
piezoelectric constand;; and a degraded piezoelectric charge dersityTypically the coupling coefficient of

low-voltage PZTs decreases by 0.5% to 2% per im#é tlecade while the coupling coefficient of highitage
PZTs decreases by 1% to 4%, see (Pl Ceramic Gmb®ha) and (CeramTec, 2006). Mishandling the element
by exceeding its electrical, mechanical or therlingitations accelerates the aging process.

In addition the manufacturing tolerances of theetg patches used for the functional demonstra®tygpically

up to +025mm regarding the lengti, and width b, of the patch (Pl Ceramic GmbH, 2005b). Both the

thicknessh, and the dielectric properties; and e;; of the patches are withinl(0% of the specified values.
The effective electromechanical properties arertaki®n account by an effective coupling facteg; .
ff_
A" = K.y [y, (63)

&5 = Koy [y (64)

10 Analytical Frequency Response Function and Residual M ode

The Euler-Bernoulli beam is theoretically a sysihinfinite modal order. The FRF of such a systemwiitten
in the pole-residue representation as follows

-~ R
N =2 s T -5 (65)
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where R is the residue of the mode while s, is the complex pole in the plane and” means the complex

conjugate. In principle the sum extends to all nsodé the system. One obtains a reduced order moylel
truncation of the model above the frequency rarigeterest (Wang, 1998), (Randall and Gao, 1994)

R °° &
O 2 s w5 (i s U - 55) )

in-of -bandmodes out-of -bandmodes

which can also be written in the form
H (w) = Hin (a)) + Hout (w) (67)

The out-of-band FRFH .(«) is called residual mode. The anti-resonancesefd¢duced order model are the
zeros of the FRFH;,(«w). In general they differ from the anti-resonancésthe full order modelH («)
determined by the zeros of the suiin, (w) + H,, (w) .

Furthermore the residual mode influences the madaiand phase of the FRF. The contribution of #sédual
mode to the FRF can be written as (Gao and Rark#96)

K (@) = 2003 loguo(| (] o= $,) [} Go-53) ) ~ 2003 loguo(| (j - s,) 1] o 5) ) (68)

i=nz+l i=np+1

where s, ands, are the complex zeros and poles of the transfetion H,,(«w) . The frequency dependency
of Kg(w) within the in-band range essentially depends errdtio of the zeros and poles. At best the actgati

and sensing patches are arranged in a collocatedenauch that the resulting FRF has alternatimgszand
poles. As a consequence of the interlacing patieencontribution of a poles, is compensated for by the

contribution of the subsequent zesp and Kx(w) is nearly constant.

The greater is the distance between the actuatidgansing patch the less is the number of FRF5Z&ao and
Randall, 1996) and the greater is the frequencgni@gncy ofK(w) . In the worst case with patches placed on

the opposite sides of the beam there may be ne z¢mll (Randall and Gao, 1994).

11 Finite Element Formulation and Frequency Response Function

The finite element model of a general flexible stawe can be written in nodal degrees of freedom lsgcond
order matrix differential equation (Gabbert et, 2000), (Gérnandt and Gabbert, 2002) as

M G+ D +K [ =B (69)

y=Cg (70)

whereq, ¢ and § are the nodal displacement, velocity and accéteratectors,M , D and K are the mass,

damping and stiffness matriceB, is the input matrix,C is the output matrix andi andy are the input and
output vector respectively. Introducing the varéabl= @ [q,, one obtains the model in modal coordinates

®" M @G, +® D H, +® K DF,=0" B
Mm Dm Km Bm
yzgni,[qm (72)

Cm

(71)
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where @ is the matrix of mode shapes afj, and ém is the modal input and output matrix respectively.
Assuming orthonormal mode shapés and proportional damping the modal mads,, modal dampingD,
and modal stiffness matriK ., of equation (71) simplify to

M, =@®" M= (73)
K,=®" K =Q2 = diag(aw?) (74)
D, =®" (D = Z [ = diag2 £, [&y) (75)

where @ is the eigenfrequency of the modewhile & [y is the modal damping), . Performing a Laplace
transformation of the equations (73) and (74) dotaios the transfer matrik (w) .

H(a) = C,, -1 * + | [diag(2 (¥, () o+ diag(aw?)] ™ (B, (76)
By matrix inversion and multiplication the transfeatrix H(cw) can be written as

_< &ty
M@= 20 F

(77)

where ¢ is the modal input vector of the modewnhile br" is the modal output vector. For the beam problem
with one actuating and one sensing patch equatiohi¢ reduces to

_ n éimm’im
M@= g

(78)

where¢™ and ﬁm correspond to the modal voltalye(x,t) and the modal WOYNi (x,t) respectively. Following

the discussion of the previous sections 8, 9 anth&-RF of the simple beam model given by equd@@) can
be enhanced by the feedthroulfly , the effective coupling factokK.; and the residual modkK(w) which can

be expressed as

i Ni (Xpa) wi (Xps)

H(Xpavxpsrw) = Kesz EE
izlaf_wz-l'zqgimm

+KD}+KR(0)) (79)

where x,, and X, are the positions of the actuating and sensinghpaispectively.

12 Experimental Verification

In the following the FRFs are verified using a dantr beam as shown in Figuteand described in the section
2. The experimental setup is given in FigareThe actuating patch is driven by white noise gatesl by the
measurement hardware (HW) platform (Onosokki, DSEJ0 The signal is amplified to 20Volt route mean
square (Vrms) by an audio voltage amplifier (KMEBAS3200MP) and a 50 Volt DC offset is added by a DC
power supply (Gossen Konstanter, 14K60R). The geltapplied to the actuating patch is measured by a
differential probe (Testec, SI-50) and is used eference channel for the measurement HW platforhe T
generated piezoelectric voltages of the sensinghpatare used as sensor signals. The FRFs arenaetdrby
averaging the response of 100 single measurements.
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Figure9. Experimental setup

12.1 Damping Ratio

The damping raticf; is calculated by a procedure based on the reabpéine measured FRFs. It is described in

detail in a companion paper (Dennerlein et. algepted). The influence of the limited frequencyoteson
f.meas of the experimental FRFs on the algorithm is itigesed by means of error estimation. The expertaien

frequency resolutionf ¥ is determined such that the error estimation eigis a worst case error less than 2%.
The values used for the different frequency raregedisted in Table.

frequency range <50Hz <400Hz <1600Hz <5000Hz
fies™ [Hz] 0.0078| 0.0625 0.25 0.78

Table2. Experimental frequency resolutions

The computed damping rati§ , reported in Table 3, varies from 1.1%o to 5.1%ophrticular the damping ratio
& of the first bending and longitudinal mode takies targe value 3.1%. and 5.1%. respectively wherbas t
damping ratioé; of the remaining modes takes values between 1.6éda&6%.. In general the structure is only
lightly damped.

12.2 Eigenfrequencies

The eigenfrequencied; of the beam are inferred from the measured FRBddI'so the resonance frequencies
f;"% of the FRFs are identified by a search algorithmplemented in software (SW) (Matlab). Subsequethiy
eigenfrequencied; are calculated based on the resonance frequefi¢fésand the damping ratid; .

Following the results of the vibration analysissaction 3.2 and 4.2 the analytical eigenfrequendiesare

computed. Moreover a FE model of the beam is dpesldased on 3-dimensional finite elements inclydie
patches with their fully coupled electromechanid@lds. The finite element software COSAR (see
www.femcos.de) was used to carry out the simulatemwell as the calculation of the FRFs.

The experimental, analytical and numerical (FE nioeigenfrequenciesf; are listed in Table 3. The three sets

of eigenfrequencies match very well such that tierds less than 0.5% both for the analytical &&model.
The only exemptions with errors of -7.3% and -4 .fthe analytical model and of 3.53% and —5.24%tle
FE model are the first bending and longitudinal moespectively.
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experimental analytical model FE model

mode fi [HZ] | & [%0] | fi [Hz] | error [%] | fi [Hz] | error [%]

0. bending xz 19.4 3.1 18.0 -7.3 20.1 3.5
1. bending xz 113.4 1.3 112.9 -0.5 113/5 0.1
2. bending xz 314.8 1.3 316.2 0.4 314)0 -0.3
3. bending xz 611.5 1.1 619.5 1.3 6087 -0.5
4. bending xz 1025.1 1.3 10241 -0.1 1021.0 -0.4
5. bendingx z 1536.1 1.3 1529.9 -0.4 1530.9 -0.3
6. bending xz 2135.1 1.3 21368 0.1 2129.9 -0.2
7. bending xz 2857.8 1.5 284419 -0.5 2851.2 -0.2
8. bending xz 3668.7 1.2 36541 -0.4 3658.3 -0.3

0. longitudinal x| 4380.3 5.1 4182.5 -4.5 41621 2-5.
9. bending xz 4590.8 1.6 45644 -0.6 4584.8 -0.1

Table 3. Eigenfrequencies, damping ratio and modgérror of eigenfrequencies

These results correspond very well to the work aixiell and Asokanthan (2004), where the influente o
distributed patch arrangements on the mode shapgsoa the natural frequencies of a cantilever béam
investigated. They showed that the increase irethenfrequencyf; of the first bending mode is several times

larger than for the other modes compared to the baam.

12.3 Feedthrough, Effective Coupling Factor and Residual M ode

The values for the feedthroudK, , the effective coupling factoK.; and the residual modKy are listed in
Table 4. The feedthroughK,, is calculated analytically, see section 8, while effective coupling factoK
and the residual mod&y are found by minimizing the mean absolute modglinror of the analytical FRFs
H... with respect to the measured FRIAS,., in the range from 15Hz to 3 kHz. The error is akdted by

2[#3000
1

error (K, Kg) = SHTE000-15 0 IZOE]]IOQ(I H meas(@) |) = 109(| H ana (Kt , Kr, @) |) | dew (80)

patch combination

1to2 3to4 1to 3 2to 4
feedthroughK, 0.033 | 0.033
effective coupling factoK 0.86 0.84 0.81 0.85
residual modeK 5 -0.0080| -0.0050 0.0009 0.0007

Table4. FeedthroughK, , effective coupling factoK.; and residual mod& ;

The feedthrough is computed analytically to 0.088¢ Tablet. A comparison of the FRF of a simple beam
model considering only the modal input and outpaihg of the patches and of a beam model enhancédeby
feedthroughK,, is presented in Figure 10. Looking at e.g. poimelcan see that the feedthrough increases
the amplitude but does not change the positionhef resonances. Moreover the feedthrough strongly
influences the general slope of the FRFs by shiftire position of the anti-resonances to lowerdesgries, see
Figure 10 e.g. point 2. Incorporating the feedtiglolK, thus considerably improves the correspondence of
analytical and measured anti-resonances suchfteavierage modelling error of the analytical FRF=etuced
from about 10.8dB to about 6dB, see Table

The model used for the induced strain analysisdatisn 7 considered only the pure piezoelectriceday
neglecting the bonding layer, the electrodes arel dmbedding polymer matrix of the patches. Thus the
feedthrough is slightly overestimated and the aitallanti-resonances are shifted too far to lofiequencies
such that they are positioned to the left of thasneed ones, see Figure 10 e.g. point 2.
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modelling error [dB] for patch combination
1to2 3to4 1t03 2t04
simple model 10.4 11.1 5.1 4.2
simple model withK 6.5 5.4
simple model wittK, and K 1.5 1.4 2.9 2.3
simple model withK, , K« and Kg 0.9 1.3 2.5 2.0

Table5. Modelling error of the analytical FRFs

magnitude [dB]

2 : :
-70 : / —— measurement 18, patch 1 to 2
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simple model & K

BOE G/ ABARE . N\t i D
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frequency [Hz]

Figure 10. Collocated FRFs of the stepwise enlthaoalytical beam model

The estimated effective coupling facti. , given in Tablet, depends on the patch combination used and varies

between 0.81 and 0.86 due to the individual medahnelectrical or thermal aging and manufactutoigrances
of the single patches. This is within the rangeale¥iation that can be expected by the above mesdi@ging
rates and manufacturing tolerances.

The FRF of a beam model enhanced by the feedthréigland the effective coupling factdf.; is shown in

Figure 10. Including the effective coupling factdr; in the beam model shifts the FRF by
200o0g,0 (K& ) (81)

in the complete frequency range with respect toltéam model enhanced only by the feedthrokgh The

average modelling error of the analytical FRFs dases to about 1.5dB for the collocated and to tab&adB
for the non-collocated patch combinations, see &abl
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Similar to the effective coupling factdf.; the deferred residual modé, listed in Table4, depends on the
patch combination. It extends over the range fr6rG80 to 0.0009 as a result of the different madjalit and
output gains of the truncated modes associatedthgtisingle patch locations.

Finally the FRF of a beam model enhanced by thdtfeeugh K, , the effective coupling factoK.; and the
residual modeKy is shown in Figure 10. Like the feedthrougth, the residual modeKy contributes to the
amplitude but does not change the position of @s®mances, see Figure 10 e.g. point 1. The resicodé K
mainly affects the general slope of the FRFs impigthe correspondence of the measured and thgtizahl
anti-resonances, see Figure 10 e.g. point 2. loeating the residual mod&y in the beam model minimizes

the average modelling error of the analytical FRi-about 1.2dB for the collocated and to about B.Rat the
non-collocated patch combinations, see Ta&ble

12.4 Frequency Response Function

The observed modelling error of the analytical FRiSged in Tables, is greatly reduced by the improvement of
the simple beam model with the feedthrough, the effective coupling factoK.; and the residual modKrg .

The biggest reduction in the modelling error isiaedd by the feedthroughk, followed by the effective
coupling factorK; . The residual mod&  contributes only with a small decrease in modglénror.

It is pointed out that the minimum modelling ermfrabout 1.2dB for the collocated and 2.2dB for tiomn
collocated patch combinations, listed in Tab)ds achieved only by means of combining all thaelelitional
modelling techniques. Though the cantilever bearegsirded to be just a simple one-dimensional strecigh
quality analytical FRFs are only obtained by the w$ advanced modelling techniques requiring aabgh
understanding of the main behaviour of smart stmest

The FRFs obtained by measurement, analytical amderioal simulations are compared in Figure 10 and i
Figure 11 for a collocated and a non-collocated patch coatiin respectively. The corresponding patch
numbering is explained in Figuteand the experimental setup is described in Figure

The analytical FRFs nearly match the measured ionigee frequency range up to 3.6 kHz both for tbkocated
and the non-collocated patch combinations. Largescrepancies are noted only in the presence of
unintentionally excited torsional modes of the ysaand bending modes of thgy plane, see e.g. Figure 10 e.g.

point 3 and Figurel e.g. points 1 and 2. The torsional modes may béezkdue to not symmetrically mounted
patches, local inhomogeneities or manufacturingréoices of the beam substrate or of the patches.

The measured FRFs of the patch combinations lated?? to 4 hardly contain any unintentionally ee@itnodes
such that the achieved modelling error is aboud B.dmaller compared to the modelling error of tR#E of the
similar patch combinations 3 to 4 and 1 to 3, sabkldb.

Comparing the analytical, numerical and experinlegiggenfrequenciesf; one can see that the eigenfrequencies

of the FE model correspond better to the measuned,see Table 3. With respect to the plots nemiffce can
be noticed, see Figurd. In general the slope of the numerical FRFs ageseswith the experimental data. This
might be due to the residual mode that has not metuded in the finite element model.

The extremely low modelling error of the analytidgadRFs and the excellent matching of the analytarad

measured FRFs make the presented analytical beatkel nespecially suited for further analysis like ghat
placement and compensator design or the developamehtest of advanced numerical analysis tools asdne
finite element method and the controller designsfiievic-Trajkov et. al., 2005).
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Figure11. Non-collocated FRFs of the COSAR and proposetytcal model

13 Conclusion

An enhanced analytical beam model has been progngbeé presented paper. The traditional analytitider-
Bernoulli model of the bending vibrations has beembined with a model of the longitudinal vibratorrhe
effects of mechanical coupling of actuators andocaked sensors, of effective piezoelectric cogplmd of
model truncation have been formulated analyticaliyl have been incorporated in the model. Analyta
measured FRFs have been presented and show ekegjteement. The study not only offers an enhabesan
model but extends the verification of the theorytapighest modal orders.

It has been concluded that the beam is sufficieatynplex to develop a thorough understanding ofrsma
structures. In addition, both analytical and nucerimethods can be used for further investigati@gsrding
patch placement and compensator development.
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